Motion Detection and Tracking

CS6350: Computer Vision
Presentation Outline

• Introduction to Motion Detection
• Applications of Motion Detection and Tracking
• Background Subtraction (BGS)
• Basic BGS Algorithms
• Mixture of Gaussians (MoG)
• Conclusion
Introduction

• **AIM:** To detect and track objects moving independently to the background

• Two situations encountered are
 – Static Camera (fixed viewpoint)
 – Moving Camera (moving viewpoint) (research topic, out of scope, left for exploration)
Definition of Motion Detection

- Action of sensing physical movement in a given area
- Motion can be detected by measuring change in speed or vector of an object
Applications of Motion Detection and Tracking

• Surveillance/Monitoring Applications
 – Security Cameras
 – Traffic Monitoring
 – People Counting

• Control Applications
 – Object Avoidance
 – Automatic Guidance
 – Head Tracking for Video Conferencing

Many intelligent video analysis systems are based on motion detection and tracking
Detecting moving objects in a static scene

• Moving objects can be detected by applying Background Subtraction Algorithms

• Simplest method (frame differencing):
 – Subtract consecutive frames
 – Ideally this will leave only moving objects
 – Following conditions effect the background subtraction
 • Moving background (e.g. swaying of trees)
 • Temporarily stationary objects
 • Object shadows
 • Illumination variation
Presentation Outline

• Introduction
• Definition of Motion Detection
• Applications of Motion Detection and Tracking
• Background Subtraction (BGS)
• Basic BGS Algorithms
• Mixture of Gaussians (MoG)
• Conclusion
Background Subtraction

• **Motivation:** Simple difference (frame differencing) of two images shows moving objects
• Uses a reference background image for comparison purposes
• Current image (containing target object) is compared to reference image pixel by pixel
• Places where there are differences are detected and classified as moving objects
Overview of Various BGS Algorithms

<table>
<thead>
<tr>
<th>BGS Algorithm</th>
<th>Reference Paper</th>
<th>Salient Features</th>
</tr>
</thead>
</table>
• Parametric thus less memory intensive |
• It first models the person, then the scene and then does analysis |
• Gaussians modify and adapt with each new incoming frame |
Overview of Various BGS Algorithms (contd..)

<table>
<thead>
<tr>
<th>BGS Algorithm</th>
<th>Reference Paper</th>
<th>Salient Features</th>
</tr>
</thead>
</table>
• The Gaussian mixture parameters and components of each pixel is updated online |
| Eigenbackgrounds | Oliver, N.M.; Rosario, B.; Pentland, A.P.; "A Bayesian computer vision system for modeling human interactions", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.831-843, Aug 2000 | • PCA by way of eigenvector decomposiioin is a way to reduce the dimensionality of a space
• PCA can be applied to a sequence of n frames to compute the eigenbackgrounds
• Faster than MoG approach |
• Uses Median function |
Presentation Outline

• Introduction
• Definition of Motion Detection
• Applications of Motion Detection and Tracking
• Background Subtraction (BGS)
• Basic BGS Algorithms
• Mixture of Gaussians (MoG)
• Conclusion
Basic BGS Algorithms

• Background as the **average** or the **median** (Velastin, 2000; Cucchiara, 2003) of the previous n frames:
 – rather fast, but very memory consuming: the memory requirement is $n \times \text{size(frame)}$

• Background as the Approximate Median Filtering (AMF) (**running average**)

 $$B_{i+1} = \alpha I_{i+1} + (1 - \alpha) B_i$$

 – α, the learning rate, is typically 0.05
 – no more memory requirements
Basic BGS Algorithms – rationale

• The background model at each pixel location is based on the pixel’s recent history
• In many works, such history is:
 – just the previous n frames
 – a weighted average where recent frames have higher weight
• In essence, the background model is computed as a chronological average from the pixel’s history
• No spatial correlation is used between different (neighbouring) pixel locations
Results - Simple frame differencing

INPUT Video

Foreground Mask
Results - Approximate Median Filtering

Background Model

Foreground Mask
Presentation Outline

• Introduction
• Definition of Motion Detection
• Applications of Motion Detection and Tracking
• Background Subtraction (BGS)
• Basic BGS Algorithms
• Mixture of Gaussians (MoG)
• Conclusion
Mixture of Gaussians (MoG)

- Mixture of K Gaussians $(\mu_i, \sigma_i, \omega_i)$ (Stauffer and Grimson, 2000)
- In this way, the model copes also with multimodal background distributions; however:
 - the number of modes is arbitrarily pre-defined (usually from 3 to 5)
 - how to initialize the Gaussians?
 - how to update them over time?
Gaussian Mixture Models

- Each pixel modeled with a mixture of Gaussians
- Flexible to handle variations in the background

\[\hat{p}(\tilde{x}|\chi_T, BG+FG) = \sum_{m=1}^{M} \hat{\pi}_m N(\tilde{x}; \hat{\mu}_m, \hat{\sigma}_m^2 I) \]
Mixture of Gaussians (MoG) (contd.)

• All weights ω_i are updated (updated and/or normalized) at every new frame

• At every new frame, some of the Gaussians “match” the current value (those at a distance $< 2.5 \sigma_i$): for them, μ_i, σ_i are updated by the running average

• The mixture of Gaussians actually models both the foreground and the background: how to pick only the distributions modeling the background?:
 – all distributions are ranked according to their ω_i/σ_i and the first ones chosen as “background”
GMM Background Subtraction

• Two tasks performed real-time
 – Learning the background model
 – Classifying pixels as background or foreground

• Learning the background model
 – The parameters of Gaussians
 • Mean
 • Variance and
 • Weight
 – Number of Gaussians per pixel

• Enhanced GMM is 20% faster than the original GMM*

* Improved Adaptive Gaussian Mixture Model for Background Subtraction, Zoran Zivkovic, ICPR 2004
Classifying Pixels

• $\bar{x}^{(t)} =$ value of a pixel at time t in RGB color space.
• Bayesian decision R – if pixel is background (BG) or foreground (FG):

$$ R = \frac{p(BG|\bar{x}^{(t)})}{p(FG|\bar{x}^{(t)})} = \frac{p(\bar{x}^{(t)}|BG)p(BG)}{p(\bar{x}^{(t)}|FG)p(FG)} $$

• Initially set $p(FG) = p(BG)$, therefore if $p(\bar{x}^{(t)}|BG) > c_{thv}$
 decide background

 $$ p(\bar{x}^{(t)}|FG) = c_{FG} $$

 $p(\bar{x}^{(t)}|BG) =$ Background Model

 $\hat{p}(\bar{x}|X, BG) =$ Estimated model, based on the training set X
The GMM Model

- Choose a reasonable time period T and at time t we have $\mathcal{X}_T = \{x^{(t)}, \ldots, x^{(t-T)}\}$

- For each new sample update the training data set \mathcal{X}_T

- Re-estimate $\hat{p}(\vec{x}|\mathcal{X}_T, BG)$

- Full scene model (BG + FG)

$$\hat{p}(\vec{x}|\mathcal{X}_T, BG+FG) = \sum_{m=1}^{M} \hat{\pi}_m \mathcal{N}(\vec{x}; \hat{\mu}_m, \hat{\sigma}_m^2 I)$$

GMM with M Gaussians where

- $\hat{\mu}_1, \ldots, \hat{\mu}_M$ - estimates of the means

- $\hat{\sigma}_1, \ldots, \hat{\sigma}_M$ - estimates of the variances

- $\hat{\pi}_m$ - mixing weights non-negative and add up to one.
The Update Equations

• Given a new data sample $\bar{x}^{(t)}$ update equations

$$\begin{align*}
\hat{\pi}_m &\leftarrow \hat{\pi}_m + \alpha (o_m^{(t)} - \hat{\pi}_m) \\
\hat{\mu}_m &\leftarrow \hat{\mu}_m + o_m^{(t)} (\alpha / \hat{\pi}_m) \delta_m \\
\hat{\sigma}_m^2 &\leftarrow \hat{\sigma}_m^2 + o_m^{(t)} (\alpha / \hat{\pi}_m) (\delta_m^T \delta_m - \hat{\sigma}_m^2)
\end{align*}$$

where, $\delta_m = \bar{x}^{(t)} - \hat{\mu}_m$

$O_m^{(t)}$ is set to 1 for the ‘close’ Gaussian and 0 for others

and $\alpha = 1/T$ is used to limit the influence of old data (learning rate).

• An on-line clustering algorithm.

• Discarding the Gaussians with small weights - approximate the background model:

$$p(\bar{x} | X_T, BG) \sim \sum_{m=1}^{B} \hat{\pi}_m \mathcal{N}(\bar{x}; \hat{\mu}_m, \sigma_m^2 I)$$

• If the Gaussians are sorted to have descending weights $\hat{\pi}_m$

$$B = \arg \min_{b} \left(\sum_{m=1}^{b} \hat{\pi}_m > (1 - c_f) \right)$$

where c_f is a measure of the maximum portion of data that can belong to FG without influencing the BG model.
Mixture of Gaussians (MoG) (contd.)

Results - Mixture of Gaussians (MoG)

Background Model

Foreground Mask
Conclusion

• Studied various motion detection and tracking algorithms

• Multiple BGS methods are needed for
 – Indoor (relative stable lighting)
 – Outdoor
 • Relative stable
 • High dynamic
 – Crowded environment
 – Camera Jitter/Shaking
Conclusion (contd.)

• **Speed**
 - Fast
 • Average, Median, Approximate median filtering
 - Intermediate
 • Eigenbackgrounds
 - Slow
 • MoG

• **Memory requirements**
 - High
 • Average, Median
 - Intermediate
 • MoG, Eigenbackgrounds
 - Low
 • Approximate median filtering