Matrices

CS6015 : Linear Algebra

Matrix : Definition

- A matrix is a rectangular array of numbers and each of the numbers in the matrix is called an entry.
- The size (dimension) of a matrix with n rows and m columns is denoted by $n \times m$. In denoting the size of a matrix we always list the number of rows first and the number of columns second.
- Example :

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
4 & 3 & 0 & 6 & -1 & 0 \\
0 & 2 & -4 & -7 & 1 & 3 \\
-6 & 1 & 15 & \frac{1}{2} & -1 & 0
\end{array}\right]} \\
& \text { Matrix of size (dimension) } 3 \times 4
\end{aligned}
$$

Matrix : example

$$
\left[\begin{array}{r}
12 \\
-4 \\
2 \\
-17
\end{array}\right]
$$

Matrix of size (dimension)
4×1 (Column Vector)

$$
\left[\begin{array}{lllll}
3 & -1 & 12 & 0 & -9
\end{array}\right]
$$

Matrix of size (dimension)
1×5 (Row Vector)

- We will often need to refer to specific entries in a matrix and so we'll need a notation to take care of that. The entry in the $\boldsymbol{i}^{\text {th }}$ row and $\boldsymbol{j}^{\text {th }}$ column of the matrix \boldsymbol{A} is denoted by, $a_{i j}$.
- The lower case letter we use to denote the entries of a matrix will always match with the upper case letter we use to denote the matrix. So the entries of the matrix \boldsymbol{B} will be denoted by $\boldsymbol{b}_{\boldsymbol{i} \boldsymbol{j}}$.

Terminologies

- Here are some important terminologies, with examples, related to matrices
a. Main diagonal

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]
$$

b. Identity matrix

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

c. Zero matrix

$$
0_{2 \times 4}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\mathbf{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right] \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Matrix Arithmetic and Operation

- Equality: $A=B$ provided dimensions of A and B are equal and $a_{i j}=b_{i j}$ for all i and j. Matrices of different sizes cannot be equal.
- Addition, Subtraction: $A_{n \times m} \pm B_{n \times m}=\left[a_{i j} \pm\right.$ $b_{i j}$]. Matrices of different sizes cannot be added or subtracted.
- Scalar Multiple: $c A=\left[c a_{i j}\right] ; \mathrm{c}$ is any number.
- Multiplication: $A_{n \times p} * B_{p \times m}=A . B_{n \times m}$
- Transpose: $A=\left[a_{i j}\right]_{n \times m}$ then $A^{T}=\left[a_{j i}\right]_{m \times n} \forall i, j$
- Trace: $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$. If A is not square then trace is not defined.

Properties of Matrix Arithmetic and the Transpose

- $A+B=B+A$
- $A+(B+C)=(A+B)+C$
- $A(B C)=(A B) C$
- $A(B \pm C)=A B \pm A C$
- $(B \pm C) A=B A \pm C A$
- $a(B \pm C)=a B \pm a C$

Letters in caps define matrices, while that in small denote scalars.

- $(a \pm b) C=a C \pm b C$
- $(a b) C=a(b C)$
- $a(B C)=(a B) C=B(a C)$
- $\mathrm{A}(\mathrm{B}) \neq B(A)$, in general.

Properties of Matrix Arithmetic and the Transpose

- $A+0=0+A=A$
- $A-A=0$
- $0-A=A$
- $0 A=0$ and $A 0=0$
- $A^{n} A^{m}=A^{n+m}$
- $\left(A^{n}\right)^{m}=A^{n m}$

Letters in caps define matrices, while that in small denote scalars.

- $\left(A^{T}\right)^{T}=A$
- $(A \pm B)^{T}=A^{T} \pm B^{T}$
- $(c A)^{T}=c A^{T}$
- $(A B)^{T}=B^{T} A^{T}$

Inverse of square matrix

- If A is a square matrix of size n and we can find another matrix of the same size, say B, such that

$$
A B=B A=I_{n}
$$

- Then we call \boldsymbol{A} invertible and we say that \boldsymbol{B} is an inverse of the matrix \boldsymbol{A}.
- We will denote the inverse as $\boldsymbol{A}^{\mathbf{- 1}}$.
- Not every matrix has an inverse.
- A square matrix that has an inverse is said to be nonsingular.
- A square matrix that does not have an inverse is said to be singular.

Important properties of the inverse matrix

Suppose that A and B are invertible matrices of the same size. Then,
a) $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$
b) A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$
c) For $n=0,1,2 \ldots A^{n}$ is invertible and $\left(A^{n}\right)^{-1}=A^{-n}=$ $\left(A^{-1}\right)^{n}$
d) If c is any non zero scalar then $c A$ is invertible and $(c A)^{-1}=\frac{1}{c} A^{-1}$.
e) A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Inverse Calculation

- The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
will be invertible if $a d-b c \neq 0$
and singular if $a d-b c=0$.
- If the matrix is invertible its inverse will be,

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Special Matrices : Diagonal Matrix

- Diagonal Matrix: A square matrix is called diagonal if it has the following form

$$
D=\left[\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & d_{n}
\end{array}\right]
$$

- Suppose D is a diagonal matrix and $d_{i}, i=1, . ., n$ are the entries on the main diagonal.
- If one or more of the $d_{i}{ }^{\prime} s$ are zero then the matrix is singular.

Diagonal Matrix (contd.)

- On the other hand if $d_{i} \neq 0, \forall i$ then the matrix is invertible and the inverse is,

$$
D^{-1}=\left[\begin{array}{ccccc}
\frac{1}{d_{1}} & 0 & 0 & \ldots & 0 \\
0 & \frac{1}{d_{2}} & 0 & \ldots & 0 \\
0 & 0 & \frac{1}{d_{3}} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \frac{1}{d_{n}}
\end{array}\right]
$$

Triangular matrix

$U=\left[\begin{array}{rrrrr}u_{11} & u_{12} & u_{13} & \cdots & u_{1 n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2 n} \\ 0 & 0 & u_{33} & \cdots & u_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{n n}\end{array}\right]_{n \times n}$

Upper Triangular Matrix

Lower Triangular Matrix

- If A is a triangular matrix with main diagonal entries $a_{11}, a_{22}, \ldots, a_{n n}$ then if one or more of the $a_{i i}$'s are zero the matrix will be singular.
- On the other hand if $a_{i i} \neq 0 \forall$ i then the matrix is invertible.

Symmetric and anti-symmetric matrices

Suppose that A is an $n \times m$ matrix, then A will be called symmetric if $A=A T$.
Some properties of symmetric matrices are:
a) For any matrix A, both $A A^{T}$ and $A^{T} A$ are symmetric.
b) If A is an invertible symmetric matrix then A^{-1} is also symmetric.
c) If A is invertible then $A A^{T}$ and $A^{T} A$ are both invertible.
Anti-Symmetric or Skew-Symmetric:
An anti-symmetric matrix is a square matrix that satisfies the identity $\boldsymbol{A}=-\boldsymbol{A}^{T}$.

Other Special forms of matrices:

- Toeplitz matrix
- Compound Matrix
- Block Circulant Matrix
- Orthogonal (also, -skew -sym)
- PD, PSD, ...
- Tri-diagonal system
- Hessian
- Jacobian
- Adjoint and Adjugate matrices
- (skew-) Hermitian (or self-adjoint) matrix
- Covariance matrix
- Periodic matrices
- Idempotent Matrices
- Vandermonde Matrices

