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Inverse matrix
• The inverse of an n by n matrix is another n by n matrix. The inverse of 𝐴 is 

written 𝐴−1 (and pronounced “𝐴 inverse”). 

• The fundamental property is simple: If you multiply by 𝐴 and then 
multiply by 𝐴−1 , you are back where you started:

Inverse matrix          If 𝑏 = 𝐴𝑥 then 𝐴−1𝑏 = 𝑥

• Thus 𝐴−1𝐴𝑥 = 𝑥. The matrix 𝐴−1 times 𝐴 is the identity matrix. Not all 
matrices have inverses. An inverse is impossible when 𝐴𝑥 is zero and 𝑥 is 
nonzero. Then 𝐴−1 would have to get back from 𝐴𝑥 = 0 to x. No matrix 
can multiply that zero vector Ax and produce a nonzero vector x. 

• Our goals are to define the inverse matrix and compute it and use it, when 
𝐴−1 exists—and then to understand which matrices don’t have inverses.



Properties : Inverse matrix
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• Given the 𝑛 × 𝑛 matrix 𝐴:

1. Adjoin the 𝑛 × 𝑛 identity matrix 𝐼 to obtain the 
augmented matrix [𝐴 | 𝐼 ].

2. Use a sequence of row operations to reduce [𝐴 | 𝐼 ] to 
the form [𝐼 |𝐵] if possible.

• Then the matrix 𝐵 is the inverse of 𝐴.

Calculation of 𝐴−1 : The Gauss-Jordan Method



Example

• Find the inverse of the matrix 𝐴 =
2 1 1
3 2 1
2 1 2

Solution

• We form the augmented matrix 

2 1 1 1 0 0
3 2 1 0 1 0
2 1 2 0 0 1



Example
• Find the inverse of the matrix 𝐴 =

2 1 1
3 2 1
2 1 2

Solution

• And use the Gauss-Jordan elimination method to reduce it to 
the form [𝐼 |𝐵]:

2 1 1 1 0 0
3 2 1 0 1 0
2 1 2 0 0 1

−1 −1 0 1 −1 0
3 2 1 0 1 0
2 1 2 0 0 1

1 1 0 −1 1 0
0 −1 1 3 −2 0
0 −1 2 2 −2 1

𝑹𝟏 − 𝑹𝟐

−𝑹𝟏

𝑹𝟐 + 𝟑𝑹𝟑

𝑹𝟑 + 𝟐𝑹𝟏

1 0 1 2 −1 0
0 1 −1 −3 2 0
0 0 1 −1 0 1

𝑹𝟏 + 𝑹𝟐

−𝑹𝟐

𝑹𝟑 − 𝑹𝟐



Example

• Find the inverse of the matrix 𝐴 =
2 1 1
3 2 1
2 1 2

Solution

• And use the Gauss-Jordan elimination method to reduce it to 
the form [𝐼 |𝐵]:

𝑹𝟏 − 𝑹𝟑

𝑹𝟐 + 𝑹𝟑

1 0 1 2 −1 0
0 1 −1 −3 2 0
0 0 1 −1 0 1

Previous step

1 0 0 3 −1 −1
0 1 0 −4 2 1
0 0 1 −1 0 1

𝑰𝒏 𝑩

𝐵 = 𝐴−1 =
3 −1 −1
−4 2 1
−1 0 1



Remarks : Gauss-Jordan
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Remarks : Gauss-Jordan

Remark 3. In the Gauss-Jordan calculation we went all the way 
forward to 𝑈, before starting backward to produce zeros above the 
pivots. That is like Gaussian elimination, but other orders are 
possible. We could have used the second pivot when we were 
there earlier, to create a zero above it as well as below it. This is 
not smart. At that time the second row is virtually full, whereas 
near the end it has zeros from the upward row operations that 
have already taken place.



Finding the inverse of a square matrix
using LU decomposition

The inverse [B] of a square matrix [A] is defined as

How can LU Decomposition be used to find the 
inverse?

Assume the first column of [B] to be [b11 b12 … bn1]
T

Using this and the definition of matrix multiplication



Finding the inverse of a square matrix

First column of [B]          Second column of [B]

The remaining columns in [B] can be found in the 
same manner.
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Example: Inverse of a Matrix

Find the inverse of a square matrix [A]

Using the decomposition procedure, the [L] and [U] 
matrices are found to be
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Example: Inverse of a Matrix
Solving for the each column of [B] requires two steps
1)Solve [L] [Z] = [C] for [Z] 
2)Solve [U] [X] = [Z] for [X] 

Step 1:

This generates the 
equations:
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Example: Inverse of a Matrix

Solving for [Z]
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Example: Inverse of a Matrix

Solving [U][X] = [Z] for [X]
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Example: Inverse of a Matrix

Using Backward Substitution
So the first column of 
the inverse of [A] is:
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Example: Inverse of a Matrix

Repeating for the second and third columns of the 
inverse

Second Column Third Column
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Example: Inverse of a Matrix

The inverse of [A] is
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Invertible = Nonsingular (𝑛 pivots)
Suppose 𝐴 has a full set of n pivots. 𝐴𝐴−1 = 𝐼 gives 𝑛 separate systems 𝐴𝑥𝑖 =
𝑒𝑖 for the columns of 𝐴−1 . They can be solved by elimination or by Gauss-Jordan. 
Row exchanges may be needed, but the columns of 𝐴−1 are determined.

Strictly speaking, we have to show that the matrix 𝐴−1 with those columns is also a 
left-inverse. Solving 𝐴𝐴−1 = 𝐼 has at the same time solved 𝐴−1𝐴 = 𝐼, but why? A 
1-sided inverse of a square matrix is automatically a 2-sided inverse. To see why, 
notice that every Gauss-Jordan step is a multiplication on the left by an elementary 
matrix. We are allowing three types of elementary matrices:
1. 𝐸𝑖𝑗 to subtract a multiple ℓ of row 𝑗 from row 𝑖

2. 𝑃𝑖𝑗 to exchange rows 𝑖 and 𝑗

3. 𝐷 (or 𝐷−1 ) to divide all rows by their pivots.
The Gauss-Jordan process is really a giant sequence of matrix multiplications:

That matrix in parentheses, to the left of 𝐴, is evidently a left-inverse! It exists, it 
equals the right-inverse by 𝑁𝑜𝑡𝑒 2 (slide no. 3), so every nonsingular matrix is 
invertible.



Invertible = Nonsingular (𝑛 pivots) (contd.)
The converse is also true: If 𝐴 is invertible, it has 𝑛 pivots. In an extreme case that 
is clear: 𝐴 cannot have a whole column of zeros. The inverse could never multiply 
a column of zeros to produce a column of 𝐼. In a less extreme case, suppose 
elimination starts on an invertible matrix 𝐴 but breaks down at column 3:

This matrix cannot have an inverse, no matter what the 𝑥’s are. One proof is to use 
column operations (for the first time?) to make the whole third column zero. By 
subtracting multiples of column 2 and then of column 1, we reach a matrix that is 
certainly not invertible. Therefore the original 𝐴 was not invertible. Elimination 
gives a complete test: An 𝑛 by 𝑛 matrix is invertible if and only if it has 𝑛 pivots.



Transpose Matrix
• The transpose of 𝐴 is denoted by 𝐴𝑇 . Its columns are taken directly 

from the rows of 𝐴—the 𝑖𝑡ℎ row of 𝐴 becomes the 𝑖𝑡ℎ column of 𝐴𝑇 :

At the same time the columns of 𝐴 become the rows of 𝐴𝑇 , If 𝐴 is an 
𝑚 by 𝑛 matrix, then 𝐴𝑇 is 𝑛 by 𝑚. The final effect is to flip the matrix 
across its main diagonal, and the entry in row 𝑖, column 𝑗 of 𝐴𝑇 comes 
from row 𝑗, column 𝑖 of 𝐴:

• The transpose of a lower triangular matrix is upper triangular. The 
transpose of 𝐴𝑇 brings us back to 𝐴.

• If we add two matrices and then transpose, the result is the same as 
first transposing and then adding: 𝐴 + 𝐵 𝑇 is the same as 𝐴𝑇 + 𝐵𝑇 .



Properties : Transpose Matrix



Symmetric matrix
• A symmetric matrix is a matrix that equals its own transpose:   
𝐴𝑇 = 𝐴. The matrix is necessarily square. Each entry on one side 
of the diagonal equals its “mirror image” on the other side: 
𝑎𝑖𝑗 = 𝑎𝑗𝑖. Two simple examples are 𝐴 and 𝐷 (and also 𝐴−1 ): 

• A symmetric matrix need not be invertible; it could even be a 
matrix of zeros. 

• But if 𝐴−1 exists it is also symmetric. 

• From formula (ii) (previous slide), the transpose of 𝐴−1 always 
equals 𝐴𝑇 −1 ; for a symmetric matrix this is just 𝐴−1 . 𝐴−1

equals its own transpose; it is symmetric whenever 𝐴 is. 



Symmetric Products 𝑅𝑇𝑅, 𝑅𝑅𝑇 , and 𝐿𝐷𝐿𝑇

Choose any matrix R, probably rectangular. Multiply R T times R. Then 
the product R TR is automatically a square symmetric matrix:

The transpose of 𝑹𝑻𝑹 is 𝑹𝑻 𝑹𝑻 𝑻
, which is 𝑹𝑻𝑹.

That is a quick proof of symmetry for 𝑅𝑇𝑅. Its 𝑖, 𝑗 entry is the inner 
product of row 𝑖 of 𝑅𝑇 (column 𝑖 of 𝑅) with column 𝑗 of 𝑅. The 
(𝑗, 𝑖) entry is the same inner product, column 𝑗 with column 𝑖. So 
𝑅𝑇𝑅 is symmetric. 𝑅𝑅𝑇 is also symmetric, but it is different from 𝑅𝑇𝑅. 
In my experience, most scientific problems that start with a 
rectangular matrix 𝑅 end up with 𝑅𝑇𝑅 or 𝑅𝑅𝑇 or both.

Example:

The product 𝑅𝑇𝑅 is 𝑛 𝑏𝑦 𝑛. In the opposite order, 𝑅𝑅𝑇 is 𝑚 𝑏𝑦 𝑚. 
Even if 𝑚 = 𝑛, it is not very likely that 𝑅𝑇𝑅 = 𝑅𝑅𝑇 . Equality can 
happen, but it’s not normal.



1N Suppose 𝐴 = 𝐴𝑇 can be factored into 𝐴 = 𝐿𝐷𝑈 without row 
exchanges. Then 𝑈 is the transpose of 𝐿. The symmetric 
factorization becomes 𝐴 = 𝐿𝐷𝐿𝑇.

The transpose of 𝐴 = 𝐿𝐷𝑈 gives 𝐴𝑇 = 𝑈𝑇𝐷𝑇𝐿𝑇 . Since 𝐴 = 𝐴𝑇 , 
we now have two factorizations of 𝐴 into lower triangular times 
diagonal times upper triangular. (𝐿𝑇 is upper triangular with ones 
on the diagonal, exactly like 𝑈.) Since the factorization is unique, 
𝐿𝑇 must be identical to U.

When elimination is applied to a symmetric matrix, 𝐴𝑇 = 𝐴 is an 
advantage. The smaller matrices stay symmetric as elimination 
proceeds, and we can work with half the matrix! The lower right-
hand corner remains symmetric:

The work of elimination is reduced 
from 𝑛3/3 to 𝑛3/6. There is no 
need to store entries from both 
sides of the diagonal, or to store 
both 𝐿 and 𝑈. 


