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Scale is embedded in the task: do you want only coins or TREASURE?



SCALE-SPACE – Theory and Applications

- Scale-space theory is a framework of multiscale p y
image/signal representation;

N d t h dl lti l t f l ld bj t- Need to handle multi-scale nature of real-world objects

- Representation of multiple scales simultaneouslyp p y

- Design of flexible image operators, for tasks such as, 
f t d t ti f t l ifi ti t t hifeature detection, feature classification, stereo matching, 
motion descriptors, shape cues and representing 
image/video content.g / o o

- How make modules of visual processing scale invariant ?

- Motivation comes from the resemblance of close receptive 
field profiles of the human visual system.e d p o es o e u a sua sys e



Scale Space in Human VisionScale Space in Human Vision

• The human visual system is a 
lti l li d imulti-scale sampling device

• The retina contains receptive 
fields; groups of receptors 
assembled in such a way that 
they form a set of apertures of 
widely varying size. 



SCALE-SPACE – Theory and Applications

- Most problems in CV & IP, are faced with the question: 

- What operators to use ?

- Where to apply them ?

- How large (scale or range of scales) should they be ?

- How to relate (interpret) to the actual structure in the- How to relate (interpret) to the actual structure in the 
scene?

In the absence of prior information – use empirical 
methods; represent data at multiple scales.

Scale-space method attempts to represent data at all 
scales simultaneouslyscales simultaneously.



SCALE-SPACE – Theory and Applications

- Earliest stage of visual processing [Hubel and Wiesel] 
suggests that, the response of cells in primary visual cortex gg , p p y
have multi-channel, multi-resolution property, orientation 
selectivity and response to primitive geometrical shapes 
t tstructures.

- Scale-space theory specifies that convolution by the p y p y
Gaussian kernel and its derivatives provide a canonical class 
of image operators with unique properties.

- In presence of noise and other artifacts, computing image 
derivatives is an ill-posed problem.po p o

- Gaussian derivatives provide a convenient way of defining 
d i ti i l i ll dderivatives in scale-space in a well-posed manner 

- Thus convolve the image with Gaussian derivative kernels.us co o e e age Gauss a de a e e e s



Practical Implementation

• Convolve the image with a Gaussian Kernel
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Image at increasing scales, obtained by Gaussian Convolution

The scale-space family can be defined as the 
solution of the diffusion equation (forsolution of the diffusion equation (for 
example, in terms of the heat equation):
with initial condition, L(x, y; 0) = f(x, y).



Why multi-scale?  Why should you blur?

• Computational efficiency

• Coarse-to-fine

• Extracting hierarchical structureExtracting hierarchical structure

Fi t i i l f h i f b ti• First principles of physics of observations

• Visual system is multi-scale



Image sub-sampling

1/8

1/4

Throw away every other row andThrow away every other row and 
column to create a 1/2 size image

- called image sub-samplingg p g



Image sub-sampling

1/4 (2x zoom) 1/8 (4x zoom)1/2 1/4  (2x zoom) 1/8  (4x zoom)

Why does this look so bad?

1/2



Aliasing
Occurs when you shrink an image by 

taking every nth (n>1) pixeltaking every nth (n>1) pixel.

If we do, characteristic errors appear 
• Typically, small phenomena look bigger; fast 

h l k lphenomena can look slower

• Common phenomenon• Common phenomenon
– Wagon wheels rolling the wrong way in movies
– Checkerboards misrepresented in ray tracingo p y g
– Striped shirts look funny on colour television
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Resample the 
checkerboard by taking 
one sample at each circle.  
In the case of the top left 
board new representationboard, new representation 
is reasonable. 
Top right also yields a 
reasonable representation. 
Bottom left is all black 
(dubious) and bottom(dubious) and bottom 
right has checks that are 
too big.
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Constructing a pyramid by 
taking every second pixel 
leads to layers that badlyleads to layers that badly 
misrepresent the top layer
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What does blurring take away?

Original



What does blurring take away?

smoothed (5x5 Gaussian)



High-Pass filter

smoothed MINUS original



Gaussian pre-filtering

G 1/8

G 1/4

Gaussian 1/2Gaussian 1/2

Solution:  filter the image, then subsample
• Filter size should double for each ½ size reduction.  Why?



Subsampling with Gaussian pre-filtering

G 1/4 G 1/8Gaussian 1/2 G 1/4 G 1/8Gaussian 1/2

Solution:  filter the image, then subsample
• Filter size should double for each ½ size reduction Why?• Filter size should double for each ½ size reduction.  Why?
• How can we speed this up?



Compare with...

1/4 (2x zoom) 1/8 (4x zoom)1/2 1/4  (2x zoom) 1/8  (4x zoom)1/2





Image PyramidsImage Pyramidsg yg y

• Gaussian and LaplacianGaussian and Laplacian



The Gaussian Pyramid

3G

y
Low resolution 4G

3G

2G

1G

Image=0G Image=0G

High resolution



Gaussian pyramid construction

filter mask

Repeatp
• Filter
• Subsample

[ 0.05,  0.25,  0.4,  0.25,  0.05]

Until minimum resolution reached 
• can specify desired number of levels (e.g., 3-level pyramid)p y ( g py )

The whole pyramid is only 4/3 the size of the original image!







Image Pyramids

Known as a Gaussian Pyramid



DECIMATION AND INTERPOLATION
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Band-pass filtering

Gaussian Pyramid (low-pass images)

Laplacian Pyramid (subband images)
C t d f G i id b bt tiCreated from Gaussian pyramid by subtraction



Laplacian Pyramid

Need this!Need this!

OriginalOriginal
image

How can we reconstruct (collapse) this 
pyramid into the original image?



The Gaussian Pyramid
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The Laplacian Pyramid

Gaussian Pyramid Laplacian Pyramid
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Laplacian PyramidLaplacian Pyramid
Gaussian Pyramid

• Laplacian Pyramid decompositionp y p
• Created from Gaussian pyramid by subtraction



Laplacian PyramidLaplacian Pyramid
Gaussian Pyramid

• Laplacian Pyramid decompositionp y p
• Created from Gaussian pyramid by subtraction





Pyramid CreationPyramid Creation

ffilter mask

“Laplacian” Pyramid
“Gaussian” Pyramid
Laplacian  Pyramid

– Created from Gaussian
pyramid by subtractionpyramid by subtraction
Ll = Gl – expand(Gl+1)
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Space Required for Pyramids



Image pyramidsImage pyramids 
• At each level we have an approximation pp

image and a residual image.
• The original image (which is at the base of• The original image (which is at the base of 

pyramid) and its P approximation form the 
i ti idapproximation pyramid.

• The residual outputs form the residual p
pyramid.

• Approximation and residual pyramids are• Approximation and residual pyramids are 
computed in an iterative fashion. 

• A (P+1) level pyramid is build by executing 
the operations in the block diagram P times.
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I idImage pyramids

• During the first iteration, the original 2Jx2J

i i li d th i t iimage is applied as the input image.

• This produces the level J-1 approximate 
and level J prediction residual resultsand level J prediction residual results

• For iterations j = J-1, J-2, …, J-p+1, the 
previous iteration’s level j-1 approximationprevious iteration s level j 1 approximation 
output is used as the input. 
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I idImage pyramids

• Each iteration is composed of three• Each iteration is composed of three 
sequential steps: 

1. Compute a reduced resolution 
i ti f th i t i Thi iapproximation of the input image. This is 

done by filtering the input and 
d li ( b li ) th filt ddownsampling (subsampling) the filtered 
result by a factor of 2. 

Fil i hb h d i G i– Filter: neighborhood averaging, Gaussian 
filtering 

– The quality of the generated 
approximation is a function of the filter 
selected



Image pyramidsg py

2. Upsample output of the previous step by a 
factor of 2 and filter the result. This creates 
a prediction image with the same resolution 

h ias the input. 
– By interpolating intensities between the 

pixels of step 1, the interpolation filter 
determines how accurately the prediction 
approximates the input to step 1. 

3. Compute the difference between the 
prediction of step 2 and the input to step 1. p p p p
This difference can be later used to 
reconstruct progressively the original 
image



Image resampling
So what to do if we don’t know 

• Answer: guess an approximation• Answer:  guess an approximation
• Can be done in a principled way:  filtering

1 d = 1 in this 
example

1 2 3 4 52.5

I t tiImage reconstruction
• Convert     to a continuous function 

• Reconstruct by cross-correlation:



Resampling filters
What does the 2D version of this hat function 

l k lik ?look like?

performs 
linear interpolation

(tent function) performs 
bilinear interpolation

Better filters give better resampled images

linear interpolation bilinear interpolation

Better filters give better resampled images
• Bicubic is common choice

Why not use a Gaussian?Why not use a Gaussian?



Bilinear interpolation
Sampling at f(x,y):



Decimation



Expansion

Original



Interpolation Results



Pyramids at Same ResolutionPyramids at Same Resolution



The Gaussian Pyramid

• Smooth with Gaussians because
– a Gaussian*Gaussian=another Gaussian 

• Synthesis 
– smooth and downsample

• Gaussians are low pass filters, so repetition is redundant
• Kernel width doubles with each level



Smoothing as low-pass filtering

• High frequencies lead to 
trouble with sampling.

• Common solution: use a 
Gaussianp g

• Suppress high 
frequencies before

– multiplying FT by 
Gaussian is equivalent to frequencies before 

sampling !
truncate high frequencies

q
convolving image with 
Gaussian.

– truncate high frequencies 
in FT

– or convolve with a low-– or convolve with a low-
pass filter







The inner scale is the smallest detail seen by the smallest

SCALE-SPACE AND diffusion - Theory 

The inner scale is the smallest detail seen by the smallest 
aperture (e.g. the CCD element, a cone or rod); 

The outer scale is the coarsest detail that can be discriminated,
i e it is the whole image (field of view)i.e. it is the whole image (field of view).

Convolution with a Gaussian necessarily increases the inner 
scale: the Gaussian is the operator that transforms the inner scale ofscale: the Gaussian is the operator that transforms the inner scale of 
the image. 

The cascade property states that it is the same if one reaches aThe cascade property states that it is the same if one reaches a
final certain scale in a single step from the input image by a given 
Gaussian aperture, or apply a sequence of Gaussian kernels, to reach 
h lthe same scale.

The stack of images as a function of increasing inner scale is 
i d li ’ l ’coined a linear ’scale-space’.

The generating equation of a linear scale-space is the linear
diff i idiffusion equation.

The scale-space family can be defined 
as the solution of the diffusion equationas the solution of the diffusion equation        
(for example, in terms of the heat equation):
with initial condition, L(x, y; 0) = f(x, y).



Linear diffusion equation: 
yyxx LLL

s
L +=∇∇=

∂
∂ .

Derivative to scale equals the divergence of the gradient of 
the luminance function, which is the Laplacian, the sum of the 

d ti l d i ti S l Gisecond partial derivatives.  Soln,. Given as: 

The Gaussian is the Green’s function of the diffusion equation. 

When the diffusion is equal for all directions, i.e. the sigma’sWhen the diffusion is equal for all directions, i.e. the sigma s 
of the Gaussian are equal, we call the process isotropic. 

When the diffusion is equal for every point of the image weWhen the diffusion is equal for every point of the image, we 
call the process homogeneous. 

Beca se of the diff sion eq ation the p ocess of gene ating aBecause of the diffusion equation, the process of generating a 
multiscale representation is also known as image evolution.



Scale

y
Scale Space

x
p



Diffusion in two dimensions.



Th tiThe retina measures on many 
resolutions simultaneously

scale-space



Gaussian Derivatives:

It is well known that derivative operations performed on aIt is well known that derivative operations performed on a 
discrete grid are an ill-posed problem, meaning derivatives are 
overly sensitive to noise. 

To convert derivative operations into a well-posed problem, 
the image is low-pass filtered or smoothed prior to computing the 
d i i

Another useful result in linear scale-space theory is that:

derivative

the spatial derivatives of the Gaussian are solutions of the 
diffusion equation too, and together with the zeroth order
Gaussian they form a complete family of differential operatorsGaussian they form a complete family of differential operators.

From scale-space solution:From scale-space solution:

We, obtain scale-space derivatives, as:

(.,.)*)}](.,.;{[)(.,.;)(.,.; ftgtLtL yxyxyx βαβαβα ∂=∂=



Gaussian Derivatives:
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From scale-space solution:p

We, obtain scale-space derivatives, as:

(.,.)*)}](.,.;{[)(.,.;)(.,.; ftgtLtL yxyxyx βαβαβα ∂=∂=
The smoothing to regularize the image is implemented as a 

convolution over the image and therefore this filtering operation is 
linear. 

Since differentiation is also a linear operation, the order of 
smoothing and differentiation can be switched, which means the 
derivative of the convolution kernel can be computed and convolvedderivative of the convolution kernel can be computed and convolved 
with the image resulting in a well-posed measure of the image 
derivative.



Gaussian – Image filter
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Laplacian ~ Difference of Gaussians

- =

DOG  =  Difference Of Gaussians

Typically, σ2 = 1.6*σ1;



Difference of Gaussians (DoG)
Laplacian of Gaussian can be approximated by the

difference between two different Gaussians



Gaussian Pyramid
• Synthesis: Smooth image with a Gaussian 

and downsample. Repeat.and downsample. Repeat.
• Analysis: Take top image or search over 

lscale
– Face detection

• Redundant (over-complete) 
representation in comparison to waveletrepresentation, in comparison to wavelet 
decomposition.

• Top levels come “for free”. Processing 
cost typically dominated by lowest twocost typically dominated by lowest two 
levels.



The Laplacian PyramidThe Laplacian Pyramid
• SynthesisSynthesis

– preserve difference between upsampled 
G i id l l d G i idGaussian pyramid level and Gaussian pyramid 
level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at otherfrequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid take top layer– reconstruct Gaussian pyramid, take top layer
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What are they good for?
Improve Search

• Search over translations• Search over translations
– Classic coarse-to-fine strategy

• Search over scale
– Template matching
– E.g. find a face at different scales

Precomputation
N d t i t diff t bl l l• Need to access image at different blur levels

• Useful for texture mapping at different resolutions 
(called mip-mapping)(called mip mapping) 

Image ProcessingImage Processing
• Editing frequency bands separately
• E.g. image blending…g g g



Applications of scaled representations
Search for correspondence

• look at coarse scales then refine with finer scales• look at coarse scales, then refine with finer scales

Edge trackingEdge tracking
• a “good” edge at a fine scale has parents at a coarser 

scale

Control of detail and computational cost in 
matching
• e.g. finding stripes
• important in texture representation

I Bl di d M i i• Image Blending and Mosaicing

• Data compression (laplacian pyramid)



Edge Detection using Pyramidsg g y

Coarse-to-fine strategy:

• Do edge detection at higher level.

• Consider edges of finer scales 
only near the edges of higher scalesonly near the edges of higher scales.



Fast Template Matching



Fast Template Matching













We can Calculate Derivatives and Combinations 
of them at all Scales
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The visual system measures changes in place and time: derivatives

1st order1 order

2nd order

3rd order



OPERATOR O d P

(.,.)*)}](.,.;{[(.,.)]*)(.,.;[)(.,.; ftgftLtL yxyxyx βαβαβα ∂=∂=
OPERATOR Order Purpose

Lx, Ly First Gradient

Lxx, Lxy, Lyy Second Zero Crossing;
Uniform Blobs;
Ridges, Valleys.

Lxxx,  ,,,, Third Corners,
Rid tRidges etc.

2nd ZCs
yyxx LLL +=∇2

Det_HL (DOH) Saddles, 
Using extremas

yyxx

2
xyyyxx LLL −=

Using extremas
Corner, using
Rescaled level xyyxxxyyyx LLLLLLL 222 −+=)(

~
Lκ

curvature
Harris Det(μ) – κ.trace2(μ) CORNER, using μ μ

2nd-moment 
structure tensor



Oriented pyramids

• Laplacian pyramid is orientation 
independent
A l i t d filt t d t i• Apply an oriented filter to determine 
orientations at each layery
– by clever filter design, we can simplify 

synthesissynthesis
– this represents image information at a 

particular scale and orientation



Oriented pyramidsOriented pyramids



Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
f i 1992 i 1992on Information Theory, 1992, copyright 1992, IEEE



• toppointspp

• graph
theorytheory

↑
scale

MR slice hartcoronairMR slice hartcoronair



Image guidedImage guided 
database retrieval

Point cloud matching
(earth mover distance)

Task

(earth mover distance)
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