Orthogonality

Cosines and Projections onto lines

Vectors: Algebraic Approach

- An n-dimensional coordinate vector is an element of \mathbf{R}^{n}, i.e., an ordered n-tuple ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}$) of real numbers.
- Let $\quad \mathbf{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{n}\right) \quad$ and $\quad \mathbf{b}=$ $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{n}\right)$ be vectors, and $r \in \mathbf{R}$ be a scalar. Then, by definition,

$$
\begin{aligned}
& \mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right), \\
& r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right), \\
& \mathbf{0}=(0,0, \ldots, 0), \\
& -\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right), \\
& \mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right) .
\end{aligned}
$$

Cartesian coordinates: geometric meets algebraic

- Once we specify an origin O, each point A is associated a position vector $\overrightarrow{O A}$. Conversely, every vector has a unique representative with tail at O.
- Cartesian coordinates allow us to identify a line, a plane, and space with $\mathbf{R}, \mathbf{R}^{2}$ and \mathbf{R}^{3}, respectively.

Length and Distance

Definition. The length of a vector

$$
\mathbf{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right) \in \mathbf{R}^{\mathrm{n}} \text { is }
$$

$$
||\mathbf{v}||=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

The distance between vectors/points \mathbf{x} and \mathbf{y} is $||\mathbf{y}-\mathbf{x}||$.
Properties of length:

$$
\begin{aligned}
& \|\mathbf{x}\| \geq 0,||\mathbf{x}||=0 \text { only if } \mathbf{x}=0 \quad \text { (positivity) } \\
& \|r \mathbf{x}\||=|r|||\mathbf{x}| \mid \quad \text { (homogeneity) }
\end{aligned}
$$

$||\mathbf{x}+\mathbf{y}|| \leq||\mathbf{x}||+||\mathbf{y}|| \quad$ (triangle inequality)

Scalar Product

Definition. The scalar product of vectors
$\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}\right)$ and $\mathbf{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{n}\right)$ is

$$
\mathbf{x} \cdot \mathbf{y}=\mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{2}+\cdots+\mathrm{x}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}
$$

Properties of scalar product:
$\mathbf{x} . \mathbf{x} \geq 0, \mathbf{x} . \mathbf{x}=0$ only if $\mathbf{x}=0 \quad$ (positivity)
$\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x} \quad$ (symmetry)
$(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z} \quad$ (distributive law)
$(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y}) \quad$ (homogeneity)

Angle

Cauchy-Schwarz inequality: $|\mathbf{x} \cdot \mathbf{y}| \leq||\mathbf{x}||| | \mathbf{y}| |$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ we have

$$
\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \| y} \text { for a unique } 0 \leq \theta \leq \pi
$$

θ is called the angle between the vectors $\mathbf{x} \& \mathbf{y}$.

The vectors \mathbf{x} and \mathbf{y} are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$ (i.e., $\theta=90^{\circ}$).

Problem. Find the angle θ between vectors $\mathbf{x}=$ $(2,-1)$ and $\mathbf{y}=(3,1)$.
$\mathbf{x} \cdot \mathbf{y}=5,| | \mathbf{x}\|=\sqrt{5},\| \mathbf{y} \|=\sqrt{10}$.
$\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}|\||\mathbf{y}|}=\frac{5}{\sqrt{5} \sqrt{10}}=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ}$.

Problem. Find the angle ϕ between vectors $\mathbf{v}=$ $(-2,1,3)$ and $\mathbf{w}=(4,5,1)$.
$\mathbf{v} \cdot \mathbf{w}=0 \Rightarrow \boldsymbol{v} \perp \boldsymbol{w} \Rightarrow \phi=90^{\circ}$.

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{\mathrm{n}}$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$.

Definition 2. A vector $\mathbf{x} \in \mathbf{R}^{n}$ is said to be orthogonal to a nonempty set $Y \subset \mathbf{R}^{n}$ (denoted $\mathbf{x} \perp Y$) if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{y} \in Y$.
Note: $\mathbf{x} \cdot \mathbf{y}=\left(\mathbf{x}^{\mathrm{T}} \mathbf{y}\right)$.
Definition 3. Nonempty sets $X, Y \subset \mathbf{R}^{n}$ are said to be orthogonal (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y}=$ 0 for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

The line $\mathrm{x}=\mathrm{y}=0$ is orthogonal to the line $\mathrm{y}=$ $\mathrm{z}=0$.
Indeed, if $\mathbf{v}=(0,0, z)$ and $\mathbf{w}=(x, 0,0)$ then $\mathbf{v} \cdot \mathbf{w}=0$.

The line $\mathrm{x}=\mathrm{y}=0$ is orthogonal to the plane $\mathrm{z}=0$.
Indeed, if $\mathbf{v}=(0,0, z)$ and $\mathbf{w}=(x, y, 0)$ then $\mathbf{v} \cdot \mathbf{w}=0$.

The line $\mathrm{x}=\mathrm{y}=0$ is not orthogonal to the plane $\mathrm{z}=1$.
The vector $\mathbf{v}=(0,0,1)$ belongs to both the line and the plane, and $\mathbf{v} \cdot \mathbf{v}=1 \neq 0$.

Orthogonality - Geometric Interpretation

$$
y=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \xrightarrow[{\substack{\sqrt{20}}}]{\sqrt{2}} \underset{x^{\mathrm{T}} y=0}{\sqrt{25}} x=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

- Considering the figure on the left, the dot product of the two vectors \mathbf{x} and \mathbf{y} is equal to 0 .
- This shows that the two vectors are orthogonal.
- If $\mathbf{x}^{\mathbf{T}} \mathbf{y}>\mathbf{0}$, the angle between the two vectors is less than 90°.
- If $\mathbf{x}^{\mathbf{T}} \mathbf{y}<\mathbf{0}$, the angle between the two vectors is greater than 90°.

Theorem 1: If nonzero vectors $\mathbf{v}_{\mathbf{1}} ; \ldots ; \mathbf{v}_{\mathbf{k}}$ are mutually orthogonal (every vector is perpendicular to every other), then those vectors are linearly independent.

Proof:

- Suppose $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=0$. To show that c_{1} must be zero, take the inner product of both sides with $\mathbf{v}_{\mathbf{1}}$. Orthogonality of the \mathbf{v} 's leaves only one term:

$$
\mathbf{v}_{\mathbf{1}}^{\mathrm{T}}\left(c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}\right)=c_{1} \mathbf{v}_{\mathbf{1}}^{\mathrm{T}} \mathbf{v}_{\mathbf{1}}=0
$$

- The vectors are nonzero, so $\mathbf{v}_{\mathbf{1}}^{\mathbf{T}} \mathbf{v}_{\mathbf{1}}=0$ and therefore $c_{1}=0$. The same is true of every c_{i}.
- The only combination of the \mathbf{v} 's producing zero has all $c_{i}=0$
- This shows that the vectors are linearly independent.
- The coordinate vectors $\mathbf{e}_{\mathbf{1}} ; \ldots ; \mathbf{e}_{\mathbf{n}}$ in \mathbf{R}^{n} are the most important orthogonal vectors.
- Those are the columns of the identity matrix. They form the simplest basis for $\mathbf{R}^{\mathbf{n}}$, and they are unit vectors-each has length $\left\|\mathbf{e}_{\mathbf{i}}\right\|=1$. They point along the coordinate axes.
- If these axes are rotated, the result is a new orthonormal basis: a new system of mutually orthogonal unit vectors.
- In \mathbf{R}^{2} we have $\cos ^{2} \theta+\sin ^{2} \theta=1$:
- Orthonormal vectors in \boldsymbol{R}^{2}

$$
\mathbf{v}_{\mathbf{1}}=(\cos \theta ; \sin \theta) \text { and } \mathbf{v}_{\mathbf{2}}=(-\sin \theta ; \cos \theta)
$$

Orthogonal Subspaces

- Two subspaces \boldsymbol{V} and \boldsymbol{W} of the same space $\mathbf{R}^{\text {n }}$ are orthogonal if every vector \mathbf{v} in \boldsymbol{V} is orthogonal to every vector \mathbf{w} in $\boldsymbol{W}: \mathbf{v}^{\mathbf{T}} \mathbf{w}=$ 0 for all \mathbf{v} and \mathbf{w}.
- Example : Suppose \boldsymbol{V} is the plane spanned by $\mathbf{v}_{\mathbf{1}}=(1 ; 0 ; 0 ; 0)$ and $\mathbf{v}_{\mathbf{2}}=(1 ; 1 ; 0 ; 0)$. If \boldsymbol{W} is the line spanned by $\mathbf{w}=(0 ; 0 ; 4 ; 5)$, then \mathbf{w} is orthogonal to both \mathbf{v} 's. The line \boldsymbol{W} will be orthogonal to the whole plane \boldsymbol{V}.

Theorem 2. $N(A) \perp R(A)$. That is, the null-space of a matrix is orthogonal to its row space.
Also, $N\left(A^{T}\right) \perp C(A)$, ie. the column space of a matrix is orthogonal to the left null space of the matrix.

Example

- Suppose A has rank 1, so its row space and column space are lines:
- Rank-1 matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6 \\ 3 & 9\end{array}\right]$
- The rows are multiples of $(1 ; 3)$. The null space contains $\mathbf{x}=$ $(-3 ; 1)$, which is orthogonal to all the rows.
- The null space and row space are perpendicular lines in \mathbf{R}^{2} :
$\left[\begin{array}{ll}1 & 3\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]=0$ and $\left[\begin{array}{ll}2 & 6\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]=0$ and $\left[\begin{array}{ll}3 & 9\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]=0$.
- In contrast, the other two subspaces are in \mathbf{R}^{3}. The column space is the line through $(1 ; 2 ; 3)$. The left null space must be the perpendicular plane $y_{1}+2 y_{2}+3 y_{3}=0$. That equation is exactly the content of $\mathbf{y}^{T} A=0$.

Orthogonal Complement

- Definition : Given a subspace \boldsymbol{V} of \mathbf{R}^{n}, the space of all vectors orthogonal to \boldsymbol{V} is called the orthogonal complement of \boldsymbol{V}.
- It is denoted by $\boldsymbol{V}^{\perp}=$ "V perp."

Theorem 3.

I. $\quad \boldsymbol{V}^{\perp}$ is a subspace of \mathbf{R}^{n}.
II. $\operatorname{Span}(\boldsymbol{V})^{\perp}=V^{\perp}$.
III. $\left(\boldsymbol{V}^{\perp}\right)^{\perp}=\operatorname{Span}(\boldsymbol{V})$.

Theorem 4. If \boldsymbol{V} is a subspace of \mathbf{R}^{n}, then
I. $\left(V^{\perp}\right)^{\perp}=V$.
II. $\boldsymbol{V} \cap \boldsymbol{V}^{\perp}=\{\mathbf{0}\}$.

Orthogonal Complement

Definition. Let $S \subset \mathbf{R}^{n}$. The orthogonal complement of S, denoted S^{\perp}, is the set of all vectors $\mathbf{x} \in \mathbf{R}^{n}$ that are orthogonal to \boldsymbol{S}.
Theorem 2.
I. $\quad \boldsymbol{S}^{\perp}$ is a subspace of \mathbf{R}^{n}.
II. $\operatorname{Span}(\boldsymbol{S})^{\perp}=\boldsymbol{S}^{\perp}$.
III. $\left(\boldsymbol{S}^{\perp}\right)^{\perp}=\operatorname{Span}(\boldsymbol{S})$.

Theorem 3. If \boldsymbol{V} is a subspace of \mathbf{R}^{n}, then
I. $\quad\left(V^{\perp}\right)^{\perp}=V$.
II. $\boldsymbol{V} \cap \boldsymbol{V}^{\perp}=\{\mathbf{0}\}$.

Orthogonal Complement

- The null space is the orthogonal complement of the row space: $N(A)=\left(C\left(A^{T}\right)\right)^{\perp}$.
- Dimension formula : dim(row space) + dim(null space) = number of columns.
- Every vector orthogonal to the null space is in the row space:

$$
C\left(A^{T}\right)=(N(A))^{\perp} .
$$

- The same reasoning applied to A^{T} produces the dual result: The left null space $N\left(A^{T}\right)$ and the column space $C(A)$ are orthogonal complements.
- Fundamental Theorem of Linear Algebra: The null space is the orthogonal complement of the row space in \mathbf{R}^{n}.
- The left null space is the orthogonal complement of the column space in \mathbf{R}^{m}.

Matrix and the subspaces

- Two matrices V and W can be orthogonal without being complements. The line V spanned by $(0 ; 1 ; 0)$ is orthogonal to the line W spanned by $(0 ; 0 ; 1)$, but V is not W^{\perp}.
- The orthogonal complement of W is a two dimensional plane, and the line is only part of W^{\perp}.
- When the dimensions are right, orthogonal subspaces are necessarily orthogonal complements.
- If $W=V^{\perp}$ then $V=W^{\perp}$ and $\operatorname{dim} V+\operatorname{dim} W=n$.
- Splitting \mathbf{R}^{n} into orthogonal parts will split every vector into $\mathbf{x}=\mathbf{v}+\mathbf{w}$. The vector \mathbf{v} is the projection onto the subspace \boldsymbol{V}. The orthogonal component \mathbf{w} is the projection of \mathbf{x} onto \boldsymbol{W}.

Given figure summarizes the fundamental theorem of linear algebra

- The null space is carried to the zero vector. Every $A \mathbf{x}$ is in the column space. Nothing is carried to the left null space.
- A typical vector \mathbf{x} has a "row space component" and a "null space component" with $\mathbf{x}=\mathbf{x}_{r}+\mathbf{x}_{n}$.
- When multiplied by A, this is $A \mathbf{x}=A \mathbf{x}_{r}+A \mathbf{x}_{n}$: the null space component goes to zero: $A \mathbf{x}_{n}=0$.
- The row space component goes to the column space:

$$
A \mathbf{x}_{r}=A \mathbf{x}
$$

- Everything goes to the column space-the matrix cannot do anything else.
- From the row space to the column space, A is actually invertible. Every vector \mathbf{b} in the column space comes from exactly one vector \mathbf{x}_{r} in the row space.

Cosines and Projections onto lines

- Suppose we want to find the distance from a point \mathbf{b} to the line in the direction of the vector \mathbf{a}.
- We are looking along that line for the point p closest to b.
- The line connecting b to p is perpendicular to a.
- This fact will allow us to find the projection \mathbf{p}.

- Similarly, given a plane (or any subspace \boldsymbol{S}) instead of a line, the problem is to find the point \mathbf{p} on that subspace that is closest to \mathbf{b}. This point p is the projection of b onto the subspace.
- A perpendicular line from \mathbf{b} to \boldsymbol{S} meets the subspace at \mathbf{p}. Geometrically, that gives the distance between points \mathbf{b} and subspaces \boldsymbol{S}.
- This is exactly the problem of the least-squares solution to an overdetermined system.
- The vector \mathbf{b} represents the data from experiments or questionnaires, and it contains too many errors to be found in the subspace \boldsymbol{S}.
- When we try to write \mathbf{b} as a combination of the basis vectors for \boldsymbol{S}, it cannot be done-the equations are inconsistent, and $A \mathbf{x}=\mathbf{b}$ has no solution.
- The least-squares method selects \mathbf{p} as the best choice to replace \mathbf{b}.

Projection onto a line

- We want to find the projection point \mathbf{p}. This point must be some multiple $\mathbf{p}=\hat{\mathbf{x}} \mathbf{a}$ of the given vector \mathbf{a} every point on the line is a multiple of \mathbf{a}.
- The problem is to compute the coefficient $\widehat{\mathbf{x}}$. All we need is the geometrical fact that the line from \mathbf{b} to the closest point $\mathbf{p}=\hat{\mathbf{x}} \mathbf{a}$ is perpendicular to the vector \mathbf{a} :

$$
(\mathbf{b}-\hat{\mathbf{x}} \mathbf{a}) \perp \mathbf{a}, \text { or } \mathbf{a}^{\mathbf{T}}(\mathbf{b}-\hat{\mathbf{x}} \mathbf{a})=0, \text { or } \hat{\mathbf{x}}=\frac{\mathbf{a}^{\mathbf{T}} \mathbf{b}}{\mathbf{a}^{\mathbf{T}} \mathbf{a}}
$$

- That gives the formula for the number $\hat{\mathbf{x}}$ and the projection \mathbf{p} :
- Projection onto a line $\mathbf{p}=\hat{\mathbf{x}} \mathbf{a}=\frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}$

Projection Matrix of Rank 1

- Projection onto a line is carried out by a projection matrix P, and written in this new order we can see what it is. P is the matrix that multiplies \mathbf{b} and produces \mathbf{p} :

$$
P=\mathbf{a}_{\frac{\mathbf{a}^{\mathbf{T}_{\mathbf{b}}}}{\mathbf{a}_{\mathbf{a}}}} \text { so the projection matrix is } P=\frac{\mathbf{a a}^{\mathbf{T}}}{\mathbf{a}^{T_{a}}}
$$

- Example: The matrix that projects onto the line through $\mathbf{a}=(1 ; 1 ; 1)$ is:

$$
P=\frac{\mathbf{a a}^{\mathbf{T}}}{\mathbf{a}^{\boldsymbol{T}} \mathbf{a}}=\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]
$$

- This matrix has two properties that we will see as typical of projections:

1. P is a symmetric matrix.
2. Its square is itself: $P^{2}=P$.

- Example: Project onto the " θ-direction" in the $x-y$ plane. The line goes through $a=(\cos \theta ; \sin \theta)$ and the matrix is symmetric with $P^{2}=P$:

$$
P=\frac{\mathbf{a a}^{\mathbf{T}}}{\mathbf{a}^{\mathbf{T}} \mathbf{a}}=\frac{\left[\begin{array}{l}
c \\
S
\end{array}\right]\left[\begin{array}{ll}
c & s
\end{array}\right]}{\left[\begin{array}{ll}
c & s
\end{array}\right]\left[\begin{array}{l}
C \\
S
\end{array}\right]}=\left[\begin{array}{ll}
c^{2} & c s \\
c s & s^{2}
\end{array}\right]
$$

- Here c is $\cos \theta, s$ is $\sin \theta$, and $c^{2}+s^{2}=1$ in the denominator.
- To project b onto a, multiply by the projection matrix $P: \mathbf{p}=P \mathbf{b}$.

Problem. Find the distance from the point $\mathbf{x}=$ $(3,1)$ to the line spanned by $\mathbf{y}=(2,-1)$.

Consider the decomposition $\mathbf{x}=\mathbf{p}+\mathbf{0}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{0} \perp \mathbf{y}$. The required distance is the length of the orthogonal component $\mathbf{0}$.

$$
\begin{gathered}
\mathbf{p}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}=\frac{5}{5}(2,-1)=(2,-1) \\
\mathbf{o}=\mathbf{x}-\mathbf{p}=(3,1)-(2,-1)=(1,2) \\
\|\mathbf{o}\|=\sqrt{5}
\end{gathered}
$$

Problem. Find the point on the line $y=-x$ that is closest to the point $(3,4)$.

The required point is the projection \mathbf{p} of $\mathbf{v}=(3,4)$ on the vector $\mathbf{w}=(1,-1)$ spanning the line $y=-x$.

$$
\mathbf{p}=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}=\frac{-1}{2}(1,-1)=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

