Orthogonality

Cosines and Projections onto lines




Vectors: Algebraic Approach

* An n -dimensional coordinate vector is an
element of R" , i.e.,, an ordered n-tuple
(X1,X>5,...,X,) Of real numbers.

 Let a = (ag,ay,...,a,) and b =
(b1,b,,...,b,) be vectors, and r € R be a
scalar. Then, by definition,
a—l—b:(al—;—bl,ag—l—bg,,...,,an—l—bn),
ra = (rai, rap, ..., rap),
0=(0,0,...,0),
—b = (_bI; _b21 E RN _bn):
a—b:a+(—b):(al—bhag—bgﬁ...;an—bn).



Cartesian coordinates: geometric meets algebraic

(2,1) [ (2,1)

* Once we specify an origin O, each point A is
associated a position vector 0A. Conversely,
every vector has a unique representative with
tail at O.

* Cartesian coordinates allow us to identify a line,
a plane, and space with R_.R* and R°® ,
respectively.



Length and

Definition. T

Distance

ne length of a vector

v=(vy,Vy,..,v,) ER"is

|[v]| = \/Vf +vs + -+ VA

The distance between vectors/points x and y

is Hy — X”.

Properties of length:
xl‘ > O,‘ X ‘ = Qonlyifx =0 (positivity)
rX ‘ = |r ‘ X” (homogeneity)

x—-yl‘ S‘

x| +

Iyl‘ (triangle inequality)



Scalar Product

Definition. The scalar product of vectors
X = (X1,Xp, v, Xp) andy = (V1,V2, ..., Y)iS

X.Yy=X1y1 TX2¥2 T " T XnYn

Properties of scalar product:
X.X20,x.x=0onlyifx=0 (positivity)
X.Yy=Y.X (symmetry)
(x+y)z=x.z+y.z (distributive law)
(rx).y=r(x.y) (homogeneity)



Angle
Cauchy-Schwarz inequality: |x. y| < HXH Hyl‘

By the Cauchy-Schwarz inequality, for any
nonzero vectorsx y € R™ we have

cos O = foraunique 0 < 0 < .
||x||||y||

6 is called the angle between the vectors x & y.

The vectors X and y are said to be orthogonal
(denotedx 1 y)ifx -y = 0 (i.e.,, 8 = 90°).



Problem. Find the angle 6 between vectors X
(2,—1)andy = (3,1).

x.y=5 |Ixl| = V5, |lyl| = 0

_ . xy _ 5 _ 1 _ o
cos 8 = ||x||||y||_\/§\/1_0_\/§:H 45,

Problem. Find the angle ¢ between vectors v
(—2,1,3)andw = (4,5,1).

v.w=0=>v.1lw=¢p =90°



Orthogonality

Definition 1. Vectors X,y € R" are said to be
orthogonal (denotedx 1 y)ifx -y = 0.

Definition 2. A vector X € R" is said to be
orthogonal to a nonempty set Y c R"
(denotedx 1 Y )ifx -y = Oforanyy € Y.

Note:x - y = (x'y).
Definition 3. Nonempty sets X,Y < R" are said

to be orthogonal (denoted X 1 YV )ifx -y =
Oforanyx € Xandy € Y.



The line x = y = 0is orthogonal to the liney =
z = 0.
Indeed, ifv = (0,0,z) andw = (x,0,0) thenv-w = 0.

The line X = y = 0 is orthogonal to the plane
z = 0.
Indeed, ifv = (0,0,z)andw = (x,y,0)thenv-w = 0.

The line X = y = 0is not orthogonal to the
planez = 1.

The vector v = (0,0,1) belongs to both the line and the
plane,andv - v = 1 # 0.



Orthogonality - Geometric Interpretation

Right angle
ety =0

i : I . ) 6 e K-‘ :: ———————— -
] |T 1 |" 1 JTU {: [) '. ‘x\‘ J'TU :} “
eap= greater than 90° ~~ less than 90°

™~
~

e Considering the figure on the left, the dot product of
the two vectors X and y is equal to O.

This shows that the two vectors are orthogonal.

If xTy > 0, the angle between the two vectors is less
than 90°.

If xTy < 0, the angle between the two vectors is
greater than 90°.



Theorem 1: If nonzero vectors vy; ... ; Vi are mutually
orthogonal (every vector is perpendicular to every
other), then those vectors are linearly independent.

Proof:

* Suppose ¢;Vq + -+ ¢ Vi = 0. To show that ¢; must
be zero, take the inner product of both sides with vjy.

Orthogonality of the v’s leaves only one term:

vlT(clvl + V) = clvlTvl =0

* The vectors are nonzero, so viv; = 0 and therefore

c¢; = 0. The same is true of every c;.

* The only combination of the v’s producing zero has all
Ci = 0

* This shows that the vectors are linearly independent.



* The coordinate vectors eq; ... ; e, in R™ are the most
important orthogonal vectors.

* Those are the columns of the identity matrix. They
form the simplest basis for R, and they are unit
vectors—each has length ||e;|| = 1. They point along
the coordinate axes.

* |f these axes are rotated, the result is a new
orthonormal basis: a new system of mutually
orthogonal unit vectors.

* In R% we have cos?6 + sin40 = 1:

* Orthonormal vectors in R?
vy = (cos@; sinf ) and v, = (—sinf; cosh)



Orthogonal Subspaces

* Two subspaces V and W of the same space R"
are orthogonal if every vectorvin V is

orthogonal to every vector win W: viw =
0 for all vand w.

 Example : Suppose V is the plane spanned by
vi=(1;0;0;0)andvy, =(1;1;0;0). If Wis
the line spanned by w = (0;0; 4;5), then wiis
orthogonal to both v’s. The line W will be
orthogonal to the whole plane V.



Theorem 2. N(A) L R(A) . That is, the null-space
of a matrix is orthogonal to its row space.

Also, N(A") 1L C(A4), ie. the column space of a
matrix is orthogonal to the left null space of the
matrix.



Example

* Suppose A has rank 1, so its row space and column space
are lines:

1 3

e Rank-1 matrixA = |2 6

3 9]

* The rows are multiples of (1; 3). The null space contains X =
(—3; 1), which is orthogonal to all the rows.

* The null space and row space are perpendicular lines in R?:
371 371 371
1 3] [_1] — 0and [2 6] [_1] — 0and [3 9] [_1] — 0.

* In contrast, the other two subspaces are in R3. The column
space is the line through (1; 2; 3). The left null space must
be the perpendicular plane y; + 2y, + 3y3; = 0. That
equation is exactly the contentof y'4 = 0.



Orthogonal Complement

* Definition : Given a subspace V of R", the space
of all vectors orthogonal to V is called the
orthogonal complement of V.

* [t is denoted by V+ = “V perp.”
Theorem 3.

L V<tisasubspace of R™.

Il Span(V)* =V,

1L (VYL = Span(V).

Theorem 4. If V is a subspace of R", then
L WHt=v.

I Vnvt={0}



Orthogonal Complement

Definition. let S c R™ . The orthogonal
complement of S, denoted S+, is the set of all
vectors X € R™" that are orthogonal to S.

Theorem 2.

L St isasubspace of R".

I Span($)* = S+.

111 (SH)* = Span(S).

Theorem 3. If V is a subspace of R", then
L (WHt=v.

I Vnvt={0}



Orthogonal Complement

* The null space is the orthogonal complement of the row space:
1
N(4) = (CiD))".

 Dimension formula :
dim(row space) + dim(null space) = number of columns.

* Every vector orthogonal to the null space is in the row space:
1
c(AT) = (N(A)".

* The same reasoning applied to AT produces the dual result: The
left null space N(A") and the column space C(A) are
orthogonal complements.

* Fundamental Theorem of Linear Algebra: The null space is the
orthogonal complement of the row space in R",

* The left null space is the orthogonal complement of the column
space in R™.



Matrix and the subspaces

* Two matrices I and W can be orthogonal without
being complements. The line V spanned by (0; 1;0) is
orthogonal to the line W spanned by (0; 0; 1), but V is
not W+.

* The orthogonal complement of W is a two dimensional
plane, and the line is only part of W+.

* When the dimensions are right, orthogonal subspaces
are necessarily orthogonal complements.

e If W= VithenV =W anddimV +dim W=n.

* Splitting R™ into orthogonal parts will split every vector
into X = v + w. The vector v is the projection onto the
subspace V. The orthogonal component w is the
projection of X onto W.
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Given figure summarizes the fundamental theorem of
linear algebra
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* The null space is carried to the zero vector. Every AX is in
the column space. Nothing is carried to the left null
space.

* A typical vector X has a “row space component” and a
“null space component” with x = x,. + X,,.

* When multiplied by A4, this is AX = Ax, + AX,,: the
null space component goes to zero: Ax,, = 0.

* The row space component goes to the column space:
Ax, = Ax.
* Everything goes to the column space—the matrix
cannot do anything else.

* From the row space to the column space, A is actually
invertible. Every vector b in the column space comes
from exactly one vector X,. in the row space.



Cosines and Projections onto lines

* Suppose we want to find the distance from a point b
to the line in the direction of the vector a.

* We are looking along that line for the point p closest to
b.

* The line connecting b to p is perpendicular to a.
* This fact will allow us to find the projection p.

projection of b

p= |
onto line through a




 Similarly, given a plane (or any subspace §) instead of a line,
the problem is to find the point p on that subspace that is
closest to b. This point p is the projection of b onto the
subspace.

* A perpendicular line from b to $ meets the subspace at p.
Geometrically, that gives the distance between points b and
subspaces §.

* This is exactly the problem of the least-squares solution to
an overdetermined system.

* The vector b represents the data from experiments or
guestionnaires, and it contains too many errors to be found
in the subspace S.

 When we try to write b as a combination of the basis vectors
for §, it cannot be done—the equations are inconsistent,
and AX = b has no solution.

* The least-squares method selects p as the best choice to
replace b.



Projection onto a line

* We want to find the projection point p. This point
must be some multiple p = Xa of the given vector a—
every point on the line is a multiple of a.

* The problem is to compute the coefficient X. All we
need is the geometrical fact that the line from b to the
closest point p = Xa is perpendicular to the vector a:

alb

(b—=Ra) La,oral(b—g%a) = 0,0rx ="+

* That gives the formula for the number X and the

projection p:
. . . A alb
* Projectionontoalinep =Xa =—a



Projection Matrix of Rank 1

* Projection onto a line is carried out by a projection
matrix P, and written in this new order we can see
what it is. P is the matrix that multiplies b and
produces p:

T . .
P = asz so the projection matrix is P =

a aTa

aaT

* Example: The matrix that projects onto the line
througha = (1;1;1) is: 1 1

T 1_1-
P=i=§ 11[111] =
1.

L |
¥

W = W =W =
Wl = W] =W
Wl = W] =W



* This matrix has two properties that we will see as typical
of projections:

1. P is a symmetric matrix.
2. Its square is itself: P> = P.

* Example: Project onto the “6-direction” inthe x — vy
plane. The line goes through a = (cosf ; sinf ) and the
matrix is symmetric with P? = P:

_aa’ g] [cs _ [cz cs]

P =— = -
T - C 2
ala _cs][ cS S

e Here cis cos@ , sissind ,and c® + s? = 1inthe
denominator.

* To project b onto a, multiply by the projection matrix
P:p = Pb.



Problem. Find the distance from the point x =
(3,1) to thelinespanned byy = (2,—1).

Consider the decomposition X = p + o0, where p

is parallel to y while o L y. The required distance
is the length of the orthogonal component o.

A —5(2 1) = (2,-1)
P=yyY "5\ ’

o=x—-p=031)—-(2-1) =(,2),

lol| = V5



Problem. Find the point on the liney = —xthatis
closest to the point (3, 4).

The required point is the projection p of v = (3,4)
on the vector w = (1,—1) spanning the line

VW _—1(1 1 = 1 1
P = W= W T T3



