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Then there were three elimination steps, with multipliers 2, −1, −1: 

Step 1. Subtract 2 times the first equation from the second; 

Step 2. Subtract −1 times the first equation from the third; 

Step 3. Subtract −1 times the second equation from the third. 

The result was an equivalent system 𝑈𝑥 = 𝑐, with a new coefficient matrix 𝑈:

This matrix 𝑈 is upper triangular—all entries below the diagonal are zero.
The new right side 𝑐 was derived from the original vector 𝑏 by the same steps 
that took 𝐴 into 𝑈.
𝑈𝑥 = 𝑐 is solved by back-substitution. Here we concentrate on connecting 𝐴
to 𝑈.

Forward 
elimination



Elementary matrices corresponding to step 1, 2 and 3 are :

𝐺 =

Results of all three steps : 𝐺𝐹𝐸𝐴 = 𝑈

=

𝐺 𝐹 𝐸 𝐴 𝑈



Instead of subtracting, we add twice the first row to the second. (Not 
twice the second row to the first!) The result of doing both the 
subtraction and the addition is to bring back the identity matrix:

How would we get from U back to A? How can we 
undo the steps of Gaussian elimination?



Since step 3 was last in going from 𝑨 to 𝑼, its matrix 𝑮 must be the first to 
be inverted in the reverse direction. Inverses come in the opposite order! 
The second reverse step is 𝐹−1 and the last is 𝐸−1 :

You can substitute 𝐺𝐹𝐸𝐴 for 𝑈, to see how the inverses knock out the original 

steps. Now we recognize the matrix 𝐿 that takes 𝑈 back to 𝐴. It is called 𝐿, because 

it is lower triangular. And it has a special property that can be seen only by 

multiplying the three inverse matrices in the right order:



1H Triangular factorization 𝑨 = 𝑳𝑼 with no exchanges of rows. 𝐿 is lower 
triangular, with 1s on the diagonal. The multipliers ℓ𝑖𝑗 (taken from 

elimination) are below the diagonal. 𝑈 is the upper triangular matrix which 
appears after forward elimination, The diagonal entries of 𝑈 are the pivots.

Example :

Example : (which needs a row exchange)

Example : (with all pivots and multipliers equal to 1)

From A to U there are subtractions of rows. From U to A there are additions of rows.



The elimination steps on this 𝐴 are easy: 
(i) E subtracts ℓ21 times row 1 from row 2, 
(ii) F subtracts ℓ31 times row 1 from row 3, and 
(iii) G subtracts ℓ32 times row 2 from row 3. 
The result is the identity matrix 𝑈 = 𝐼. The inverses of 𝐸, 𝐹, 𝑎𝑛𝑑 𝐺 will bring 
back 𝐴:

Example: (when 𝑈 is the identity and 𝐿 is the same as 𝐴)



𝐴 = 𝐿𝑈: The 𝑛 𝑏𝑦 𝑛 case
The matrix 𝐿, applied to 𝑈, brings back 𝐴: 

The proof is to apply the steps of elimination. On the right-hand side they 
take 𝐴 to 𝑈. On the left-hand side they reduce 𝐿 to 𝐼, as in previous example. 
(The first step subtracts ℓ21 times (1,0,0) from the second row, which 
removes ℓ21.) Both sides of (7) end up equal to the same matrix U, and the 
steps to get there are all reversible. Therefore (7) is correct and 𝐴 = 𝐿𝑈. 

Example:  (A = LU, with zeros in the empty spaces)



One Linear System = Two Triangular Systems
There is a serious practical point about 𝐴 = 𝐿𝑈. It is more than just a record of 
elimination steps; L and U are the right matrices to solve 𝐴𝑥 = 𝑏. In fact 𝐴 could 
be thrown away! We go from 𝑏 to 𝑐 by forward elimination (this uses 𝐿) and we 
go from 𝑐 to 𝑥 by back-substitution (that uses 𝑈). We can and should do it 
without 𝐴:

Multiply the second equation by 𝐿 to give 𝐿𝑈𝑥 = 𝐿𝑐, which is 𝐴𝑥 = 𝑏. Each 
triangular system is quickly solved. That is exactly what a good elimination code 
will do:

1. Factor (from 𝐴 find its factors 𝐿 and 𝑈).

2. Solve (from 𝐿 and 𝑈 and 𝑏 find the solution 𝑥).

The separation into Factor and Solve means that a series of b’s can be 
processed. The Solve subroutine obeys equation (8).



Example :This is the previous matrix 𝐴 (in slide 8) with a right-hand side 
𝑏 = (1,1,1,1).



Remarks
The 𝐿𝑈 form is “unsymmetric” on the diagonal: 𝐿 has 1𝑠 where 𝑈 has the pivots. 
This is easy to correct. Divide out of 𝑈 a diagonal pivot matrix 𝐷:

In the last example all pivots were 𝑑𝑖 = 1. In that case 𝐷 = 𝐼. But that was very 
exceptional, and normally 𝐿𝑈 is different from 𝐿𝐷𝑈 (also written 𝐿𝐷𝑉).

Whenever you see 𝐿𝐷𝑈 or 𝐿𝐷𝑉, it is understood that 𝑈 or 𝑉 has is on the 
diagonal— each row was divided by the pivot in 𝐷. Then 𝐿 and 𝑈 are treated 
evenly. An example of 𝐿𝑈 splitting into 𝐿𝐷𝑈 is 

That has the 1𝑠 on the diagonals of 𝐿 and 𝑈, and the pivots 1 and −2 in 𝐷.



Remarks



Row Exchanges and Permutation Matrices
We now have to face a problem that has so far been avoided: The number we 
expect to use as a pivot might be zero. This could occur in the middle of a 
calculation. It will happen at the very beginning if 𝑎11 = 0. A simple example is 

The difficulty is clear; no multiple of the first equation will remove the coefficient 
3.

The remedy is equally clear. Exchange the two equations, moving the entry 3 up 
into the pivot. In this example the matrix would become upper triangular:

To express this in matrix terms, we need the permutation matrix 𝑃 that 
produces the row exchange. It comes from exchanging the rows of 𝐼:

𝑃 has the same effect on 𝑏, exchanging 𝑏1 and 𝑏2. The new system is 𝑃𝐴𝑥 = 𝑃𝑏. 
The unknowns 𝑢 and 𝑣 are not reversed in a row exchange. 



Permutation matrix
A permutation matrix 𝑃 has the same rows as the identity (in some order). 
There is a single “1” in every row and column. The most common permutation 
matrix is 𝑃 = 𝐼 (it exchanges nothing). The product of two permutation matrices 
is another permutation— the rows of 𝐼 get reordered twice. 

After 𝑃 = 𝐼, the simplest permutations exchange two rows. Other permutations 
exchange more rows. There are 𝑛! = (𝑛)(𝑛 − 1) ··· (1) permutations of size 𝑛. 
Row 1 has 𝑛 choices, then row 2 has 𝑛 − 1 choices, and finally the last row has 
only one choice. All 3 𝑏𝑦 3 permutations (3! = (3)(2)(1) = 6 matrices) are 
displayed: 

There will be 24 permutation matrices of order 𝑛 = 4. 

• 𝑃−1 is always the same as 𝑃𝑇 .



A zero in the pivot location raises two possibilities: The trouble may be easy to 
fix, or it may be serious. This is decided by looking below the zero. If there is a 
non-zero entry lower down in the same column, then a row exchange is carried 
out. The nonzero entry becomes the needed pivot, and elimination can get going 
again: 

If 𝑑 = 0, the problem is incurable and this matrix is singular. There is no hope 
for a unique solution to 𝐴𝑥 = 𝑏. If 𝑑 is not zero, an exchange 𝑃13 of rows 1 and 3 
will move 𝑑 into the pivot. However the next pivot position also contains a zero. 
The number a is now below it (the 𝑒 above it is useless). If 𝑎 is not zero then 
another row exchange 𝑃23 is called for:

Permutation matrix (contd.)



One more point: The permutation P23P13 will do both row exchanges at once:

If we had known, we could have multiplied A by P in the first place. With the 
rows in the right order PA, any non-singular matrix is ready for elimination.

Permutation matrix (contd.)



The main point is this: If elimination can be completed with the help of row 
exchanges, then we can imagine that those exchanges are done first (by 𝑃). The 
matrix 𝑃𝐴 will not need row exchanges. In other words, 𝑃𝐴 allows the standard 
factorization into 𝐿 times 𝑈. The theory of Gaussian elimination can be 
summarized in a few lines: 

In practice, we also consider a row exchange when the original pivot is near 
zero— even if it is not exactly zero. Choosing a larger pivot reduces the roundoff 
error. You have to be careful with 𝐿. Suppose elimination subtracts row 1 from 
row 2, creating ℓ21 = 1. Then suppose it exchanges rows 2 and 3. If that 
exchange is done in advance, the multiplier will change to ℓ31 = 1 in 𝑃𝐴 = 𝐿𝑈.

Elimination in a Nutshell: 𝑃𝐴 = 𝐿𝑈



Example:

The “sign” of 𝑃 tells whether the number of row exchanges is even (𝑠𝑖𝑔𝑛 = +1) or 
odd (𝑠𝑖𝑔𝑛 = −1). A row exchange reverses sign. The final value of sign is the 
determinant of 𝑃 and it does not depend on the order of the row exchanges.



Summarization

A good elimination code saves 𝐿 and 𝑈 and 𝑃. Those matrices 
carry the information that originally came in 𝐴—and they carry it 
in a more usable form. 𝐴𝑥 = 𝑏 reduces to two triangular systems. 
This is the practical equivalent of the calculation we do next—to 
find the inverse matrix 𝐴−1 and the solution 𝑥 = 𝐴−1𝑏.



LU Factorization
extra slides



Introduction
•Apart from Gaussian Elimination, another way of 
solving a system of equations is by using a factorization 
technique for matrices called LU decomposition. 
•This factorization of matrix [𝐴] involves two matrices

•one lower triangular matrix (𝐿)
•one upper triangular matrix (𝑈)

such that 
• factorization methods separate the time-consuming 
elimination of the matrix from the manipulations of the 
right-hand-side 
•Once has been factored (or decomposed), multiple 
right-hand-side vectors can be evaluated in an efficient 
manner. 

•



How does LU Decomposition work?

If solving a set of linear equations
If  [A] = [L][U]  then

Multiply by
Which gives

Remember  [L]-1[L] = [I] which leads to
Now, if [I][U] = [U] then

Now, let
Which ends with

and

[A][X] = [C]
[L][U][X] = [C]
[L]-1

[L]-1[L][U][X] = [L]-1[C]
[I][U][X] = [L]-1[C]
[U][X] = [L]-1[C]
[L]-1[C]=[Z]
[L][Z] = [C]   … (1)
[U][X] = [Z]  … (2)



LU Decomposition
How can this be used?

Given  [A][X] = [C]       

1.Decompose [A] into [L] and [U]

2.Solve [L][Z] = [C] for [Z]  

3.Solve [U][X] = [Z] for [X]



Method: [A] Decompose to [L] and [U]

[U] is the same as the coefficient matrix at the end 

of the forward elimination step of Gaussian 
Elimination.

[L] is obtained using the multipliers that were used 
in the forward elimination process
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Finding the [U] matrix

Using the Forward Elimination Procedure of 
Gauss Elimination

Step 1:
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Finding the [U] Matrix

Step 2:

Matrix after Step 1:  
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Finding the [L] matrix

Using the multipliers used during the Forward 
Elimination Procedure

From the 

first step of 

forward 
elimination
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Finding the [L] Matrix

From the 

second step 

of forward 
elimination
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Does [L][U] = [A]?
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Using LU Decomposition to solve SLEs

Solve the following set 

of linear equations 

using LU 
Decomposition

Using the procedure for finding the [L] and [U] matrices
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Example

Set  [L][Z] = [C]

Solve for [Z]



















































2.279

2.177

8.106

15.376.5

0156.2

001

3

2

1

z

z

z

2.2795.376.5

2.17756.2

10

321

21

1







zzz

zz

z



Example

Complete the forward substitution to solve for [Z]
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Example

Set [U][X] = [Z]

Solve for [X] The 3 equations become
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Example

From the 3rd

equation
Substituting in a3 and using the 
second equation
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Example

Substituting in a3

and a2 using the 
first equation

Hence the Solution Vector 
is:
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