<u>Orthogonality</u>

Cosines and Projections onto lines

Vectors: Algebraic Approach

- An *n*-dimensional coordinate vector is an element of **R**ⁿ, i.e., an ordered *n*-tuple (x₁, x₂,..., x_n) of real numbers.
- Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be vectors, and $r \in \mathbf{R}$ be a scalar. Then, by definition,

$$a + b = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$

$$ra = (ra_1, ra_2, \dots, ra_n),$$

$$0 = (0, 0, \dots, 0),$$

$$-b = (-b_1, -b_2, \dots, -b_n),$$

$$a - b = a + (-b) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n).$$

Cartesian coordinates: geometric meets algebraic

- Once we specify an origin O, each point A is associated a position vector \overrightarrow{OA} . Conversely, every vector has a unique representative with tail at O.
- Cartesian coordinates allow us to identify a line, a plane, and space with R,R^2 and R^3 , respectively.

Length and Distance

Definition. The **length** of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbf{R}^n$ is $||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$

The **distance** between vectors/points \mathbf{x} and \mathbf{y} is $||\mathbf{y} - \mathbf{x}||$.

Properties of length:

 $\begin{aligned} ||\mathbf{x}|| &\geq 0, ||\mathbf{x}|| = 0 \text{ only if } \mathbf{x} = 0 \quad (\text{positivity}) \\ ||r\mathbf{x}|| &= |r| ||\mathbf{x}|| \quad (\text{homogeneity}) \\ ||\mathbf{x} + \mathbf{y}|| &\leq ||\mathbf{x}|| + ||\mathbf{y}|| \quad (\text{triangle inequality}) \end{aligned}$

Scalar Product

Definition. The scalar product of vectors $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ is

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2 + \dots + \mathbf{x}_n \mathbf{y}_n$$

Properties of scalar product: $\mathbf{x} \cdot \mathbf{x} \ge 0, \mathbf{x} \cdot \mathbf{x} = 0$ only if $\mathbf{x} = 0$ (positivity) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry) $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$ (distributive law) $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$ (homogeneity)

Angle

Cauchy-Schwarz inequality: $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ we have

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}|| ||\mathbf{y}||}$$
 for a unique $0 \le \theta \le \pi$.

 θ is called the **angle** between the vectors **x** & **y**.

The vectors **x** and **y** are said to be **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y} = 0$ (i.e., $\theta = 90^{\circ}$).

Problem. Find the angle θ between vectors $\mathbf{x} = (2, -1)$ and $\mathbf{y} = (3, 1)$.

x. **y** = 5,
$$||\mathbf{x}|| = \sqrt{5}$$
, $||\mathbf{y}|| = \sqrt{10}$.
 $\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}|| ||\mathbf{y}||} = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{2}} \Rightarrow \theta = 45^{\circ}$.

Problem. Find the angle ϕ between vectors $\mathbf{v} = (-2, 1, 3)$ and $\mathbf{w} = (4, 5, 1)$.

 $\mathbf{v} \cdot \mathbf{w} = 0 \Rightarrow \mathbf{v} \perp \mathbf{w} \Rightarrow \phi = 90^{\circ}.$

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ are said to be **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y} = 0$.

Definition 2. A vector $\mathbf{x} \in \mathbf{R}^n$ is said to be orthogonal to a nonempty set $Y \subset \mathbf{R}^n$ (denoted $\mathbf{x} \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{y} \in Y$. **Note:** $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x}^T \mathbf{y})$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^n$ are said to be **orthogonal** (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

The line x = y = 0 is orthogonal to the line y = z = 0.

Indeed, if $\mathbf{v} = (0, 0, z)$ and $\mathbf{w} = (x, 0, 0)$ then $\mathbf{v} \cdot \mathbf{w} = 0$.

The line x = y = 0 is orthogonal to the plane z = 0.

Indeed, if $\mathbf{v} = (0, 0, z)$ and $\mathbf{w} = (x, y, 0)$ then $\mathbf{v} \cdot \mathbf{w} = 0$.

The line x = y = 0 is not orthogonal to the plane z = 1.

The vector $\mathbf{v} = (0, 0, 1)$ belongs to both the line and the plane, and $\mathbf{v} \cdot \mathbf{v} = 1 \neq 0$.

Orthogonality - Geometric Interpretation

- Considering the figure on the left, the dot product of the two vectors **x** and **y** is equal to 0.
- This shows that the two vectors are orthogonal.
- If $\mathbf{x}^{T}\mathbf{y} > \mathbf{0}$, the angle between the two vectors is less than 90°.
- If x^Ty < 0, the angle between the two vectors is greater than 90°.

Theorem 1: If nonzero vectors v_1 ; ...; v_k are mutually orthogonal (every vector is perpendicular to every other), then those vectors are linearly independent.

Proof:

- Suppose $c_1 \mathbf{v_1} + \dots + c_k \mathbf{v_k} = 0$. To show that c_1 must be zero, take the inner product of both sides with $\mathbf{v_1}$. Orthogonality of the \mathbf{v} 's leaves only one term: $\mathbf{v_1}^{\mathrm{T}}(c_1 \mathbf{v_1} + \dots + c_k \mathbf{v_k}) = c_1 \mathbf{v_1}^{\mathrm{T}} \mathbf{v_1} = 0$
- The vectors are nonzero, so $\mathbf{v_1^T v_1} = 0$ and therefore $c_1 = 0$. The same is true of every c_i .
- The only combination of the **v**'s producing zero has all $c_i = 0$
- This shows that the vectors are linearly independent.

- The coordinate vectors e_1 ; ... ; e_n in \mathbb{R}^n are the most important orthogonal vectors.
- Those are the columns of the identity matrix. They form the simplest basis for \mathbf{R}^n , and they are *unit vectors*—each has length $\|\mathbf{e_i}\| = 1$. They point along the coordinate axes.
- If these axes are rotated, the result is a new **orthonormal basis**: a new system of *mutually orthogonal unit vectors*.
- In \mathbf{R}^2 we have $\cos^2\theta + \sin^2\theta = 1$:
- Orthonormal vectors in \mathbf{R}^2 $\mathbf{v_1} = (\cos\theta; \sin\theta)$ and $\mathbf{v_2} = (-\sin\theta; \cos\theta)$

Orthogonal Subspaces

- Two subspaces V and W of the same space Rⁿ are *orthogonal* if every vector v in V is orthogonal to every vector w in W: v^Tw = 0 for all v and w.
- Example : Suppose V is the plane spanned by v₁ = (1; 0; 0; 0) and v₂ = (1; 1; 0; 0). If W is the line spanned by w = (0; 0; 4; 5), then w is orthogonal to both v's. The line W will be orthogonal to the whole plane V.

Theorem 2. $N(A) \perp R(A)$. That is, the **null-space** of a matrix is **orthogonal** to its **row space**.

Also, $N(A^T) \perp C(A)$, ie. the **column space** of a matrix is **orthogonal** to the **left null space** of the matrix.

Example

• Suppose A has rank 1, so its row space and column space are lines:

• Rank-1 matrix
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$$

- The rows are multiples of (1; 3). The null space contains $\mathbf{x} = (-3; 1)$, which is orthogonal to all the rows.
- The null space and row space are perpendicular lines in \mathbb{R}^2 : $\begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = 0$ and $\begin{bmatrix} 2 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = 0$ and $\begin{bmatrix} 3 & 9 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = 0$.
- In contrast, the other two subspaces are in \mathbb{R}^3 . The column space is the line through (1; 2; 3). The left null space must be the *perpendicular plane* $y_1 + 2y_2 + 3y_3 = 0$. That equation is exactly the content of $\mathbf{y}^T A = 0$.

Orthogonal Complement

- **Definition :** Given a subspace *V* of **R**ⁿ, the space of *all* vectors orthogonal to *V* is called the orthogonal complement of *V*.
- It is denoted by $V^{\perp} = "V perp$."

Theorem 3.

I.
$$V^{\perp}$$
 is a subspace of \mathbf{R}^n .

II.
$$Span(\mathbf{V})^{\perp} = \mathbf{V}^{\perp}$$
.

$$III.\,(\mathbf{V}^{\perp})^{\perp} = Span(\mathbf{V}).$$

Theorem 4. If **V** is a subspace of **R**ⁿ, then

I.
$$(V^{\perp})^{\perp} = V.$$

II. $V \cap V^{\perp} = \{\mathbf{0}\}.$

Orthogonal Complement

Definition. Let $S \subset \mathbb{R}^n$. The **orthogonal complement** of S, denoted S^{\perp} , is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to S.

Theorem 2.

I.
$$S^{\perp}$$
 is a subspace of \mathbb{R}^{n} .
II. $Span(S)^{\perp} = S^{\perp}$.
III. $(S^{\perp})^{\perp} = Span(S)$.
Theorem 3. If V is a subspace of \mathbb{R}^{n} , then
I. $(V^{\perp})^{\perp} = V$.
II. $V \cap V^{\perp} = \{\mathbf{0}\}$.

Orthogonal Complement

- The null space is the orthogonal complement of the row space: $N(A) = (C(A^T))^{\perp}$.
- **Dimension formula :** dim(row space) + dim(null space) = number of columns.
- Every vector orthogonal to the null space is in the row space: $C(A^T) = (N(A))^{\perp}$.
- The same reasoning applied to A^T produces the dual result: The left null space $N(A^T)$ and the column space C(A) are **orthogonal complements.**
- Fundamental Theorem of Linear Algebra: The null space is the *orthogonal complement* of the row space in \mathbb{R}^n .
- The left null space is the *orthogonal complement* of the column space in \mathbb{R}^m .

Matrix and the subspaces

- Two matrices V and W can be orthogonal without being complements. The line V spanned by (0; 1; 0) is orthogonal to the line W spanned by (0; 0; 1), but V is not W[⊥].
- The orthogonal complement of W is a two dimensional plane, and the line is only part of W^{\perp} .
- When the dimensions are right, orthogonal subspaces *are* necessarily orthogonal complements.
- If $W = V^{\perp}$ then $V = W^{\perp}$ and dim V + dim W= n.
- Splitting Rⁿ into orthogonal parts will split every vector into x = v + w. The vector v is the projection onto the subspace V. The orthogonal component w is the projection of x onto W.

Given figure summarizes the fundamental theorem of linear algebra

- The null space is carried to the zero vector. Every Ax is in the column space. Nothing is carried to the left null space.
- A typical vector **x** has a "row space component" and a "null space component" with $\mathbf{x} = \mathbf{x}_r + \mathbf{x}_n$.
- When multiplied by A, this is $A\mathbf{x} = A\mathbf{x}_r + A\mathbf{x}_n$: the null space component goes to zero: $A\mathbf{x}_n = 0$.
- The row space component goes to the column space: $A\mathbf{x}_r = A\mathbf{x}.$
- Everything goes to the column space—the matrix cannot do anything else.
- From the row space to the column space, A is actually invertible. Every vector b in the column space comes from exactly one vector x_r in the row space.

Cosines and Projections onto lines

- Suppose we want to find the distance from a point **b** to the line in the direction of the vector **a**.
- We are looking along that line for the point p closest to
 b.
- The line connecting b to p is perpendicular to a.
- This fact will allow us to find the projection **p**.

- Similarly, given a plane (or any subspace S) instead of a line, the problem is to find the point p on that subspace that is closest to b. This point p is the projection of b onto the subspace.
- A perpendicular line from **b** to *S* meets the subspace at **p**. Geometrically, that gives the distance between points **b** and subspaces *S*.
- This is exactly the problem of the *least-squares solution* to an overdetermined system.
- The vector **b** represents the data from experiments or questionnaires, and it contains too many errors to be found in the subspace *S*.
- When we try to write b as a combination of the basis vectors for S, it cannot be done—the equations are inconsistent, and Ax = b has no solution.
- The least-squares method selects p as the best choice to replace b.

Projection onto a line

- We want to find the projection point **p**. This point must be some multiple $\mathbf{p} = \hat{\mathbf{x}}\mathbf{a}$ of the given vector \mathbf{a} —every point on the line is a multiple of **a**.
- The problem is to compute the coefficient $\hat{\mathbf{x}}$. All we need is the geometrical fact that *the line from* \mathbf{b} *to the closest point* $\mathbf{p} = \hat{\mathbf{x}}\mathbf{a}$ *is perpendicular to the vector* \mathbf{a} :

$$(\mathbf{b} - \hat{\mathbf{x}}\mathbf{a}) \perp \mathbf{a}$$
, or $\mathbf{a}^{\mathrm{T}}(\mathbf{b} - \hat{\mathbf{x}}\mathbf{a}) = 0$, or $\hat{\mathbf{x}} = \frac{\mathbf{a}^{\mathrm{T}}\mathbf{b}}{\mathbf{a}^{\mathrm{T}}\mathbf{a}}$

- That gives the formula for the number \widehat{x} and the projection p:
- Projection onto a line $\mathbf{p} = \hat{\mathbf{x}}\mathbf{a} = \frac{\mathbf{a}^{T}\mathbf{b}}{\mathbf{a}^{T}\mathbf{a}}\mathbf{a}$

Projection Matrix of Rank 1

 Projection onto a line is carried out by a *projection matrix P*, and written in this new order we can see what it is. *P* is the matrix that multiplies **b** and produces **p**:

$$P = \mathbf{a}_{\mathbf{a}^{T}\mathbf{a}}^{\mathbf{a}^{T}\mathbf{b}}$$
 so the projection matrix is $P = \frac{\mathbf{a}\mathbf{a}^{T}}{\mathbf{a}^{T}\mathbf{a}}$

• **Example:** The matrix that projects onto the line through $\mathbf{a} = (1; 1; 1)$ is:

$$P = \frac{aa^{T}}{a^{T}a} = \frac{1}{3} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1\\1 \end{bmatrix} = \begin{vmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{vmatrix}$$

• This matrix has two properties that we will see as typical of projections:

1. *P* is a symmetric matrix.

2. Its square is itself: $P^2 = P$.

• **Example**: Project onto the " θ -direction" in the x - yplane. The line goes through $a = (\cos \theta; \sin \theta)$ and the matrix is symmetric with $P^2 = P$:

$$P = \frac{\mathbf{a}\mathbf{a}^{\mathrm{T}}}{\mathbf{a}^{\mathrm{T}}\mathbf{a}} = \frac{\begin{bmatrix} c \\ s \end{bmatrix} \begin{bmatrix} c & s \end{bmatrix}}{\begin{bmatrix} c & s \end{bmatrix}} = \begin{bmatrix} c^{2} & cs \\ cs & s^{2} \end{bmatrix}$$

- Here c is $\cos\theta$, s is $\sin\theta$, and $c^2 + s^2 = 1$ in the denominator.
- To project b onto a, multiply by the projection matrix
 P: p = Pb.

Problem. Find the distance from the point $\mathbf{x} = (3, 1)$ to the line spanned by $\mathbf{y} = (2, -1)$.

Consider the decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{o} \perp \mathbf{y}$. The required distance is the length of the orthogonal component \mathbf{o} .

$$\mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y} = \frac{5}{5} (2, -1) = (2, -1)$$

$$\mathbf{o} = \mathbf{x} - \mathbf{p} = (3,1) - (2,-1) = (1,2),$$

 $||\mathbf{o}|| = \sqrt{5}$

Problem. Find the point on the line y = -x that is closest to the point (3, 4).

The required point is the projection \mathbf{p} of $\mathbf{v} = (3, 4)$ on the vector $\mathbf{w} = (1, -1)$ spanning the line y = -x.

$$\mathbf{p} = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} = \frac{-1}{2} (1, -1) = \left(-\frac{1}{2}, \frac{1}{2}\right)$$