Inverses and Tranposes
LARP / 2018

ACK : Linear Algebra and Its Applications - Gilbert Strang



Inverse matrix

* The inverse of an n by n matrix is another n by n matrix. The inverse of A is
written A~! (and pronounced “A inverse”).

* The fundamental property is simple: If you multiply by A and then
multiply by A~ , you are back where you started:

Inverse matrix If b = Ax then A~ 1b = x

* Thus A='Ax = x.The matrix A~ times 4 is the identity matrix. Not all
matrices have inverses. An inverse is impossible when Ax is zero and x is
nonzero. Then A~! would have to get back from Ax = 0 to x. No matrix
can multiply that zero vector Ax and produce a nonzero vector x.

* Our goals are to define the inverse matrix and compute it and use it, when
A~1 exists—and then to understand which matrices don’t have inverses.



Properties : Inverse matrix

1K The inverse of A is a matrix B such that BA = I and AB = I. There is at
most one such B, and it is denoted by A~!:

A'A=1 and AA7'=1 (1)

Note 1. The inverse exists if and only if elimination produces n pivots (row exchanges
allowed). Elimination solves Ax = b without explicitly finding A~!.

Note 2. The matrix A cannot have two different inverses, Suppose BA = I and also
AC = 1. Then B = C, according to this “proof by parentheses:
B(AC) = (BA)C gives BI=IC whichis B=C. (2)

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (multi-
plying A from the right to give AC = I) must be the same matrix.

Note 3. If A is invertible, the one and only solution to Ax = b is x = A~ 'b:
Multiply Ax=b by A™'. Then x=A'Ax=A"'b.

Note 4. (Important) Suppose there is a nonzero vector x such that Ax = 0. Then A
cannot have an inverse. To repeat: No matrix can bring O back to x.
If A 1s invertible, then Ax = 0 can only have the zero solution x = 0.



Properties : Inverse matrix

Note 5. A 2 by 2 matrix is invertible if and only if ad — bc 1s not zero:

—1
b 1 [a —b
2 by 2 inverse [“ ] [ ] 3)

c d :ad—bc —Cc a

This number ad — bc is the determinant of A. A matrix is invertible if its determinant
is not zero (Chapter 4). In MATLAB, the invertibility test is fo find n nonzero pivots.
Elimination produces those pivots before the determinant appears.

Note 6. A diagonal matrix has an inverse provided no diagonal entries are zero:

d [1/d,
If A= then A~ ! = and AA"' =1
d, 1/d,

When two matrices are involved, not much can be done about the inverse of A + B.

The sum might or might not be invertible. Instead, it is the inverse of their product
AB which is the key formula in matrix computations. Ordinary numbers are the same:

(a+b)~! is hard to simplify, while 1/ab splits into 1/a times 1/b. But for matrices the
order of multiplication must be correct—if ABx =y then Bx = A 'y and x =B A" ly.
The inverses come in reverse order.



Properties : Inverse matrix

1L A product AB of invertible matrices is inverted by B~'A~!:

Inverse of AB  (AB) ' =B'AL (4)

Proof. To show that B~'!A~! is the inverse of AB, we multiply them and use the associa-
tive law to remove parentheses. Notice how B sits next to B~ !:

(ABYB'A Y)Y =ABB 'A ' =AIA ' =441 =1

(B'A™YAB)=B 'A"'"AB=B"'IB=B"'B=1.

A similar rule holds with three or more matrices:
Inverse of ABC  (ABC) '=cCc'B7'a7l.

We saw this change of order when the elimination matrices E, F', G were inverted to
come back from U to A. In the forward direction, GFEA was U. In the backward
direction, L = E"'F~'G~! was the product of the inverses. Since G came last, G|
comes first. Please check that A~! would be U~'GFE.



Calculation of A~ : The Gauss-Jordan Method

e Giventhen X n matrix A:

1. Adjoin the n X n identity matrix I to obtain the
augmented matrix [A |1 ].

2. Use a sequence of row operations to reduce [A | ] ] to
the form [ | B| if possible.

e Then the matrix B is the inverse of A.



Example

* Find the inverse of the matrix A =

Solution
* We form the augmented matrix
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Example

3 2 1
2 1 2

2 1 1
* Find the inverse of the matrix A =

Solution

 And use the Gauss-Jordan elimination method to reduce it to
the form [I | B]:

2 1 1|1 0 0] Ri—R -1 —1 0|1 -1 0

3 2 1]0 1 of ==) |3 2 0 1 0

2 1 210 0 1 2 1 210 0o 1
R

Rl_;fz R, + 3R;

. U R3 + 2R,

0 -1 1|13 -2 0
0 -1 212 =21

0 1 -11-3 2 0
o 0 1 1-1 0 1

[1012—10] [110—110]




Example

3 2 1
2 1 2

2 1 1
* Find the inverse of the matrix 4 =

Solution

 And use the Gauss-Jordan elimination method to reduce it to
the form [] | B]:

1 0 1 —1 0] [100 3 -1 —1]
0 1 -1 :> 01 0|-4 2 1
0 0 1 0 0 1 —1 0 1
Previous step Rz + R3 Y ¥ g
I, B
- 3 —1 -1

B=A1t=|-4 2 1
-1 0 1.




Remarks : Gauss-Jordan

Remark 1. In spite of this brilliant success in computing A~!, I don’t recommend it, I
admit that A~! solves Ax = b in one step. Two triangular steps are better:

x=A"'b separatesinto Lc=b and Ux=c.

We could write ¢ = L™!b and then x = U~'c = U~'L~!'bh. But note that we did not
explicitly form, and in actual computation should not form, these matrices L~ and U .

It would be a waste of time, since we only need back-substitution for x (and forward
substitution produced c).

A similar remark applies to A~'; the multiplication A~'b would still take n? steps. It
is the solution that we want, and not all the entries in the inverse.



Remarks : Gauss-Jordan

Remark 2. Purely out of curiosity, we might count the number of operations required
to find A~!. The normal count for each new right-hand side is #?, half in the forward
direction and half in back-substitution. With n right-hand sides e, .., e, this makes n°.
After including the n° /3 operations on A itself, the total seems to be 4n? /3.

This result is a little too high because of the zeros in the e;. Forward elimination
changes only the zeros below the 1. This part has only n — j components, so the count
for e; is effectively changed to (n — j)?/2. Summing over all j, the total for forward
elimination is n°/6. This is to be combined with the usual n°/3 operations that are
applied to A, and the n(n*/2) back-substitution steps that finally produce the columns x;

of A=, The final count of multiplications for computing A~" is n’:

0 ) n n’ n’ 3
peration count I3 + 3 +n (7) =n.

This count is remarkably low. Since matrix multiplication already takes n° steps, it
requires as many operations to compute A as it does to compute A~!! That fact seems
almost unbelievable (and computing A> requires twice as many, as far as we can see).
Nevertheless, if A~! is not needed, it should not be computed.



Remarks : Gauss-Jordan

Remark 3. In the Gauss-Jordan calculation we went all the way
forward to U, before starting backward to produce zeros above the
pivots. That is like Gaussian elimination, but other orders are
possible. We could have used the second pivot when we were
there earlier, to create a zero above it as well as below it. This is
not smart. At that time the second row is virtually full, whereas
near the end it has zeros from the upward row operations that
have already taken place.



Finding the inverse of a square matrix
using LU decomposition

The inverse [B] of a square matrix [A] is defined as

How can LU Decomposition be used to find the
Inverse?

Assume the first column of [B] to be [by; by, ... b]"
Using this and the definition of matrix multiplication



Finding the Inverse of a square matrix

First column of [B] Second column of [B]
_bll_ _1_ _b12_ 0
b 0 b 1
(Al |= | [A]| ™ |-
_bnl_ _O_ _bn2_ _O_

The remaining columns in [B] can be found in the
same manner.



Example: Inverse of a Matrix

Find the inverse of a square matrix [A]
25 5 1]
[Al]=| 64 8 1
144 12 1

Using the decomposition procedure, the [L] and [U]
matrices are found to be

1 0 0][5 5 1
[A]=[L]lU]=]256 1 0[] 0 -48 -156
576 35 1[/|0 0 07




Example: Inverse of a Matrix

Solving for the each column of [B] requires two steps
1)Solve [L] [Z] = [C] for [Z]
2)Solve [U] [X] = [Z] for [X]
1 0 0]z 1
Step1: [L]z]=[c]—>|25 1 0|z |=|0
576 35 1]z, 0

z, =1
This generates the 2.562,+2,=0

equations:
5./6z,+3.52,+2,=0



Example: Inverse of a Matrix

Solving for [Z]

z, =1 _21_ 1

z, = 0-2562, Z]=|z, |=| -256
— 256 -

z,=0-5.7/6z, 35z,
=0-5.76(1)—35(—256)
=32




Example: Inverse of a Matrix

Solving [U][X] = [Z] for [X]

25
0
0

5 1
~48 -156
0 07

25b,, +5b,, +
—4.8b,, —1.56
0.7




Example: Inverse of a Matrix

So the first column of

Using Backward Substitution the inverse of [A] is:

b,, = 3.2 _ 4571 014 0.04762
. __ —2.56+1560b,, Doy | =| —0.9524
21— 438 _031_ ] 4571 ]
_ —2.56+1.560(4.571) 0.9504
4.8
o _1-5b, by
11 25

_1-5(-0.9524)-4571 _ 0 04762

25




Example: Inverse of a Matrix

Repeating for the second and third columns of the
Inverse

Second Column Third Column
(25 5 1"b12_ 0| (25 5 1] _b13_ )
64 8 1|b, |=|1 64 8 1||b,|=|0
_144 12 1__b32_ _O_ _144 12 1_ _b33_ i
b, | [-0.08333] b, [0.03571"
b,, [=| 1.417 b,, | =|—0.4643
b, | | —5.000 b, | | 1429




Example: Inverse of a Matrix

The inverse of [A] is

(0.04762 —0.08333 0.03571
[A]"=|-0.9524 1417  —0.4643
4571  -5.000  1.429

To check your work do the following operation

[AI[A]™" = [1] = [A]7*[A]



Invertible = Nonsingular (n pivots)

Suppose A has a full set of n pivots. AA~1 = I gives n separate systems Axi =
ei for the columns of A~ . They can be solved by elimination or by Gauss-Jordan.
Row exchanges may be needed, but the columns of A~ are determined.

Strictly speaking, we have to show that the matrix A~ with those columns is also a
left-inverse. Solving AA™! = I has at the same time solved A4 = I, but why? A
1-sided inverse of a square matrix is automatically a 2-sided inverse. To see why,
notice that every Gauss-Jordan step is a multiplication on the left by an elementary
matrix. We are allowing three types of elementary matrices:

1. E;j to subtract a multiple £ of row j from row i

2. Pjj to exchange rows i andj

3. D (or D71) to divide all rows by their pivots.
The Gauss-Jordan process is really a giant sequence of matrix multiplications:

(D_l--.E---P---E)A:I. (6)

That matrix in parentheses, to the left of 4, is evidently a left-inverse! It exists, it
equals the right-inverse by Note 2 (slide no. 3), so every nonsingular matrix is
invertible.



Invertible = Nonsingular (n pivots) (contd.)

The converse is also true: If A is invertible, it has n pivots. In an extreme case that
is clear: A cannot have a whole column of zeros. The inverse could never multiply
a column of zeros to produce a column of I. In a less extreme case, suppose
elimination starts on an invertible matrix A but breaks down at column 3:

d x x x
Breakdown A — 0 d x x
No pivot in column 3 0 0 0 x
0 0 0 x|

This matrix cannot have an inverse, no matter what the x’s are. One proof is to use
column operations (for the first time?) to make the whole third column zero. By
subtracting multiples of column 2 and then of column 1, we reach a matrix that is
certainly not invertible. Therefore the original A was not invertible. Elimination
gives a complete test: An n by n matrix is invertible if and only if it has n pivots.



Transpose Matrix

* The transpose of A is denoted by AT . Its columns are taken directly
from the rows of A—the it" row of A becomes the it" column of AT :

o
2 1 4

Transpose If A= then A= |1 0].
0 03 43

At the same time the columns of A become the rows of AT | If Ais an
m by n matrix, then A" is n by m. The final effect is to flip the matrix
across its main diagonal, and the entry in row i, column j of AT comes
from row j, column i of A:

Entries of A"  (A");; =A;;. (7)

* The transpose of a lower triangular matrix is upper triangular. The
transpose of AT brings us back to A.

* If we add two matrices and then transpose, the result is the same as
first transposing and then adding: (A + B)T is the same as AT + BT .



Properties : Transpose Matrix

1M

(i) The transpose of ABis (AB)! = B'A™,
(ii) The transpose of A~ is (A=1)T = (A1)~

Startfrom 45— | 0] [3 : 3] _ [3 : 3]

3 2
Transposeto  B'Al = [3 2
3 2

 —
O
(S —
—_
|
o Lo W
bh L Lnh

To establish the formula for (A~!)T, start from AA=! =7 and A~'A = I and take trans-

poses. On one side, /T = I. On the other side, we know from part (i) the transpose of a
product. You see how (A~1)T is the inverse of AT, proving (ii):

Inverse of AT = Transpose of A~ A Hial =1 (8)



Symmetric matrix

* A symmetric matrix is a matrix that equals its own transpose:
AT = A. The matrix is necessarily square. Each entry on one side
of the diagonal equals its “mirror image” on the other side:

a;; = aj;. Two simple examples are A and D (and also A1)

1 2 1 0 1|8 =2
and D= and A l=— )
2 8 0 4 4 (-2 1

* A symmetric matrix need not be invertible; it could even be a
matrix of zeros.

Symmetric matrices A=

 Butif A~1 exists it is also symmetric.

* From formula (ii) (previous slide), the transpose of A1 always
equals (AT )1 ; for a symmetric matrix this is just A=1. A1
equals its own transpose; it is symmetric whenever A is.



Symmetric Products R’ R, RR" ,and LDL"

Choose any matrix R, probably rectangular. Multiply R T times R. Then
the product R TR is automatically a square symmetric matrix:

T
The transpose of RTRis RT(RT)" , which is RTR.

That is a quick proof of symmetry for RTR. Its i, j entry is the inner
product of row i of R (column i of R) with column j of R. The

(j, 1) entry is the same inner product, column j with column i. So
RTR is symmetric. RRT is also symmetric, but it is different from RTR.
In my experience, most scientific problems that start with a
rectangular matrix R end up with RT R or RRT or both.

Examble:

R=1 2] and R" =[}] produce R'"R = [} 2] and RR" = [5].

The product R R is n by n. In the opposite order, RRT is m by m.
Even if m = n, it is not very likely that RTR = RRT . Equality can
happen, but it’s not normal.



1N Suppose A = AT can be factored into A = LDU without row
exchanges. Then U is the transpose of L. The symmetric
factorization becomes A = LDLT.

The transpose of A = LDU gives AT = UTDTL" .Since 4 = AT,
we now have two factorizations of A into lower triangular times
diagonal times upper triangular. (LT is upper triangular with ones

on the diagonal, exactly like U.) Since the factorization is unique,
LT must be identical to U.

L"=U and A = LDL" b2y (Lol opit 2
2 8| |2 1|0 4| |0 1

When elimination is applied to a symmetric matrix, A* = A is an
advantage. The smaller matrices stay symmetric as elimination

proceeds, and we can work with half the matrix! The lower right-
hand corner remains symmetric:

~ _ ~ ) The work of elimination is reduced
a b c a b C from n3/3 to n3/6. There is no

b d el — 10 d=-2 need to store entries from both

e
_be 4 sides of the diagonal, or to store
© € f— 0 e / - both L and U.

— DL,




