Projections and Least Squares

Orthogonal Bases and Gram-Schmidt

Projections and Least Squares

- Ax = b either has a solution or not.
- If *b* is not in the column space C(*A*), the system is inconsistent and Gaussian elimination fails.
- This failure is almost certain when there are several equations and only one unknown:
- More equations than unknowns— no solution?

$$2x = b_1$$

$$3x = b_2$$

$$4x = b_3$$

- This is solvable when b_1, b_2, b_3 are in the ratio 2:3:4.
- The solution x will exist only if b is on the same line as the column a = (2,3,4).

- In spite of their insolvability, inconsistent equations arise all the time in practice.
- One possibility is to determine x from part of the system, and ignore the rest; this is hard to justify if all m equations come from the same source.
- Rather than expecting no error in some equations and large errors in the others, it is much better to choose the x that minimizes an average error E in the m equations.
- The most convenient "average" comes from the sum of squares:

Squared error:

$$E^2 = (2x - b_1)^2 + (3x - b_2)^2 + (4x - b_3)^2$$

- If there is an exact solution, the minimum error is E = 0. In the more likely case that b is not proportional to a, the graph of E^2 will be a parabola.
- The minimum error is at the lowest point, where the derivative is zero:

$$\frac{dE^2}{dx} = 2\left[(2x-b_1)2 + (3x-b_2)3 + (4x-b_3)4\right] = 0.$$

• Solving for x, the least-squares solution of this model system ax = b is denoted by \hat{x} :

Least-squares solution
$$\hat{x} = \frac{2b_1 + 3b_2 + 4b_3}{2^2 + 3^2 + 4^2} = \frac{a^{\mathrm{T}}b}{a^{\mathrm{T}}a}.$$

• The general case is the same. We "solve" ax = b by minimizing:

$$E^2 = ||ax - b||^2 = (a_1x - b_1)^2 + \dots + (a_mx - b_m)^2.$$

• The derivative of E^2 is zero at the point \hat{x} , if:

$$(a_1\widehat{x}-b_1)a_1+\cdots+(a_m\widehat{x}-b_m)a_m=0.$$

• We are minimizing the distance from b to the line through a, and calculus gives the same answer, $\hat{x} = \frac{a_1 b_1 + \dots + a_m b_m}{a_1^2 + \dots + a_m^2}$:

3K The least-squares solution to a problem ax = b in one unknown is $\hat{x} = \frac{a^{\mathrm{T}}b}{a^{\mathrm{T}}a}$.

• The error vector *e* connecting *b* to *p* must be perpendicular to *a*:

Orthogonality of *a* **and** *e*
$$a^{T}(b - \hat{x}a) = a^{T}b - \frac{a^{T}b}{a^{T}a}a^{T}a = 0.$$

T-

Least Squares Problems with Several Variables

- Goal: To project *b* onto *a* subspace—rather than just onto a line.
- Ax = b where A is an m by n matrix.
- Instead of one column and one unknown x, the matrix now has n columns.
- The number m of observations is still larger than the number n of unknowns, so it must be expected that Ax = b will be inconsistent.
- Probably, there will not exist a choice of x that perfectly fits the data b. In other words, the vector b probably will not be a combination of the columns of A; it will be outside the column space.

- Again the problem is to choose \hat{x} so as to minimize the error, and again this minimization will be done in the least-squares sense.
- The error is E = ||Ax b||, and this is exactly the distance from b to the point Ax in the column space.
- Searching for the least-squares solution \hat{x} , which minimizes E, is the same as locating the point $p = A\hat{x}$ that is closer to b than any other point in the column space.
- In n dimensions, p must be the "projection of b onto the column space."
- The error vector $e = b A\hat{x}$ must be perpendicular to that space.

Projection onto the column space of a 3 by 2 matrix.

- Finding \hat{x} and the projection $p = A\hat{x}$ is so fundamental that we do it in two ways:
 - 1. All vectors perpendicular to the column space lie in the left nullspace. Thus the error vector $e = b A\hat{x}$ must be in the nullspace of A^T :

$$A^{\mathrm{T}}(b-A\widehat{x})=0$$
 or $A^{\mathrm{T}}A\widehat{x}=A^{\mathrm{T}}b.$

2. The error vector must be perpendicular to each column a_1, \ldots, a_n of *A*:

$$a_{1}^{T}(b - A\widehat{x}) = 0$$

$$\vdots$$
 or
$$\begin{bmatrix} a_{1}^{T} \\ \vdots \\ a_{n}^{T}(b - A\widehat{x}) = 0 \end{bmatrix} = 0.$$

- This is again $A^T(b A\hat{x}) = 0$ and $A^T A\hat{x} = A^T b$
- The equations $A^T A \hat{x} = A^T b$ are known in statistics as the normal equations.

3L When Ax = b is inconsistent, its least-squares solution minimizes $||Ax - b||^2$:

Normal equations
$$A^{\mathrm{T}}A\widehat{x} = A^{\mathrm{T}}b.$$
 (1)

 $A^{T}A$ is invertible exactly when the columns of A are linearly independent! Then,

Best estimate
$$\widehat{x}$$
 $\widehat{x} = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}b.$ (2)

The projection of b onto the column space is the nearest point $A\hat{x}$:

Projection
$$p = A\widehat{x} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}b.$$
 (3)

Example 1

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

• $Ax = b$ has no solution. $A^{T}A \ \hat{x} = A^{T}b$ gives the best x .

$$A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 5 & 13 \end{bmatrix}.$$

 $\hat{x} = (A^{T}A)^{-1}A^{T}b = \begin{bmatrix} 13 & -5 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$
Projection $p = A\hat{x} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}.$

• In this special case, the best we can do is to solve the first two equations of Ax = b. Then $\hat{x}_1 = 2$ and $\hat{x}_2 = 1$. The error in the equation $0x_1 + 0x_2 = 6$ is sure to be 6.

Remark 4. Suppose b is actually in the column space of A—it is a combination b = Ax of the columns. Then the projection of b is still b:

b in column space $p = A(A^{T}A)^{-1}A^{T}Ax = Ax = b.$

The closest point p is just b itself—which is obvious.

Remark 5. At the other extreme, suppose b is perpendicular to every column, so $A^{T}b = 0$. In this case b projects to the zero vector:

b in left nullspace $p = A(A^{T}A)^{-1}A^{T}b = A(A^{T}A)^{-1}0 = 0.$

Remark 6. When A is square and invertible, the column space is the whole space. Every vector projects to itself, p equals b, and $\hat{x} = x$:

If *A* **is invertible** $p = A(A^{T}A)^{-1}A^{T}b = AA^{-1}(A^{T})^{-1}A^{T}b = b.$

This is the only case when we can take apart $(A^{T}A)^{-1}$, and write it as $A^{-1}(A^{T})^{-1}$. When A is rectangular that is not possible.

Remark 7. Suppose A has only one column, containing a. Then the matrix $A^{T}A$ is the number $a^{T}a$ and \hat{x} is $a^{T}b/a^{T}a$. We return to the earlier formula.

The Cross-Product Matrix $A^T A$

- The matrix $A^T A$ is certainly symmetric.
- $A^T A$ has the same null space as A.
- Certainly if Ax = 0 then $A^T Ax = 0$.
- Vectors x in the null space of A are also in the null space of $A^T A$. To go in the other direction, start by supposing that $A^T A x = 0$, and take the inner product with x to show that Ax = 0:

 $x^{\mathrm{T}}A^{\mathrm{T}}Ax = 0$, or $||Ax||^{2} = 0$, or Ax = 0.

• The two null spaces are identical. In particular, if A has independent columns (and only x = 0 is in its null space), then the same is true for $A^T A$:

3M If A has independent columns, then $A^{T}A$ is square, symmetric, and invertible.

Projection Matrices

- The closest point to b is $p = A(A^TA)^{-1}A^Tb$. This formula expresses in matrix terms the construction of a perpendicular line from b to the column space of A.
- The matrix that gives p is a projection matrix, denoted by P:

Projection matrix $P = A(A^{T}A)^{-1}A^{T}$.

- This matrix projects any vector *b* onto the column space of *A*.
- In other words, p = Pb is the component of b in the column space, and the error e = b Pb is the component in the orthogonal complement.
- I P is also a projection matrix! It projects b onto the orthogonal complement, and the projection is b Pb.
- In short, we have a matrix formula for splitting any b into two perpendicular components. Pb is in the column space C(A), and the other component (I P)b is in the left nullspace $N(A^T)$ —which is orthogonal to the column space.

3N The projection matrix $P = A(A^{T}A)^{-1}A^{T}$ has two basic properties:

- (i) It equals its square: $P^2 = P$.
- (ii) It equals its transpose: $P^{T} = P$.

Conversely, any symmetric matrix with $P^2 = P$ represents a projection.

Proof:
$$P^2 = A(A^T A)^{-1}A^T A(A^T A)^{-1}A^T = A(A^T A)^{-1}A^T = P.$$

$$P^{T} = (A^{T})^{T} ((A^{T}A)^{-1})^{T} A^{T} = A(A^{T}A)^{-1} A^{T} = P.$$

- For the converse, we have to deduce from $P^2 = P$ and $P^T = P$ that Pb is the projection of b onto the column space of P.
- The error vector b Pb is orthogonal to the space. For any vector Pc in the space, the inner product is zero:

$$(b-Pb)^{\mathrm{T}}Pc = b^{\mathrm{T}}(I-P)^{\mathrm{T}}Pc = b^{\mathrm{T}}(P-P^{2})c = 0.$$

 Thus b – Pb is orthogonal to the space, and Pb is the projection onto the column space.

Example 2

• Suppose A is actually invertible. If it is 4 by 4, then its four columns are independent and its column space is all of \mathbb{R}^4 . What is the projection onto the whole space?

$$P = A(A^{T}A)^{-1}A^{T} = AA^{-1}(A^{T})^{-1}A^{T} = I.$$

- It is the identity matrix.
- The identity matrix is symmetric, $I^2 = I$, and the error b Ib is zero.

Least-Squares Fitting of Data

• Consider an overdetermined system, with m equations and only two unknowns.

$$C + Dt_1 = b_1$$

$$C + Dt_2 = b_2$$

$$\vdots$$

$$C + Dt_m = b_m.$$

• If errors are present, it will have no solution. A has two columns, and x = (C, D):

$$\begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad \text{or} \quad Ax = b.$$

• The best solution (\hat{C}, \hat{D}) is the \hat{x} that minimizes the squared error E^2 :

Minimize $E^2 = ||b - Ax||^2 = (b_1 - C - Dt_1)^2 + \dots + (b_m - C - Dt_m)^2.$

- The vector $p = A\hat{x}$ is as close as possible to b. Of all straight lines b = C + Dt, we are choosing the one that best fits the data. On the graph, the errors are the vertical distances b - C - Dt to the straight line (not perpendicular distances!).
- It is the vertical distances that are squared, summed, and minimized.

• Straight-line approximation matches the projection *p* of *b*.

• Three measurements b_1 , b_2 , b_3 are marked on the figure:

• b = 1 at t = -1, b = 1 at t = 1, b = 3 at t = 2.

- Note that the values t = -1, 1, 2 are not required to be equally spaced.
- The first step is to write the equations that would hold if a line could go through all three points. Then every
 C + Dt would agree exactly with b:

$$Ax = b \text{ is } \begin{array}{cccc} C & - & D & = & 1 \\ C & + & D & = & 1 \\ C & + & 2D & = & 3 \end{array} \text{ or } \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}.$$

If those equations Ax = b could be solved, there would be no errors. They can't be solved because the points are not on a line.
 Therefore they are solved by least squares:

$$A^{\mathrm{T}}A\widehat{x} = A^{\mathrm{T}}b \quad \text{is} \quad \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} \widehat{C} \\ \widehat{D} \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}.$$

• The best solution is $\widehat{C} = \frac{9}{7}$, $\widehat{D} = \frac{4}{7}$ and the best line is $\frac{9}{7} + \frac{4}{7}t$.

30 The measurements b_1, \ldots, b_m are given at distinct points t_1, \ldots, t_m . Then the straight line $\widehat{C} + \widehat{D}t$ which minimizes E^2 comes from least squares:

$$A^{\mathrm{T}}A\begin{bmatrix}\widehat{C}\\\widehat{D}\end{bmatrix} = A^{\mathrm{T}}b$$
 or $\begin{bmatrix}m & \Sigma t_i\\ \Sigma t_i & \Sigma t_i^2\end{bmatrix}\begin{bmatrix}\widehat{C}\\\widehat{D}\end{bmatrix} = \begin{bmatrix}\Sigma b_i\\ \Sigma t_i b_i\end{bmatrix}.$

Orthogonal Bases and Gram-Schmidt

- In an orthogonal basis, every vector is perpendicular to every other vector. The coordinate axes are mutually orthogonal.
- Orthonormal basis: Divide each vector by its length, to make it a unit vector. That changes an orthogonal basis into an orthonormal basis of q's:
 - **3P** The vectors q_1, \ldots, q_n are *orthonormal* if

 $q_i^{\mathrm{T}}q_j = \begin{cases} 0 & \text{whenever } i \neq j, \\ 1 & \text{whenever } i = j, \end{cases}$ giving the orthogonality; giving the normalization.

A matrix with orthonormal columns will be called Q.

Example of Orthonormal Basis

Orthogonal Matrices

3Q If Q (square or rectangular) has orthonormal columns, then $Q^{T}Q = I$:

- An orthogonal matrix is a square matrix with orthonormal columns.
- Then Q^T is Q^{-1} . For square orthogonal matrices, the transpose is the inverse.
- When row *i* of Q^T multiplies column *j* of *Q*, the result is $q_j^T q_j = 0$. On the diagonal where i = j, we have $q_i^T q_i = 1$. That is the normalization to unit vectors of length 1.

Example 1

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \qquad Q^{\mathrm{T}} = Q^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.$$

• Q rotates every vector through the angle θ , and Q^T rotates it back through $-\theta$. The columns are clearly orthogonal, and they are orthonormal because $\sin^2\theta + \cos^2\theta = 1$. The matrix Q^T is just as much an orthogonal matrix as Q.

Example 2

• Any permutation matrix *P* is an orthogonal matrix. The columns are certainly unit vectors and certainly orthogonal—because the 1 appears in a different place in each column: The transpose is the inverse.

If
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 then $P^{-1} = P^{T} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

 Projections reduce the length of a vector, whereas orthogonal matrices have a property that is the most important and most characteristic of all: **3R** Multiplication by any *Q* preserves lengths:

Lengths unchanged ||Qx|| = ||x|| for every vector x.

It also preserves inner products and angles, since

$$(Qx)^{\mathrm{T}}(Qy) = x^{\mathrm{T}}Q^{\mathrm{T}}Qy = x^{\mathrm{T}}y.$$

- The preservation of lengths comes directly from $Q^T Q = I$: $\|Qx\|^2 = \|x\|^2$ because $(Qx)^T(Qx) = x^T Q^T Qx = x^T x$.
- All inner products and lengths are preserved, when the space is rotated or reflected.

- We come now to the calculation that uses the special property $Q^T = Q^{-1}$.
- If we have a basis, then any vector is a combination of the basis vectors.
- The problem is to find the coefficients of the basis vectors: *Write b as a combination* $b = x_1q_1 + x_2q_2 + \dots + x_nq_n$.
- To compute x_1 , multiply both sides of the equation by q_1^T .
- On the left-hand side is $q_1^T b$. On the right-hand side all terms disappear (because $q_1^T q_j = 0$) except the first term.
- We are left with $q_1^T b = x_1 q_1^T q_1$.
- Since $q_1^T q_1 = 1$, we have found $x_1 = q_1^T b$. Similarly the second coefficient is $x_2 = q_2^T b$

Every vector b *is equal to* $(q_1^T b)q_1 + (q_2^T b)q_2 + \dots + (q_n^T b)q_n$.

- Putting this orthonormal basis into a square matrix Q, the vector equation $x_1q_1 + \cdots + x_nq_n = b$ is identical to Qx = b.
- The columns of *Q* multiply the components of *x*.
- Its solution is $x = Q^{-1}b$. But since $Q^{-1} = Q^T$ —this is where orthonormality enters—the solution is also $x = Q^Tb$:

$$x = Q^{\mathrm{T}}b = \begin{bmatrix} - & q_{1}^{\mathrm{T}} & - \\ & \vdots & \\ - & q_{n}^{\mathrm{T}} & - \end{bmatrix} \begin{bmatrix} b \\ b \end{bmatrix} = \begin{bmatrix} q_{1}^{\mathrm{T}}b \\ \vdots \\ q_{n}^{\mathrm{T}}b \end{bmatrix}$$

• The components of x are the inner products $q_i^T b$

- The rows of a square matrix are orthonormal whenever the columns are.
- Example:

Orthonormal columns Orthonormal rows

$$Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \end{bmatrix}.$$

Rectangular Matrices with Orthogonal Columns

- The n orthonormal vectors q_i in the columns of Q have m > n components. Then Q is an m by n matrix and we cannot expect to solve Qx = b exactly. We solve it by least squares.
- The key is to notice that we still have $Q^T Q = I$. So Q^T is still the left-inverse of Q.
- The normal equations are $Q^T Q x = Q^T b$. But $Q^T Q$ is the identity matrix! Therefore $\hat{x} = Q^T b$, whether Q is square and \hat{x} is an exact solution, or Q is rectangular and we need least squares.

3S If Q has orthonormal columns, the least-squares problem becomes easy: rectangular system with no solution for most b.

• The projection matrix is usually $A(A^TA)^{-1}A^T$, and here it simplifies to

$$P = Q(Q^{\mathrm{T}}Q)^{-1}Q^{\mathrm{T}}$$
 or $P = QQ^{\mathrm{T}}$.

The Gram-Schmidt Process

- This method is used to make the vectors orthonormal to each other.
- We are given a, b, c and we want q_1, q_2, q_3 .
- There is no problem with q_1 : it can go in the direction of a.
- We divide by the length, so that $q_1 = \frac{a}{\|a\|}$ is a unit vector.
- Now the second vector q₂—has to be orthogonal to q₁. If the second vector b has any component in the direction of q₁ (which is the direction of a), that component has to be subtracted:

Second vector
$$B = b - (q_1^T b)q_1$$
 and $q_2 = B/||B||$.

B is orthogonal to q₁. It is the part of b that goes in a new direction, and not in the a. B is perpendicular to q₁. It sets the direction for q₂.

The q_i component of b is removed; a and B normalized to q_1 and q_2 .

- At this point q_1 and q_2 are set.
- The third orthogonal direction starts with *c*.
- It will not be in the plane of q₁ and q₂, which is the plane of a and b.
- However, it may have a component in that plane, and that has to be subtracted.
- What is left is the component *C* we want, the part that is in a new direction perpendicular to the plane:

Third vector $C = c - (q_1^{\mathrm{T}}c)q_1 - (q_2^{\mathrm{T}}c)q_2$ and $q_3 = C/||C||$.

 This is the one idea of the whole Gram-Schmidt process, to subtract from every new vector its components in the directions that are already settled.

Example

• Suppose the independent vectors are *a*, *b*, *c*:

$$a = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad c = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$$

• To find q_1 , make the first vector into a unit vector: $q_1 = a/\sqrt{2}$. To find q_2 , subtract from the second vector its component in the first direction:

$$B = b - (q_1^{\mathrm{T}}b)q_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 1/\sqrt{2}\\0\\1/\sqrt{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}.$$

• The normalized q_2 is *B* divided by its length, to produce a unit vector:

$$q_2 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}.$$

• To find q_3 , subtract from c its components along q_1 and q_2 :

$$C = c - (q_1^{\mathrm{T}}c)q_1 - (q_2^{\mathrm{T}}c)q_2$$

= $\begin{bmatrix} 2\\1\\0\\-\sqrt{2} \end{bmatrix} - \sqrt{2} \begin{bmatrix} 1/\sqrt{2}\\0\\1/\sqrt{2} \end{bmatrix} - \sqrt{2} \begin{bmatrix} 1/\sqrt{2}\\0\\-1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 0\\1\\0\\-1/\sqrt{2} \end{bmatrix}.$

• This is already a unit vector, so it is q_3 .

• Final Answer:

Orthonormal basis

$$Q = \begin{bmatrix} q_1 & q_2 & q_3 \\ & & q_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{bmatrix}.$$

3T The Gram-Schmidt process starts with independent vectors a_1, \ldots, a_n and ends with orthonormal vectors q_1, \ldots, q_n . At step j it subtracts from a_j its components in the directions q_1, \ldots, q_{j-1} that are already settled:

$$A_j = a_j - (q_1^{\mathrm{T}} a_j) q_1 - \dots - (q_{j-1}^{\mathrm{T}} a_j) q_{j-1}.$$

Then q_j is the unit vector $A_j/||A_j||$.

The Factorization A = QR

- We started with a matrix *A*, whose columns were *a*, *b*, *c*.
- We ended with a matrix Q, whose columns are q_1, q_2, q_3 .
- What is the relation between those matrices?
- The matrices A and Q are m by n when the n vectors are in m-dimensional space, and there has to be a third matrix that connects them.

The idea is to write the a's as combinations of the q's.
 The vector b is a combination of the orthonormal q₁ and q₂, and the combination is:

$$b = (q_1^{\mathrm{T}}b)q_1 + (q_2^{\mathrm{T}}b)q_2.$$

- Every vector in the plane is the sum of its q_1 and q_2 components. Similarly c is the sum of its q_1, q_2, q_3 components: $c = (q_1^T c)q_1 + (q_2^T c)q_2 + (q_3^T c)q_3$.
- If we express that in matrix form we have the new factorization A = QR:

Where *R* is upper triangular

3U Every *m* by *n* matrix with independent columns can be factored into A = QR. The columns of *Q* are orthonormal, and *R* is upper triangular and invertible. When m = n and all matrices are square, *Q* becomes an orthogonal matrix.

• Orthogonalization simplifies the least-squares problem Ax = b. The normal equations are still correct, but $A^{T}A$ becomes easier:

$$A^{\mathrm{T}}A = R^{\mathrm{T}}Q^{\mathrm{T}}QR = R^{\mathrm{T}}R.$$

• The fundamental equation $A^T A \hat{x} = A^T b$ simplifies to a triangular system:

$$R^{\mathrm{T}}R\widehat{x} = R^{\mathrm{T}}Q^{\mathrm{T}}b$$
 or $R\widehat{x} = Q^{\mathrm{T}}b.$

- Instead of solving QRx = b, which can't be done, we solve $R\hat{x} = Q^T b$ which is just back-substitution because R is triangular.
- The real cost is the mn² operations of Gram Schmidt, which are needed to find Q and R in the first place.