Linear Algebra and Random Processes

LARP/2018
 CS6015

Course exclusively for CSE-PG students; Any UG or non-CSE PG may meet HOD-CSE, for their requirements

Linear Algebra:

- Matrices
- Matrix Multiplication, Transposes, Inverses, Gaussian Elimination, Matrix norms, factorization $A=L U$, rank.
- Vector spaces
- Column and row spaces, Solving $\mathbf{A x}=0$ and $\mathbf{A x}=\mathrm{b}$, Independence, basis, dimension, linear transformations.
- Orthogonality
- Orthogonal vectors and subspaces, Normal matrix, projection and least squares, Gram-Schmidt orthogonalization, QR factorization, Cholesky decomposition, polar decomposition.
- Determinants
- Determinant formula, cofactors, inverses and volume.
- Eigenvalues and Eigenvectors
- Characteristic polynomial, Diagonalization, Hermitian and Unitary matrices, Toeplitz matrices, Spectral theorem, Change of basis.
- Positive definite matrices
- Positive definite and semi-definite matrices, Pseudo-inverse, Singular Value Decomposition (SVD), RRQR factorization.

Random processes:

Preliminaries

- Events, probability, conditional probability, independence, product spaces.

Random Variables

- Distributions, law of averages, discrete and continuous r.v.s, random vectors, Monte Carlo simulation.

Discrete Random Variables

- Probability mass functions, independence, expectation, conditional expectation, sums of r.v.s.

Continuous Random Variables

- Probability density functions, independence, expectation, conditional expectation, functions of r.v.s, sum of r.v.s, multivariate normal distribution, sampling from a distribution.

Convergence of Random Variables

- Modes of convergence, Borel-Cantelli lemmas, laws of large numbers, central limit theorem, tail inequalities.

Estimation of parameters from data

- Kullback-Leibler Divergence, Principal Component Analysis, Chi-square test, Student's T-test, Maximum Likelihood Estimate, Expectation-Maximization.

Advanced topics
-Markov chains, minimum mean squared error estimation.

Geometry of Linear Equations (2-D space)

2 lines :

$$
\begin{aligned}
& 2 x-y=1 \\
& x+y=5
\end{aligned} \quad\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

Soln ??

(a) Lines meet at $x=2, y=3$

Row picture (two lines) and column picture (combine columns).
Two separate equations are really one vector equation

$$
\text { Column form : } x\left[\begin{array}{l}
2 \\
1
\end{array}\right]+y\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

The problem is to find the combination of the column vectors on the left side that produces the vector on the right side.

$y=m x+c$ form of straight line (slope-intercept form)

Column form : $x\left[\begin{array}{l}-m_{1} \\ -m_{2}\end{array}\right]+y\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$

x times column 1 combines with y times column 2 to produce column 3
$\frac{x}{a}+\frac{y}{b}=c:$ form of straight line (intercept form)

$$
\begin{aligned}
& L_{1}: b x+a y=c_{1} \\
& L_{2}: a x+b y=c_{2}
\end{aligned}
$$

$\left(x^{\prime}, y^{\prime}\right)$:point of intersection

Geometry of Linear Equations (3-D space)

The row picture: three intersecting planes from three linear equations.
$3^{\text {rd }}$ plane not shown for ease of understanding

Geometry of Linear Equations (3-D space)

$$
\begin{array}{ll}
& 2 u+v+w=5 \\
3 \text { planes: } & 4 u-6 v=-2 \\
& -2 u+7 v+2 w=9
\end{array}
$$

Column form : $\mathrm{u}\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right]+v\left[\begin{array}{c}1 \\ -6 \\ 7\end{array}\right]+w\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}5 \\ -2 \\ 9\end{array}\right]$

The COLUMN Picture
Linear Combination : $1\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]+1\left[\begin{array}{c}1 \\ -6 \\ 7\end{array}\right]+2\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}5 \\ -2 \\ 9\end{array}\right]$

$$
u=1, v=1, w=2
$$

With n equations in n unknowns (n -dimension),

Singular cases

Singular cases: no solution for (a), (b), or (d), an infinity of solutions for (c).

3-dimensional planes have been visualised in 2-dimension for better understanding.

Singular cases

Singular cases: b outside or inside the plane with all three columns.

If the \boldsymbol{n} planes have no point in common, or infinitely many points, then the \boldsymbol{n} columns lie in the same plane.

