Projections and Least Squares

Orthogonal Bases and Gram-Schmidt

Projections and Least Squares

- $A x=b$ either has a solution or not.
- If b is not in the column space $C(A)$, the system is inconsistent and Gaussian elimination fails.
- This failure is almost certain when there are several equations and only one unknown:
- More equations than unknowns- no solution?

$$
\begin{aligned}
& 2 x=b_{1} \\
& 3 x=b_{2} \\
& 4 x=b_{3}
\end{aligned}
$$

- This is solvable when b_{1}, b_{2}, b_{3} are in the ratio 2:3:4.
- The solution x will exist only if b is on the same line as the column $a=(2,3,4)$.
- In spite of their insolvability, inconsistent equations arise all the time in practice.
- One possibility is to determine x from part of the system, and ignore the rest; this is hard to justify if all m equations come from the same source.
- Rather than expecting no error in some equations and large errors in the others, it is much better to choose the x that minimizes an average error E in the m equations.
- The most convenient "average" comes from the sum of squares:
Squared error:

$$
E^{2}=\left(2 x-b_{1}\right)^{2}+\left(3 x-b_{2}\right)^{2}+\left(4 x-b_{3}\right)^{2}
$$

- If there is an exact solution, the minimum error is $E=0$. In the more likely case that b is not proportional to a, the graph of E^{2} will be a parabola.
- The minimum error is at the lowest point, where the derivative is zero:

$$
\frac{d E^{2}}{d x}=2\left[\left(2 x-b_{1}\right) 2+\left(3 x-b_{2}\right) 3+\left(4 x-b_{3}\right) 4\right]=0
$$

- Solving for x, the least-squares solution of this model system $a x=b$ is denoted by \hat{x} :

Least-squares solution $\quad \hat{x}=\frac{2 b_{1}+3 b_{2}+4 b_{3}}{2^{2}+3^{2}+4^{2}}=\frac{a^{\mathrm{T}} b}{a^{\mathrm{T}} a}$.

- The general case is the same. We "solve" $a x=b$ by minimizing:

$$
E^{2}=\|a x-b\|^{2}=\left(a_{1} x-b_{1}\right)^{2}+\cdots+\left(a_{m} x-b_{m}\right)^{2} .
$$

- The derivative of E^{2} is zero at the point \hat{x}, if:

$$
\left(a_{1} \widehat{x}-b_{1}\right) a_{1}+\cdots+\left(a_{m} \widehat{x}-b_{m}\right) a_{m}=0
$$

- We are minimizing the distance from b to the line through a, and calculus gives the same answer, $\hat{x}=\frac{a_{1} b_{1}+\cdots+a_{m} b_{m}}{a_{1}^{2}+\cdots+a_{m}^{2}}$:
3K The least-squares solution to a problem $a x=b$ in one unknown is $\widehat{x}=\frac{a^{\mathrm{T}} b}{a^{\mathrm{T}} a}$.
- The error vector e connecting b to p must be perpendicular to a :

Orthogonality of a and $e \quad a^{\mathrm{T}}(b-\widehat{x} a)=a^{\mathrm{T}} b-\frac{a^{\mathrm{T}} b}{a^{\mathrm{T}} a} a^{\mathrm{T}} a=0$.

Least Squares Problems with Several Variables

- Goal: To project b onto a subspace—rather than just onto a line.
- $A x=b$ where A is an m by n matrix.
- Instead of one column and one unknown x, the matrix now has n columns.
- The number m of observations is still larger than the number n of unknowns, so it must be expected that $A x=b$ will be inconsistent.
- Probably, there will not exist a choice of x that perfectly fits the data b. In other words, the vector b probably will not be a combination of the columns of A; it will be outside the column space.
- Again the problem is to choose \hat{x} so as to minimize the error, and again this minimization will be done in the least-squares sense.
- The error is $E=\|A x-b\|$, and this is exactly the distance from b to the point $A x$ in the column space.
- Searching for the least-squares solution \hat{x}, which minimizes E, is the same as locating the point $p=A \hat{x}$ that is closer to b than any other point in the column space.
- In n dimensions, p must be the "projection of b onto the column space."
- The error vector $e=b-A \hat{x}$ must be perpendicular to that space.

Projection onto the column space of a 3 by 2 matrix.

- Finding \hat{x} and the projection $p=A \hat{x}$ is so fundamental that we do it in two ways:

1. All vectors perpendicular to the column space lie in the left nullspace. Thus the error vector $e=b-A \hat{x}$ must be in the nullspace of A^{T} :

$$
A^{\mathrm{T}}(b-A \widehat{x})=0 \quad \text { or } \quad A^{\mathrm{T}} A \widehat{x}=A^{\mathrm{T}} b
$$

2. The error vector must be perpendicular to each column a_{1}, \ldots, a_{n} of A :

$$
\begin{gathered}
a_{1}^{\mathrm{T}}(b-A \widehat{x})=0 \\
\vdots \\
a_{n}^{\mathrm{T}}(b-A \widehat{x})=0
\end{gathered}
$$

$$
\left[\begin{array}{c}
a_{1}^{\mathrm{T}} \\
\vdots \\
a_{n}^{\mathrm{T}}
\end{array}\right][b-A \widehat{x}]=0
$$

- This is again $A^{T}(b-A \hat{x})=0$ and $A^{T} A \hat{x}=A^{T} b$
- The equations $A^{T} A \hat{x}=A^{T} b$ are known in statistics as the normal equations.

3L When $A x=b$ is inconsistent, its least-squares solution minimizes $\| A x-$ $b \|^{2}$:

$$
\begin{equation*}
\text { Normal equations } \quad A^{\mathrm{T}} A \widehat{x}=A^{\mathrm{T}} b . \tag{1}
\end{equation*}
$$

$A^{\mathrm{T}} A$ is invertible exactly when the columns of A are linearly independent! Then,

Best estimate $\widehat{x} \quad \widehat{x}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} b$.
The projection of b onto the column space is the nearest point $A \widehat{x}$:
Projection $\quad p=A \widehat{x}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} b$.

Example 1

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
0 & 0
\end{array}\right], b=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

- $A x=b$ has no solution. $A^{T} A \hat{x}=\mathrm{A}^{\mathrm{T}} \mathrm{b}$ gives the best x.

$$
\begin{aligned}
& A^{\mathrm{T}} A=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 3 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 & 5 \\
5 & 13
\end{array}\right] . \\
& \widehat{x}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} b=\left[\begin{array}{cc}
13 & -5 \\
-5 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] . \\
& \text { Projection } \quad p=A \widehat{x}=\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5 \\
0
\end{array}\right] .
\end{aligned}
$$

- In this special case, the best we can do is to solve the first two equations of $A x=b$. Then $\hat{x}_{1}=2$ and $\hat{x}_{2}=1$. The error in the equation $0 x_{1}+0 x_{2}=6$ is sure to be 6 .

Remark 4. Suppose b is actually in the column space of A-it is a combination $b=A x$ of the columns. Then the projection of b is still b :

$$
b \text { in column space } \quad p=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} A x=A x=b .
$$

The closest point p is just b itself-which is obvious.
Remark 5. At the other extreme, suppose b is perpendicular to every column, so $A^{\mathrm{T}} b=$ 0 . In this case b projects to the zero vector:

$$
b \text { in left nullspace } \quad p=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} b=A\left(A^{\mathrm{T}} A\right)^{-1} 0=0 .
$$

Remark 6. When A is square and invertible, the column space is the whole space. Every vector projects to itself, p equals b, and $\widehat{x}=x$:

If A is invertible $\quad p=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} b=A A^{-1}\left(A^{\mathrm{T}}\right)^{-1} A^{\mathrm{T}} b=b$.
This is the only case when we can take apart $\left(A^{\mathrm{T}} A\right)^{-1}$, and write it as $A^{-1}\left(A^{\mathrm{T}}\right)^{-1}$. When A is rectangular that is not possible.
Remark 7. Suppose A has only one column, containing a. Then the matrix $A^{\mathrm{T}} A$ is the number $a^{\mathrm{T}} a$ and \hat{x} is $a^{\mathrm{T}} b / a^{\mathrm{T}} a$. We return to the earlier formula.

The Cross-Product Matrix $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$

- The matrix $A^{T} A$ is certainly symmetric.
- $A^{T} A$ has the same null space as A.
- Certainly if $A x=0$ then $A^{T} A x=0$.
- Vectors x in the null space of A are also in the null space of $A^{T} A$. To go in the other direction, start by supposing that $A^{T} A x=0$, and take the inner product with x to show that $A x=0$:

$$
x^{\mathrm{T}} A^{\mathrm{T}} A x=0, \quad \text { or } \quad\|A x\|^{2}=0, \quad \text { or } \quad A x=0 .
$$

- The two null spaces are identical. In particular, if A has independent columns (and only $x=0$ is in its null space), then the same is true for $A^{T} A$:
3M If A has independent columns, then $A^{\mathrm{T}} A$ is square, symmetric, and invertible.

Projection Matrices

- The closest point to b is $p=A\left(A^{T} A\right)^{-1} A^{T} b$. This formula expresses in matrix terms the construction of a perpendicular line from b to the column space of A.
- The matrix that gives p is a projection matrix, denoted by P :

$$
\text { Projection matrix } \quad P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} .
$$

- This matrix projects any vector b onto the column space of A.
- In other words, $p=P b$ is the component of b in the column space, and the error $e=b-P b$ is the component in the orthogonal complement.
- I $-P$ is also a projection matrix! It projects b onto the orthogonal complement, and the projection is $b-P b$.
- In short, we have a matrix formula for splitting any b into two perpendicular components. $P b$ is in the column space $C(A)$, and the other component $(I-P) b$ is in the left nullspace $N\left(A^{T}\right)$-which is orthogonal to the column space.

3N The projection matrix $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ has two basic properties:
(i) It equals its square: $P^{2}=P$.
(ii) It equals its transpose: $P^{\mathrm{T}}=P$.

Conversely, any symmetric matrix with $P^{2}=P$ represents a projection.
Proof:

$$
\begin{gathered}
P^{2}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}=P . \\
P^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{\mathrm{T}}\left(\left(A^{\mathrm{T}} A\right)^{-1}\right)^{\mathrm{T}} A^{\mathrm{T}}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}=P .
\end{gathered}
$$

- For the converse, we have to deduce from $P^{2}=P$ and $P^{T}=P$ that $P b$ is the projection of b onto the column space of P.
- The error vector $b-P b$ is orthogonal to the space. For any vector $P c$ in the space, the inner product is zero:

$$
(b-P b)^{\mathrm{T}} P c=b^{\mathrm{T}}(I-P)^{\mathrm{T}} P c=b^{\mathrm{T}}\left(P-P^{2}\right) c=0 .
$$

- Thus $b-P b$ is orthogonal to the space, and $P b$ is the projection onto the column space.

Example 2

- Suppose A is actually invertible. If it is 4 by 4 , then its four columns are independent and its column space is all of \boldsymbol{R}^{4}. What is the projection onto the whole space?

$$
P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}=A A^{-1}\left(A^{\mathrm{T}}\right)^{-1} A^{\mathrm{T}}=I .
$$

- It is the identity matrix.
- The identity matrix is symmetric, $I^{2}=I$, and the error $b-I b$ is zero.

Least-Squares Fitting of Data

- Consider an overdetermined system, with m equations and only two unknowns.

$$
\begin{gathered}
C+D t_{1}=b_{1} \\
C+D t_{2}= \\
\vdots \\
C+D t_{m}=b_{m}
\end{gathered}
$$

- If errors are present, it will have no solution. A has two columns, and $x=(C, D)$:

$$
\left[\begin{array}{cc}
1 & t_{1} \\
1 & t_{2} \\
\vdots & \vdots \\
1 & t_{m}
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right], \quad \text { or } \quad A x=b
$$

- The best solution (\hat{C}, \widehat{D}) is the \hat{x} that minimizes the squared error E^{2} :
Minimize $\quad E^{2}=\|b-A x\|^{2}=\left(b_{1}-C-D t_{1}\right)^{2}+\cdots+\left(b_{m}-C-D t_{m}\right)^{2}$.
- The vector $p=A \hat{x}$ is as close as possible to b. Of all straight lines $b=C+D t$, we are choosing the one that best fits the data. On the graph, the errors are the vertical distances $b-C-D t$ to the straight line (not perpendicular distances!).
- It is the vertical distances that are squared, summed, and minimized.

- Straight-line approximation matches the projection p of b.
- Three measurements b_{1}, b_{2}, b_{3} are marked on the figure:
- $b=1$ at $t=-1, b=1$ at $t=1, b=3$ at $t=2$.
- Note that the values $t=-1,1,2$ are not required to be equally spaced.
- The first step is to write the equations that would hold if a line could go through all three points. Then every $C+D t$ would agree exactly with b :

$$
A x=b \text { is } \begin{aligned}
& C-D=1 \\
& C+D=1 \\
& C+2 D=3
\end{aligned} \quad \text { or } \quad\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right] .
$$

- If those equations $A x=b$ could be solved, there would be no errors. They can't be solved because the points are not on a line. Therefore they are solved by least squares:

$$
A^{\mathrm{T}} A \widehat{x}=A^{\mathrm{T}} b \quad \text { is } \quad\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
\widehat{C} \\
\widehat{D}
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right] .
$$

- The best solution is $\hat{C}=\frac{9}{7}, \widehat{D}=\frac{4}{7}$ and the best line is $\frac{9}{7}+\frac{4}{7} t$.

30 The measurements b_{1}, \ldots, b_{m} are given at distinct points t_{1}, \ldots, t_{m}. Then the straight line $\widehat{C}+\widehat{D} t$ which minimizes E^{2} comes from least squares:

$$
A^{\mathrm{T}} A\left[\begin{array}{l}
\widehat{C} \\
\widehat{D}
\end{array}\right]=A^{\mathrm{T}} b \quad \text { or } \quad\left[\begin{array}{cc}
m & \sum t_{i} \\
\sum t_{i} & \sum t_{i}^{2}
\end{array}\right]\left[\begin{array}{c}
\widehat{C} \\
\widehat{D}
\end{array}\right]=\left[\begin{array}{c}
\sum b_{i} \\
\sum t_{i} b_{i}
\end{array}\right] .
$$

Orthogonal Bases and Gram-Schmidt

- In an orthogonal basis, every vector is perpendicular to every other vector. The coordinate axes are mutually orthogonal.
- Orthonormal basis: Divide each vector by its length, to make it a unit vector. That changes an orthogonal basis into an orthonormal basis of q 's:

3P The vectors q_{1}, \ldots, q_{n} are orthonormal if

$$
q_{i}^{\mathrm{T}} q_{j}=\left\{\begin{array}{lll}
0 & \text { whenever } i \neq j, & \text { giving the orthogonality; } \\
1 & \text { whenever } i=j, & \text { giving the normalization }
\end{array}\right.
$$

A matrix with orthonormal columns will be called Q.

Example of Orthonormal Basis

Standard

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \cdots, \quad e_{n}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

Orthogonal Matrices

3Q If Q (square or rectangular) has orthonormal columns, then $Q^{\mathrm{T}} Q=I$:
$\begin{gathered}\text { Orthonormal } \\ \text { columns }\end{gathered}\left[\begin{array}{ccc}- & q_{1}^{\mathrm{T}} & - \\ - & q_{2}^{\mathrm{T}} & - \\ \vdots & \\ - & q_{n}^{\mathrm{T}} & -\end{array}\right]\left[\begin{array}{cccc}\mid & \mid & & \mid \\ q_{1} & q_{2} & \cdots & q_{n} \\ \mid & \mid & & \mid\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & \cdot & 0 \\ 0 & 1 & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & 1\end{array}\right]=I$.

- An orthogonal matrix is a square matrix with orthonormal columns.
- Then Q^{T} is Q^{-1}. For square orthogonal matrices, the transpose is the inverse.
- When row i of Q^{T} multiplies column j of Q, the result is $q_{j}^{T} q_{j}=0$. On the diagonal where $i=j$, we have $q_{i}^{T} q_{i}=1$. That is the normalization to unit vectors of length 1.

Example 1

$Q=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \quad Q^{\mathrm{T}}=Q^{-1}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$.

- Q rotates every vector through the angle θ, and Q^{T} rotates it back through $-\theta$. The columns are clearly orthogonal, and they are orthonormal because $\sin ^{2} \theta+\cos ^{2} \theta=1$. The matrix Q^{T} is just as much an orthogonal matrix as Q.

Example 2

- Any permutation matrix P is an orthogonal matrix. The columns are certainly unit vectors and certainly orthogonal-because the 1 appears in a different place in each column: The transpose is the inverse.

$$
\text { If } P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \text { then } P^{-1}=P^{\mathrm{T}}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text {. }
$$

- Projections reduce the length of a vector, whereas orthogonal matrices have a property that is the most important and most characteristic of all:

3R Multiplication by any Q preserves lengths:

$$
\text { Lengths unchanged } \quad\|Q x\|=\|x\| \quad \text { for every vector } x \text {. }
$$

It also preserves inner products and angles, since

$$
(Q x)^{\mathrm{T}}(Q y)=x^{\mathrm{T}} Q^{\mathrm{T}} Q y=x^{\mathrm{T}} y .
$$

- The preservation of lengths comes directly from $Q^{T} Q=I:$

$$
\|Q x\|^{2}=\|x\|^{2} \quad \text { because } \quad(Q x)^{\mathrm{T}}(Q x)=x^{\mathrm{T}} Q^{\mathrm{T}} Q x=x^{\mathrm{T}} x
$$

- All inner products and lengths are preserved, when the space is rotated or reflected.
- We come now to the calculation that uses the special property $Q^{T}=Q^{-1}$.
- If we have a basis, then any vector is a combination of the basis vectors.
- The problem is to find the coefficients of the basis vectors:

Write bas a combination $b=x_{1} q_{1}+x_{2} q_{2}+\cdots+x_{n} q_{n}$.

- To compute x_{1}, multiply both sides of the equation by q_{1}^{T}.
- On the left-hand side is $q_{1}^{T} b$. On the right-hand side all terms disappear (because $q_{1}^{T} q_{j}=0$) except the first term.
- We are left with $q_{1}^{T} b=x_{1} q_{1}^{T} q_{1}$.
- Since $q_{1}^{T} q_{1}=1$, we have found $x_{1}=q_{1}^{T} b$. Similarly the second coefficient is $x_{2}=q_{2}^{T} b$

Every vector b is equal to $\left(q_{1}^{\mathrm{T}} b\right) q_{1}+\left(q_{2}^{\mathrm{T}} b\right) q_{2}+\cdots+\left(q_{n}^{\mathrm{T}} b\right) q_{n}$.

- Putting this orthonormal basis into a square matrix Q, the vector equation $x_{1} q_{1}+\cdots+x_{n} q_{n}=b$ is identical to $Q x=b$.
- The columns of Q multiply the components of x.
- Its solution is $x=Q^{-1} b$. But since $Q^{-1}=Q^{T}$-this is where orthonormality enters-the solution is also $x=Q^{T} b$:

$$
x=Q^{\mathrm{T}} b=\left[\begin{array}{ccc}
- & q_{1}^{\mathrm{T}} & - \\
& \vdots & \\
- & q_{n}^{\mathrm{T}} & -
\end{array}\right][b]=\left[\begin{array}{c}
q_{1}^{\mathrm{T}} b \\
\vdots \\
q_{n}^{\mathrm{T}} b
\end{array}\right]
$$

- The components of x are the inner products $q_{i}^{T} b$
- The rows of a square matrix are orthonormal whenever the columns are.
- Example:

Orthonormal columns

$$
Q=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & -2 / \sqrt{6} \\
1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6}
\end{array}\right] .
$$

Rectangular Matrices with Orthogonal Columns

- The n orthonormal vectors q_{i} in the columns of Q have $\mathrm{m}>\mathrm{n}$ components. Then Q is an m by n matrix and we cannot expect to solve $Q x=b$ exactly. We solve it by least squares.
- The key is to notice that we still have $Q^{T} Q=I$. So Q^{T} is still the left-inverse of Q.
- The normal equations are $Q^{T} Q x=Q^{T} b$. But $Q^{T} Q$ is the identity matrix! Therefore $\hat{x}=Q^{T} b$, whether Q is square and \hat{x} is an exact solution, or Q is rectangular and we need least squares.
$3 S$ If Q has orthonormal columns, the least-squares problem becomes easy: rectangular system with no solution for most b.

$$
\begin{aligned}
Q x & =b & & \text { rectangular system with no solution for most } b . \\
Q^{\mathrm{T}} Q \widehat{x} & =Q^{\mathrm{T}} b & & \text { normal equation for the best } \widehat{x}-\text { in which } Q^{\mathrm{T}} Q=I . \\
\widehat{x} & =Q^{\mathrm{T}} b & & \widehat{x}_{i} \text { is } q_{i}^{\mathrm{T}} b . \\
p & =Q \widehat{x} & & \text { the projection of } b \text { is }\left(q_{1}^{\mathrm{T}} b\right) q_{1}+\cdots+\left(q_{n}^{\mathrm{T}} b\right) q_{n} . \\
p & =Q Q^{\mathrm{T}} b & & \text { the projection matrix is } P=Q Q^{\mathrm{T}} .
\end{aligned}
$$

- The projection matrix is usually $A\left(A^{T} A\right)^{-1} A^{T}$, and here it simplifies to

$$
P=Q\left(Q^{\mathrm{T}} Q\right)^{-1} Q^{\mathrm{T}} \quad \text { or } \quad P=Q Q^{\mathrm{T}} .
$$

The Gram-Schmidt Process

- This method is used to make the vectors orthonormal to each other.
- We are given a, b, c and we want q_{1}, q_{2}, q_{3}.
- There is no problem with q_{1} : it can go in the direction of a.
- We divide by the length, so that $q_{1}=\frac{a}{\|a\|}$ is a unit vector.
- Now the second vector q_{2}-has to be orthogonal to q_{1}. If the second vector b has any component in the direction of q_{1} (which is the direction of a), that component has to be subtracted:

Second vector $\quad B=b-\left(q_{1}^{\mathrm{T}} b\right) q_{1} \quad$ and $\quad q_{2}=B /\|B\|$.

- B is orthogonal to q_{1}. It is the part of b that goes in a new direction, and not in the $a . B$ is perpendicular to q_{1}. It sets the direction for q_{2}.

The q_{i} component of b is removed; a and B normalized to q_{1} and q_{2}.

- At this point q_{1} and q_{2} are set.
- The third orthogonal direction starts with c.
- It will not be in the plane of q_{1} and q_{2}, which is the plane of a and b.
- However, it may have a component in that plane, and that has to be subtracted.
- What is left is the component C we want, the part that is in a new direction perpendicular to the plane:
Third vector $\quad C=c-\left(q_{1}^{\mathrm{T}} c\right) q_{1}-\left(q_{2}^{\mathrm{T}} c\right) q_{2} \quad$ and $\quad q_{3}=C /\|C\|$.
- This is the one idea of the whole Gram-Schmidt process, to subtract from every new vector its components in the directions that are already settled.

Example

- Suppose the independent vectors are a, b, c :

$$
a=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad c=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

- To find q_{1}, make the first vector into a unit vector: $q_{1}=$ $a / \sqrt{2}$. To find q_{2}, subtract from the second vector its component in the first direction:

$$
B=b-\left(q_{1}^{\mathrm{T}} b\right) q_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] .
$$

- The normalized q_{2} is B divided by its length, to produce a unit vector:

$$
q_{2}=\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right] .
$$

- To find q_{3}, subtract from c its components along q_{1} and q_{2} :

$$
\begin{aligned}
C & =c-\left(q_{1}^{\mathrm{T}} c\right) q_{1}-\left(q_{2}^{\mathrm{T}} c\right) q_{2} \\
& =\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]-\sqrt{2}\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right]-\sqrt{2}\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
\end{aligned}
$$

- This is already a unit vector, so it is q_{3}.
- Final Answer:

Orthonormal basis $\quad Q=\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]=\left[\begin{array}{ccc}1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1 / \sqrt{2} & -1 / \sqrt{2} & 0\end{array}\right]$.

3T The Gram-Schmidt process starts with independent vectors a_{1}, \ldots, a_{n} and ends with orthonormal vectors q_{1}, \ldots, q_{n}. At step j it subtracts from a_{j} its components in the directions q_{1}, \ldots, q_{j-1} that are already settled:

$$
A_{j}=a_{j}-\left(q_{1}^{\mathrm{T}} a_{j}\right) q_{1}-\cdots-\left(q_{j-1}^{\mathrm{T}} a_{j}\right) q_{j-1}
$$

Then q_{j} is the unit vector $A_{j} /\left\|A_{j}\right\|$.

The Factorization $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$

- We started with a matrix A, whose columns were a, b, c.
- We ended with a matrix Q, whose columns are q_{1}, q_{2}, q_{3}.
- What is the relation between those matrices?
- The matrices A and Q are m by n when the n vectors are in m-dimensional space, and there has to be a third matrix that connects them.
- The idea is to write the a^{\prime} s as combinations of the q 's. The vector b is a combination of the orthonormal q_{1} and q_{2}, and the combination is:

$$
b=\left(q_{1}^{\mathrm{T}} b\right) q_{1}+\left(q_{2}^{\mathrm{T}} b\right) q_{2} .
$$

- Every vector in the plane is the sum of its q_{1} and q_{2} components. Similarly c is the sum of its q_{1}, q_{2}, q_{3} components: $c=\left(q_{1}^{\mathrm{T}} c\right) q_{1}+\left(q_{2}^{\mathrm{T}} c\right) q_{2}+\left(q_{3}^{\mathrm{T}} c\right) q_{3}$.
- If we express that in matrix form we have the new factorization $A=Q R$:
$Q R$ factors $\quad A=\left[\begin{array}{lll}a & b & c\end{array}\right]=\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]\left[\begin{array}{ccc}q_{1}^{\mathrm{T}} a & q_{1}^{\mathrm{T}} b & q_{1}^{\mathrm{T}} c \\ & q_{2}^{\mathrm{T}} b & q_{2}^{\mathrm{T}} c \\ & & \\ & & q_{3}^{\mathrm{T}} c\end{array}\right]=Q R$
Where R is upper triangular

3U Every m by n matrix with independent columns can be factored into $A=Q R$. The columns of Q are orthonormal, and R is upper triangular and invertible. When $m=n$ and all matrices are square, Q becomes an orthogonal matrix.

- Orthogonalization simplifies the least-squares problem $A x=b$. The normal equations are still correct, but $A^{T} A$ becomes easier:

$$
A^{\mathrm{T}} A=R^{\mathrm{T}} Q^{\mathrm{T}} Q R=R^{\mathrm{T}} R
$$

- The fundamental equation $A^{T} A \hat{x}=A^{T} b$ simplifies to a triangular system:

$$
R^{\mathrm{T}} R \widehat{x}=R^{\mathrm{T}} Q^{\mathrm{T}} b \quad \text { or } \quad R \widehat{x}=Q^{\mathrm{T}} b .
$$

- Instead of solving $Q R x=b$, which can't be done, we solve $R \hat{x}=Q^{T} b$ which is just back-substitution because R is triangular.
- The real cost is the mn^{2} operations of Gram Schmidt, which are needed to find Q and R in the first place.

