Matrices

CS6015 : Linear Algebra

Matrix : Definition

- A matrix is a rectangular array of numbers and each of the numbers in the matrix is called an entry.
- The size (dimension) of a matrix with n rows and m columns is denoted by $n \times m$. In denoting the size of a matrix we always list the number of rows first and the number of columns second.
- Example :

$$\begin{bmatrix} 4 & 3 & 0 & 6 & -1 & 0 \\ 0 & 2 & -4 & -7 & 1 & 3 \\ -6 & 1 & 15 & \frac{1}{2} & -1 & 0 \end{bmatrix}$$

Matrix of size (dimension) 3×4

Matrix : example

Matrix of size (dimension) 4×1 (Column Vector)

Matrix of size (dimension) 1×5 (Row Vector)

- We will often need to refer to specific entries in a matrix and so we'll need a notation to take care of that. The entry in the *i*th row and *j*th column of the matrix *A* is denoted by, *a_{ij}*.
- The lower case letter we use to denote the entries of a matrix will always match with the upper case letter we use to denote the matrix. So the entries of the matrix *B* will be denoted by *b_{ij}*.

Terminologies

• Here are some important terminologies, with examples, related to matrices

Matrix Arithmetic and Operation

- Equality: A = B provided dimensions of A and B are equal and $a_{ij} = b_{ij}$ for all *i* and *j*. Matrices of different sizes cannot be equal.
- Addition, Subtraction: $A_{n \times m} \pm B_{n \times m} = [a_{ij} \pm b_{ij}]$. Matrices of different sizes cannot be added or subtracted.
- Scalar Multiple: $cA = [ca_{ij}]$; c is any number.
- Multiplication: $A_{n \times p} * B_{p \times m} = A.B_{n \times m}$
- **Transpose:** $A = [a_{ij}]_{n \times m}$ then $A^T = [a_{ji}]_{m \times n} \forall i, j$
- **Trace:** $tr(A) = \sum_{i=1}^{n} a_{ii}$. If A is not square then trace is not defined.

Properties of Matrix Arithmetic and the Transpose

- $\bullet A + B = B + A$
- A + (B + C) = (A + B) + C
- A(BC) = (AB)C
- $A(B \pm C) = AB \pm AC$
- $(B \pm C)A = BA \pm CA$
- $a(B \pm C) = aB \pm aC$
- $(a \pm b)C = aC \pm bC$
- (ab)C = a(bC)
- a(BC) = (aB)C = B(aC)
- A (B) $\neq B$ (A), in general.

Letters in caps define matrices, while that in small denote scalars. Properties of Matrix Arithmetic and the Transpose

- A + 0 = 0 + A = A
- A A = 0
- 0 A = A
- 0A = 0 and A0 = 0
- $A^n A^m = A^{n+m}$
- $(A^n)^m = A^{nm}$
- $(A^T)^T = A$
- $(A \pm B)^T = A^T \pm B^T$
- $(cA)^T = cA^T$
- $(AB)^T = B^T A^T$

Letters in caps define matrices, while that in small denote scalars.

Inverse of square matrix

- If A is a square matrix of size n and we can find another matrix of the same size, say B, such that $AB = BA = I_n$
- Then we call **A invertible** and we say that **B** is an **inverse** of the matrix **A**.
- We will denote the inverse as A^{-1} .
- Not every matrix has an inverse.
 - A square matrix that has an inverse is said to be nonsingular.
 - A square matrix that does not have an inverse is said to be singular.

Important properties of the inverse matrix

Suppose that A and B are invertible matrices of the same size. Then,

- a) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- b) A^{-1} is invertible and $(A^{-1})^{-1} = A$
- c) For $n = 0,1,2 \dots A^n$ is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$

d) If *c* is any non zero scalar then *cA* is invertible

and
$$(cA)^{-1} = \frac{1}{c}A^{-1}$$
.
e) A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$

Inverse Calculation

• The matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

will be *invertible* if $ad - bc \neq 0$

and *singular* if ad - bc = 0.

• If the matrix is invertible its inverse will be,

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Special Matrices : Diagonal Matrix

• **Diagonal Matrix:** A square matrix is called **diagonal** if it has the following form

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & d_n \end{bmatrix}$$

- Suppose D is a diagonal matrix and d_i , i = 1, ..., n are the entries on the main diagonal.
- If one or more of the d_i 's are zero then the matrix is singular.

Diagonal Matrix (contd.)

• On the other hand if $d_i \neq 0$, $\forall i$ then the matrix is invertible and the inverse is,

$$D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & 0 & \dots & 0 \\ 0 & \frac{1}{d_2} & 0 & \dots & 0 \\ 0 & 0 & \frac{1}{d_3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \frac{1}{d_n} \end{bmatrix}$$

Triangular matrix

 $U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}_{n \times n} \qquad L = \begin{bmatrix} l_{11} & 0 & 0 & \cdots & 0 \\ l_{21} & l_{22} & 0 & \cdots & 0 \\ l_{31} & l_{32} & l_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn} \end{bmatrix}_{n \times n}$

Upper Triangular Matrix

Lower Triangular Matrix

- If A is a triangular matrix with main diagonal entries a₁₁, a₂₂, ..., a_{nn} then if one or more of the a_{ii}'s are zero the matrix will be singular.
- On the other hand if a_{ii} ≠ 0 ∀i then the matrix is *invertible*.

Symmetric and anti-symmetric matrices

Suppose that A is an $n \times m$ matrix, then A will be called **symmetric** if A = AT.

Some properties of symmetric matrices are:

- a) For any matrix A, both AA^T and A^TA are symmetric.
- b) If A is an invertible symmetric matrix then A^{-1} is also symmetric.
- *c)* If *A* is invertible then *AA*^T and *A*^T*A* are both invertible.

Anti-Symmetric or Skew-Symmetric:

An anti-symmetric matrix is a square matrix that satisfies the identity $\mathbf{A} = -\mathbf{A}^{T_{.}}$

Other Special forms of matrices:

- Toeplitz matrix
- Block Circulant Matrix
- Orthogonal (also, -skew -sym)
- PD, PSD, ...
- Tri-diagonal system
- Hessian
- Jacobian
- Adjoint and Adjugate matrices
- (skew-) Hermitian (or self-adjoint) matrix
- Covariance matrix
- Periodic matrices

- Compound Matrix
- g-inv & Pseudo-inv
- GRAM matrix
- Kernel of matrix
- Schur Complement
- PERM (n)
- Skew-symmetric
- DFT Matrix
- Idempotent Matrices
- Vandermonde Matrices