
Orthogonality

Cosines and Projections onto lines



Vectors: Algebraic Approach
• An -dimensional coordinate vector is an

element of , i.e., an ordered -tuple
of real numbers.

• Let and
be vectors, and be a

scalar. Then, by definition,



Cartesian coordinates: geometric meets algebraic

• Once we specify an origin , each point is
associated a position vector . Conversely,
every vector has a unique representative with
tail at .

• Cartesian coordinates allow us to identify a line,
a plane, and space with and ,
respectively.



Length and Distance
Definition. The length of a vector

is

The distance between vectors/points x and y
is .
Properties of length:

(positivity)

(homogeneity)

(triangle inequality)



Scalar Product
Definition. The scalar product of vectors

is

Properties of scalar product:
, only if (positivity)

(symmetry)
(distributive law)

(homogeneity)



Angle
Cauchy-Schwarz inequality:

By the Cauchy-Schwarz inequality, for any
nonzero vectors we have

for a unique .

is called the angle between the vectors & .

The vectors and are said to be orthogonal
(denoted ) if (i.e., ).



Problem. Find the angle between vectors
and .

_________________________________________

, , .

.

Problem. Find the angle between vectors
and .

_________________________________________
.



Orthogonality

Definition 1. Vectors are said to be
orthogonal (denoted ) if .

Definition 2. A vector is said to be
orthogonal to a nonempty set
(denoted ) if for any .
Note:
Definition 3. Nonempty sets are said
to be orthogonal (denoted ) if

for any and .



The line is orthogonal to the line
.

Indeed, if and then .
________________________________________________

The line is orthogonal to the plane
.

Indeed, if and then .
________________________________________________

The line is not orthogonal to the
plane .
The vector belongs to both the line and the
plane, and .



Orthogonality - Geometric Interpretation

• Considering the figure on the left, the dot product of 
the two vectors and is equal to 0.

• This shows that the two vectors are orthogonal.
• If the angle between the two vectors is less 

than .
• If the angle between the two vectors is 

greater than .



Theorem 1: If nonzero vectors are mutually 
orthogonal (every vector is perpendicular to every 
other), then those vectors are linearly independent.
Proof:
• Suppose . To show that must 

be zero, take the inner product of both sides with . 
Orthogonality of the ’s leaves only one term:

• The vectors are nonzero, so and therefore 
The same is true of every .

• The only combination of the ’s producing zero has all 

• This shows that the vectors are linearly independent.



• The coordinate vectors in are the most 
important orthogonal vectors.

• Those are the columns of the identity matrix. They 
form the simplest basis for , and they are unit 
vectors—each has length . They point along 
the coordinate axes. 

• If these axes are rotated, the result is a new 
orthonormal basis: a new system of mutually 
orthogonal unit vectors.

• In we have :
• Orthonormal vectors in 

and 



• Two subspaces and of the same space 
are orthogonal if every vector in is 
orthogonal to every vector in 

for all and .

• Example : Suppose is the plane spanned by 
and If is 

the line spanned by then is 
orthogonal to both ’s. The line will be 
orthogonal to the whole plane .

Orthogonal Subspaces



Theorem 2. . That is, the null-space
of a matrix is orthogonal to its row space.
Also, , ie. the column space of a
matrix is orthogonal to the left null space of the
matrix.



• Suppose has rank 1, so its row space and column space 
are lines:

• Rank-1 matrix 

• The rows are multiples of . The null space contains 
which is orthogonal to all the rows. 

• The null space and row space are perpendicular lines in :

.

• In contrast, the other two subspaces are in . The column 
space is the line through . The left null space must 
be the perpendicular plane That 
equation is exactly the content of .

Example



Orthogonal Complement
• Definition : Given a subspace of , the space 

of all vectors orthogonal to is called the 
orthogonal complement of . 

• It is denoted by 
Theorem 3.

is a subspace of .
.

.
Theorem 4. If is a subspace of , then

.



Orthogonal Complement
Definition. Let . The orthogonal
complement of , denoted , is the set of all
vectors that are orthogonal to .
Theorem 2.

is a subspace of .
.

.
Theorem 3. If is a subspace of , then

.



Orthogonal Complement
• The null space is the orthogonal complement of the row space: 

• Dimension formula : 
dim(row space) + dim(null space) = number of columns.

• Every vector orthogonal to the null space is in the row space: 

• The same reasoning applied to produces the dual result: The 
left null space and the column space are 
orthogonal complements.

• Fundamental Theorem of Linear Algebra: The null space is the 
orthogonal complement of the row space in .

• The left null space is the orthogonal complement of the column 
space in .



• Two matrices and can be orthogonal without 
being complements. The line spanned by is 
orthogonal to the line spanned by but is 
not .

• The orthogonal complement of is a two dimensional
plane, and the line is only part of . 

• When the dimensions are right, orthogonal subspaces 
are necessarily orthogonal complements.

• If then and dim + dim = .
• Splitting into orthogonal parts will split every vector 

into . The vector is the projection onto the 
subspace . The orthogonal component is the 
projection of onto .

Matrix and the subspaces



Given figure summarizes the fundamental theorem of 
linear algebra



• The null space is carried to the zero vector. Every is in 
the column space. Nothing is carried to the left null 
space. 

• A typical vector has a “row space component” and a 
“null space component” with . 

• When multiplied by , this is : the 
null space component goes to zero: .

• The row space component goes to the column space: 

• Everything goes to the column space—the matrix 
cannot do anything else. 

• From the row space to the column space, is actually 
invertible. Every vector in the column space comes 
from exactly one vector in the row space.



• Suppose we want to find the distance from a point 
to the line in the direction of the vector . 

• We are looking along that line for the point closest to 
. 

• The line connecting b to p is perpendicular to a. 
• This fact will allow us to find the projection p.

Cosines and Projections onto lines



• Similarly, given a plane (or any subspace ) instead of a line,
the problem is to find the point on that subspace that is 
closest to . This point p is the projection of b onto the 
subspace.

• A perpendicular line from to meets the subspace at . 
Geometrically, that gives the distance between points and 
subspaces .

• This is exactly the problem of the least-squares solution to 
an overdetermined system.

• The vector represents the data from experiments or 
questionnaires, and it contains too many errors to be found 
in the subspace . 

• When we try to write as a combination of the basis vectors 
for , it cannot be done—the equations are inconsistent, 
and has no solution.

• The least-squares method selects as the best choice to 
replace .



• We want to find the projection point . This point 
must be some multiple of the given vector —
every point on the line is a multiple of . 

• The problem is to compute the coefficient . All we 
need is the geometrical fact that the line from to the 
closest point is perpendicular to the vector 

or , or 
𝐓

𝐓

Projection onto a line

• That gives the formula for the number and the 
projection :

• Projection onto a line 
𝐓

𝐓



• Projection onto a line is carried out by a projection 
matrix , and written in this new order we can see 
what it is. is the matrix that multiplies and 
produces :

𝐚𝐓𝐛

𝐚𝐓𝐚
so the projection matrix is 𝐚𝐚𝐓

𝐚𝐓𝐚

• Example: The matrix that projects onto the line 
through is:

𝐓

𝐓

Projection Matrix of Rank 1



• This matrix has two properties that we will see as typical 
of projections:

1. is a symmetric matrix.
2. Its square is itself: .

• Example: Project onto the “ -direction” in the 
plane. The line goes through and the 
matrix is symmetric with :

• Here is cos , is sin , and in the 
denominator.

• To project onto , multiply by the projection matrix 



Problem. Find the distance from the point
to the line spanned by .

__________________________________________
Consider the decomposition , where
is parallel to while . The required distance
is the length of the orthogonal component .



Problem. Find the point on the line that is 
closest to the point . 
__________________________________________
The required point is the projection of =
on the vector spanning the line


