Matrix multiplication LARP/2018

ACK : 1. Math slides from Henry County Schools
2. Linear Algebra and Its Applications - Gilbert Strang

Matrix Multiplication

1. The order makes a difference...AB is different from BA.
2. Rule : The number of columns in first matrix must equal number of rows in second matrix. In other words, the inner dimensions must be equal.
3. Dimension of product : The answer will be number of rows in first matrix by number of columns in second matrix.
In other words, the outer dimensions.

Matrix Multiplication

Multiplication of two matrices, \mathbf{A} and \mathbf{B}, produces the matrix \mathbf{C} whose elements, $c_{i, j}(0<=i<n, 0<=j<m)$, are computed as follows:

$$
c_{i, j}=\sum_{k=0}^{l-1} a_{i, k} b_{k, j}
$$

where \mathbf{A} is an $n \times p$ matrix and \mathbf{B} is an $p \times m$ matrix.

Are the following matrix multiplications possible?

$$
\underset{3 \times 2}{\left[\begin{array}{cc}
1 & -1 \\
0 & 2 \\
1 & 5
\end{array}\right] \times\left[\begin{array}{cc}
1 & -1 \\
0 & 2 \\
1 & 5
\end{array}\right] \times 2} \underset{2 \times 3}{ } \quad \underset{3 \times 2}{\left[\begin{array}{lll}
1 & 2 & 4 \\
3 & 9 & 9
\end{array}\right] \times\left[\begin{array}{ll}
0 & 1 \\
1 & 4 \\
5 & 8
\end{array}\right]}
$$

$$
\underset{2 \times 2}{\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] \times\left[\begin{array}{ll}
3 & 5 \\
4 & 2
\end{array}\right]} \text { YES } \quad \underset{3 \times 3}{\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 4 \\
5 & 7 & 2
\end{array}\right] \times\left[\begin{array}{ll}
0 & 1 \\
2 & 7
\end{array}\right] \text { No }+2 \times 2}
$$

What is the dimension of the following products, if possible?

$$
\underset{3 \times 2}{\left[\begin{array}{cc}
1 & -1 \\
0 & 2 \\
1 & 5
\end{array}\right] \times\left[\begin{array}{cc}
1 & -1 \\
0 & 2 \\
1 & 5
\end{array}\right]} \underset{3 \times 2}{\left[\begin{array}{lll}
1 & 2 & 4 \\
3 & 9 & 9
\end{array}\right] \times\left[\begin{array}{ll}
0 & 1 \\
1 & 4 \\
5 & 8
\end{array}\right]} \underset{2 \times 3}{3 \times 2}
$$

$$
\left[\begin{array}{ll}
{\left[\begin{array}{ll}
7 & 0 \\
2 & \pi \\
3 & 1
\end{array}\right] \times\left[\begin{array}{lll}
0 & 0 & 1 \\
2 & 4 & 3
\end{array}\right]_{\text {YES }}^{3 \times 3}} & \underset{3 \times 3}{ }
\end{array} \underset{3 \times 1}{3} \begin{array}{l}
1 \\
1 \\
8
\end{array}\right] \times\left[\begin{array}{lll}
2 & 1 & 2
\end{array}\right] \begin{aligned}
& \text { YES } \\
& 3 \times 3
\end{aligned}
$$

$$
\underset{2 \times 2}{\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] \times\left[\begin{array}{ll}
3 & 5 \\
4 & 2
\end{array}\right] \underset{2 \times 2}{\text { YES }} \underset{2 \times 2}{ } \quad\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 4 \\
5 & 7 & 2
\end{array}\right] \times\left[\begin{array}{ll}
0 & 1 \\
2 & 7
\end{array}\right] N O}
$$

The product of two matrices is found by multiplying the corresponding elements in each row by each column and then adding them together.

$\left[\begin{array}{cc}22 & 41 \\ 54 & 111\end{array}\right]$

Matrix Notation and Matrix Multiplication

$$
\left.\begin{array}{cc}
\begin{array}{ll}
\text { Nine co-efficients } \\
\text { Three unknowns } \\
\text { Three right-hand sides }
\end{array} & \left.\begin{array}{c}
2 u+v+w=5 \\
4 u-6 v \\
-2 u+7 v+2 w
\end{array}\right)=-2
\end{array}\right] \begin{array}{cc}
A x=b \\
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right] & x=\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]
\end{array} \quad b=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]
$$

Multiplication of a matrix and a vector

$\begin{aligned} & \text { Matrix form } \\ & A x=b\end{aligned} \quad\left[\begin{array}{ccc}2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2\end{array}\right]\left[\begin{array}{l}u \\ v \\ w\end{array}\right]=\left[\begin{array}{c}5 \\ -2 \\ 9\end{array}\right]$

Row times column $\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]\left[\begin{array}{l}u \\ v \\ w\end{array}\right]=[5]$

Inner product

Outer product ??

There are two ways to multiply a matrix A and a vector x.

- One way is a row at a time, each row of A combines with x to give a component of $A x$. There are three inner products when A has three rows:

$$
A x \text { by rows } \quad\left[\begin{array}{lll}
1 & 1 & 6 \\
3 & 0 & 1 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \cdot 2+1 \cdot 5+6 \cdot 0 \\
3 \cdot 2+0 \cdot 5+3 \cdot 0 \\
1 \cdot 2+1 \cdot 5+4 \cdot 0
\end{array}\right]=\left[\begin{array}{l}
7 \\
6 \\
7
\end{array}\right]
$$

- Second way, multiplication a column at a time. The product $A x$ is found all at once, as a combination of the three columns of A :

$$
\text { Ax by columns } \quad 2\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]+5\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+0\left[\begin{array}{l}
6 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
7 \\
6 \\
7
\end{array}\right]
$$

Properties of matrix multiplication

- Every product $A x$ can be found using whole columns. Therefore $A x$ is a combination of the columns of A. The coefficients are the components of x.
- The identity matrix I, with 1 s on the diagonal and 0 s everywhere else, leaves every vector unchanged.

Identity matrix $I A=A$ and $B I=B$.

Properties of matrix multiplication

- The i, j entry of AB is the inner product of the i-th row of A and the j-th column of B

$$
(A B)_{32}=a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}+a_{34} b_{42}
$$

Row times column

Properties of matrix multiplication

- Each entry of $A B$ is the product of a row and a column:

$$
(A B)_{i j}=(\text { row } i \text { of } A) \text { times }(\text { column } j \text { of } B)
$$

- Each column of $A B$ is the product of a matrix and a column:
column j of $A B=A$ times (column j of B)
- Each row of $A B$ is the product of a row and a matrix:

$$
\text { row i of } A B=(\text { row } i \text { of } A) \text { times } B
$$

Properties of matrix multiplication

- For matrices A, B, C, D, E and F,
- Matrix multiplication is associative:

$$
(A B) C=A(B C)
$$

- Matrix operations are distributive:

$$
A(B+C)=A B+A C \text { and }(B+C) D=B D+C D
$$

- Matrix multiplication is not commutative: Usually

$$
F E \neq E F
$$

Exception:
$E=\left[\begin{array}{ccc}1 & 0 & 0 \\ -\mathbf{2} & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ and $\quad F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ \mathbf{1} & 0 & 1\end{array}\right] \quad E F=\left[\begin{array}{ccc}1 & 0 & 0 \\ -\mathbf{2} & 1 & 0 \\ \mathbf{1} & 0 & 1\end{array}\right]=F E$.

Commutative property of Matrix Multiplication

$$
\begin{array}{cc}
R_{1}=\left[\begin{array}{cc}
\cos \left(\theta_{1}\right) & \sin \left(\theta_{1}\right) \\
-\sin \left(\theta_{1}\right) & \cos \left(\theta_{1}\right)
\end{array}\right] & \boldsymbol{R}_{\mathbf{1}} \cdot \boldsymbol{R}_{\mathbf{2}}=? ? \\
R_{2}=\left[\begin{array}{cc}
\cos \left(\theta_{2}\right) & -\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{2}\right) & \cos \left(\theta_{2}\right)
\end{array}\right] ; & \boldsymbol{R}_{\mathbf{2}} \cdot \boldsymbol{R}_{\mathbf{1}}=? ? \\
R_{1}=\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & \theta_{2}
\end{array}\right] \\
R_{2}=? ? &
\end{array}
$$

Things to ponder:

Is the computational time for matrix-sequence multiplication Invariant to the pairings chosen to perform operations:

$$
((\boldsymbol{A}(\boldsymbol{B} \boldsymbol{C}) \boldsymbol{D})(\boldsymbol{E}(\boldsymbol{F} \boldsymbol{G}) \boldsymbol{H}) \ldots \ldots . .
$$

($(\boldsymbol{A B C D})(\boldsymbol{E} \boldsymbol{F})(\boldsymbol{G} \boldsymbol{H} ~$
($A(B) C(D)(E)(G)$

Is there any optimal pairing of the sequence ??

