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Projections and Least Squares

* Ax = b either has a solution or not.

* If b is not in the column space C(A), the system is
inconsistent and Gaussian elimination fails.

* This failure is almost certain when there are several
equations and only one unknown:

* More equations than unknowns— no solution?

Zx=b1
3x:b2
4x:b3

* This is solvable when b4, b,, b3 are in the ratio 2: 3: 4.

* The solution x will exist only if b is on the same line as
the column a = (2,3,4).



* In spite of their insolvability, inconsistent equations
arise all the time in practice.

* One possibility is to determine x from part of the
system, and ignore the rest; this is hard to justify if
all m equations come from the same source.

e Rather than expecting no error in some equations
and large errors in the others, it is much better to
choose the x that minimizes an average error E in
the m equations.

* The most convenient “average” comes from the
sum of squares:

Squared error:

E? = (2x —by)? + (3x — by)? + (4x — b3)?



 |If there is an exact solution, the minimum error is
E = 0. In the more likely case that b is not
proportional to a, the graph of E4 will be a
parabola.

* The minimum error is at the lowest point, where
the derivative is zero:
dE?
e 2[(2x—b1)2+ (3x—b2)3+(4x—b3)4] = ).
X
* Solving for x, the least-squares solution of this
model system ax = b is denoted by X:
2b; +3b, +4bs  a'b

Least-squares solution X = —
s 2% 4 3% 4- 42 aa




* The general case is the same. We “solve” ax = b by
minimizing:

—Hax sz (ajx — bl) —}—---—I—(amx—bm)z.

* The derivative of E* is zero at the point %, if:

(@1 —b1)ag + -+ (@nE— by)am = 0.

* We are minimizing the distance from b to the line

through a, and calculus gives the same answer,
albl +”’+ambm‘

X =
az +--+az,

£

. : . . ab

3K The least-squares solution to a problem ax = b in one unknown is x = ——.
a'a



* The error vector e connecting b to p must be
perpendicular to a:
a'h s

Orthogonality of ¢ and ¢ a'(b—Xa)=a'b— Ta a=0.
a'a



Least Squares Problems with Several Variables

* Goal: To project b onto a subspace—rather than just
onto a line.

* Ax = b where 4 is an m by n matrix.

* Instead of one column and one unknown x, the
matrix now has n columns.

* The number m of observations is still larger than the
number n of unknowns, so it must be expected that
Ax = b will be inconsistent.

* Probably, there will not exist a choice of x that
perfectly fits the data b. In other words, the vector b
probably will not be a combination of the columns of
A; it will be outside the column space.




* Again the problem is to choose X so as to minimize
the error, and again this minimization will be done
in the least-squares sense.

* The erroris E = ||Ax — b||, and this is exactly the
distance from b to the point Ax in the column
space.

 Searching for the least-squares solution X, which
minimizes E, is the same as locating the point
p = AX thatis closer to b than any other point in
the column space.

* In n dimensions, p must be the “projection of
b onto the column space.”

* The error vector e = b — AX must be perpendicular
to that space.



L
column a; \_\ aj €

"\_ H)l( = 0

/ combine mto

Te = AT(b— AZ) =0

Projection onto the column space of a 3 by 2 matrix.



* Finding X and the projection p = AX is so fundamental that
we do it in two ways:

1. All vectors perpendicular to the column space lie in the left
nullspace. Thus the error vector e = b — AX must be in the
nullspace of AT:

AT(b—Ax)=0 or ATAx=A"p.

2. The error vector must be perpendicular to each column
ay, ..., a, of A:

al (b—Ax) =0 & || [
: or : b—Ax| =0.
a, (b—Ax) =0 a,

* Thisis again AT(b — AX) = 0and ATAx = ATb

* The equations ATAX = A" b are known in statistics as the
normal equations.



3L When Ax = b is inconsistent, its least-squares solution minimizes ||Ax —
b||?:

Normal equations ATAx=ATb. (1)
ATA is invertible exactly when the columns of A are linearly independent!

Then,
Best estimatex  x= (ATA)!'AT). (2)

The projection of b onto the column space is the nearest point AXx:

Projection p=Ax=A(ATA)"'Ab. 3)



Example 1

A=

1 2 4
1 3|,b=|5
0 0 6

« Ax = b has no solution. ATA £ = ATb gives the best x.

: I 2]
P L O] 1 3 :[2 5].

2 30 5 13

I 0 0]

13 —5][1 1 0 i y
P A AT A = s 2] [2 ; 0] 5 :H.

- 6

1-4

* Inthis special case, the best we can do is to solve the first two
equations of Ax = b.ThenX; = 2and X, = 1. The error in the
equation 0x; + Ox, = 6is sure to be 6.

S W

i
Projection p=Ax= |1
0




Remark 4. Suppose b is actually in the column space of A—it is a combination b = Ax
of the columns. Then the projection of b is still b:

bin column space  p=A(A'A) 'A"Ax=Ax=0b.
The closest point p 1s just b itself—which is obvious.

Remark 5. At the other extreme, suppose b is perpendicular to every column, so ATh =
0. In this case b projects to the zero vector:

binleft nullspace  p=A(ATA) !ATh=A(4TA) 10 =0.

Remark 6. When A is square and invertible, the column space is the whole space. Every
vector projects to itself, p equals b, and x = x:

If Aisinvertible p=A(ATA) 'ATh=4A"1(A")'ATh =b.

This is the only case when we can take apart (AYA)~, and write it as A='(AT)~!. When
A 1s rectangular that 1s not possible.

Remark 7. Suppose A has only one column, containing a. Then the matrix A'A is the
number a'a and Xis a'b/a'a. We return to the earlier formula.



The Cross-Product Matrix AT A

 The matrix AT A is certainly symmetric.
» AT A has the same null space as A.

e Certainly if Ax = 0 then AT Ax = 0.

* Vectors x in the null space of 4 are also in the null space
of AT A. To go in the other direction, start by supposing
that ATAx = 0, and take the inner product with x to
show that Ax = O:

x"ATAx=0, or ||Ax|*=0, or Ax=0.
* The two null spaces are identical. In particular, if A has
independent columns (and only x = O is in its null
space), then the same is true for AT A:

3M If A has independent columns, then A'A is square, symmetric, and invert-
ible.



Projection Matrices

* The closest pointto b is p = A(ATA)~1A"b. This formula
expresses in matrix terms the construction of a perpendicular
line from b to the column space of A.

* The matrix that gives p is a projection matrix, denoted by P:
Projection matrix P =A(A"A)"'AT.
* This matrix projects any vector b onto the column space of A.

* In other words, p = Pb is the component of b in the column
space, and the error e = b — Pb is the component in the
orthogonal complement.

| — P isalso a projection matrix! It projects b onto the
orthogonal complement, and the projectionis b — Pb.

* In short, we have a matrix formula for splitting any b into two
perpendicular components. Pb is in the column space C(4),
and the other component (I — P)b is in the left nullspace
N (AT)—which is orthogonal to the column space.



3N The projection matrix P = A(ATA)‘ AT has two basic properties:

(i) It equals its square: P> = P.

(ii) It equals its transpose: P' = P.
Conversely, any symmetric matrix with P? = P represents a projection.

Proof:
PP =A(ATA)'ATA(ATA) AT =A(ATA) AT =P

PT = (AT)T ((ATA))) AT =A(ATA) AT =P,
 For the converse, we have to deduce from P? = P and
PT = P that Pb is the projection of b onto the column space of P.

* The error vector b — Pb is orthogonal to the space. For any vector
Pc in the space, the inner product is zero:

(b —Pb)'Pc =b"(I —P)'Pc=b"(P—P*)c=0.

 Thus b — Pb is orthogonal to the space, and Pb is the projection
onto the column space.



Example 2

* Suppose A is actually invertible. If it is 4 by 4, then its
four columns are independent and its column space is all
of R* . What is the projection onto the whole space?

P=AATA) AT =AA"1(AT) AT =1

* It is the identity matrix.

* The identity matrix is symmetric, I = I, and the error
b — Ib is zero.



Least-Squares Fitting of Data

* Consider an overdetermined system, with m equations
and only two unknowns.

C + D
C + Db

|

b
b

C + Dfm - b”T_

* If errors are present, it will have no solution. A has two
columns,andx = (C,D):

l & b

1 nl||c by
A . D 5 )

e 1 'r.l?l_ _bﬂ’l_




* The best solution (C, D) is the £ that minimizes the
squared error E2 :

Minimize  E* = ||b—Ax|]* = (bj —C—Dt;)*+---+ (b — C — D1,)*.

* The vector p = AX is as close as possible to b. Of
all straight lines b = C + Dt, we are choosing the
one that best fits the data. On the graph, the errors
are the vertical distances b — C — Dt to the straight
line (not perpendicular distances!).

* It is the vertical distances that are squared,
summed, and minimized.



=
column
space_—

/f.,/

* Straight-line approximation matches the projection
p of b.



* Three measurements by, b,, b3 are marked on the figure:
e pb=1latt=—-1,b=1att=1,b =3 att = 2.

* Note that the valuest = —1, 1, 2 are not required to be
equally spaced.

* The first step is to write the equations that would hold if
a line could go through all three points. Then every
C + Dt would agree exactly with b:

C — D =1 1 —1 _C_ |
Ax=b 18 € 4+ D = 1 ©d i i D = 11
C + 20 = 3 1 2 | L4 3




* If those equations Ax = b could be solved, there would be no
errors. They can’t be solved because the points are not on a line.
Therefore they are solved by least squares:

~ a2 €]l |5
ATAT=ATh is il =
2 6| |D 6
. . A 9 =~ 4 . . 9 4
* The best solutionis C = - ,D = - and the best line is - + - t.
30 The measurements by, ...,b,, are given at distinct points t1,...,t,. Then

the straight line C + Dt which minimizes E? comes from least squares:

=ATh or mo Ll Lbi ;
Yt Yt Y tib;

-~

ATA {f
D

o~

£
D




Orthogonal Bases and Gram-Schmidt

* In an orthogonal basis, every vector is perpendicular to
every other vector. The coordinate axes are mutually
orthogonal.

* Orthonormal basis: Divide each vector by its length, to
make it a unit vector. That changes an orthogonal basis
into an orthonormal basis of g’s:

3P The vectors ¢qy,...,q, are orthonormal if

T, _ 0 wheneveri # j, giving the orthogonality;
G = N1 swhensveii— i giving the normalization.

A matrix with orthonormal columns will be called Q.



Example of Orthonormal Basis

| 0 0
Standard p : /
an .ar €1 = 0 : €2 — 0 . gy b — 0 .
basis




Orthogonal Matrices

3Q If O (square or rectangular) has orthonormal columns, then o'o=r

Orthonormal
columns

* An orthogonal matrix is a square matrix wit

columns.

- q,{ -

i [

x
— 4y —

1 0 - D
1.
0 OZL
00 - 1

n orthonormal

* Then QT is Q71 . For square orthogonal matrices, the
transpose is the inverse.

* When row i of Q7 multiplies column j of Q, the result is

T

q; q; = 0. 0n the diagonal where i = j, we have

q; q; = 1. That is the normalization to unit vectors of

length 1.



Example 1

cos® —sinb| T -1 | cos6 Sin 6
0= sinf cosO |’ ==

—sin® cos6

* () rotates every vector through the angle 8, and
QT rotates it back through —8. The columns are
clearly orthogonal, and they are orthonormal
because sin“f + cos?6 = 1. The matrix Q7 is just
as much an orthogonal matrix as Q.



Example 2

* Any permutation matrix P is an orthogonal matrix.
The columns are certainly unit vectors and certainly
orthogonal—because the 1 appears in a different
place in each column: The transpose is the inverse.

o 1. 0] i o 1]
If P=({0 0 then P l=pT— 0
1 0 |

| ] 0.

0 0 0

* Projections reduce the length of a vector, whereas
orthogonal matrices have a property that is the

most important and most characteristic of all:



3R Multiplication by any Q preserves lengths:

Lengths unchanged |Qx|| = ||x|| for every vector x.

It also preserves inner products and angles, since
(0x)"(Qy) =x"Q" 0y =xTy.
 The preservation of lengths comes directly from
Qr'Q =1I:
10x]|> = ||x[|*> because (Qx)"(Qx) =x"Q"Qx=x"x.

 Allinner products and lengths are preserved, when
the space is rotated or reflected.



* We come now to the calculation that uses the special
property QT = Q1.

* |If we have a basis, then any vector is a combination of the
basis vectors.

* The problem is to find the coefficients of the basis vectors:
Write b as a combination b = x1q1 +x2q> + - - + X, qn.
* To compute x;, multiply both sides of the equation by qlT.

* On the left-hand side is g1 b. On the right-hand side all
terms disappear (because g/ q; = 0) except the first term.

 We are left with ¢! b = x,q1 q,.

* Since g1 g; = 1, we have found x; = g b. Similarly the
second coefficient is x, = g2 b



Every vector b is equal to (qib)q1 + (qab)g2+ - - -+ (¢1b)gy.

Putting this orthonormal basis into a square matrix Q,
the vector equation x,q; +--- +x,,q,, = b is identical to
Ox=D>

The columns of Q multiply the components of x.

Its solution is x = Q™ 1b. But since Q~1 = QT —this is
where orthonormality enters—the solution is also

x = QTb:

— g —| [ | [a1b
=0 = ; bl = | 3
— gn —| | qnb

The components of x are the inner products q; b



* The rows of a square matrix are orthonormal whenever
the columns are.

* Example:

1/vV3 1/v2  1/V6
gr:ll:(morma: columns 0= |1/ /3 5 iy el
rthonormal rows _1/\6 —l/\/i 1/\/6_




Rectangular Matrices with
Orthogonal Columns

* The n orthonormal vectors g; in the columns of Q have
m > n components. Then Q is an m by n matrix and we
cannot expect to solve Qx = b exactly. We solve it by
least squares.

* The key is to notice that we still have Q7Q = I.So0 Q7 is
still the left-inverse of Q.

* The normal equations are Q7 Qx = QT h. But QT Q is the
identity matrix! Therefore £ = Q' b, whether Q is square
and X is an exact solution, or Q is rectangular and we
need least squares.



3S If Q has orthonormal columns, the least-squares problem becomes easy:
rectangular system with no solution for most b.

Ox = b rectangular system with no solution for most b.
ot'ox = 0'b normal equation for the best ¥—in which QTQ =1.
¥ = Q' X; is q'b.
B = @x the projection of b is (q1b)q1 + -+ (g} b)qn.
p Q0Th the projection matrix is P = QQ".

* The projection matrix is usually A(ATA)~1AT , and here
it simplifies to

P=g(0'g) g wt F=ggd-



The Gram-Schmidt Process

 This method is used to make the vectors orthonormal
to each other.

* We are given a, b, c and we want ¢4, g, q3.

* There is no problem with g4: it can go in the direction
of a.

* We divide by the length, so that g; = ﬁ is a unit
vector.

* Now the second vector g,—has to be orthogonal to g;.
If the second vector b has any component in the
direction of g; (which is the direction of a), that
component has to be subtracted:

Second vector B=b—(qib)g1 and g¢»=B/|B|.



* B is orthogonal to g;. It is the part of b that goesin a
new direction, and not in the a. B is perpendicular to q;.
It sets the direction for q,.

The g; component of b is removed; a and B
normalized to g; and q,.



* At this point g; and g, are set.
* The third orthogonal direction starts with c.

* It will not be in the plane of g; and g,, which is the plane
of a and b.

* However, it may have a component in that plane, and
that has to be subtracted.

 What is left is the component C we want, the part that
is in a new direction perpendicular to the plane:

Third vector C=c—(qic)q1 —(gic)ga and g3 =C/||C].

* This is the one idea of the whole Gram-Schmidt process,
to subtract from every new vector its components in
the directions that are already settled.



Example

* Suppose the independent vectors are a, b, c:

| 1 2
g= gl b= 10|, = |1
1 0 0

* To find g{, make the first vector into a unit vector: g4 =

a/\/Z. To find @,, subtract from the second vector its
component in the first direction:

1 : 1/v2 1
B=b—(qib)q1 = |0| ——=
| 0 V2 1/v/2 —1

b | —




* The normalized g, is B divided by its length, to produce
a unit vector:

1/v/2
q2 = 0 -
_1/\/5
* To find g3, subtract from c its components along g, and
qz2:

C=c—(qi¢)q1 —(92¢)q>

2 T/ 1/v2] o]

=IT| —v2] o |-v2] @ |=][1].

0 /52 it 0

* This is already a unit vector, so it is g5.



* Final Answer:

1/v2 1/vV2 0
Orthonormal basis O=lg g gal=1] 0 0 1

1/vV2 —1/v2 o_'




3T The Gram-Schmidt process starts with independent vectors ay,...,a, and

ends with orthonormal vectors ¢gi,...,q,. At step j it subtracts from a; its
components in the directions gy, ...,q;— that are already settled:
. T . T . -
Aj=aj—(q1a;)q1—---—(qj-14j)qj-1.

Then g; is the unit vector A;/||A||.



The Factorization A = QR

* We started with a matrix A, whose columns were
ab,c.

* We ended with a matrix (), whose columns are
d1,492,493-

* What is the relation between those matrices?

* The matrices A and Q are m by n when the n

vectors are in m-dimensional space, and there has
to be a third matrix that connects them.



* The idea is to write the a’s as combinations of the ¢’s.
The vector b is a combination of the orthonormal g; and
q-, and the combination is:

b= (q1b)q1+ (03b)qa.

* Every vector in the plane is the sum of its g; and g,
components. Similarly c¢ is the sum of its

d1, 92, @3 components: ¢ = (QTC)QI T (QEC)QZ + (qgf)fh-

* If we express that in matrix form we have the new
factorization A = QR:

511‘7" qib Qi
OR factors A=la b c|=|q1 ¢ q3 qzb q2 = OR

Q3_

Where R is upper triangular



3U Every m by n matrix with independent columns can be factored into
A = QR. The columns of Q are orthonormal, and R is upper triangular and
invertible. When m = n and all matrices are square, Q becomes an orthogonal
matrix.

* Orthogonalization simplifies the least-squares problem
Ax = b. The normal equations are still correct, but
AT A becomes easier:

ATA =RTQTOR =R'R.

* The fundamental equation AT A & = AT b simplifies to a
triangular system:

R'Rx=R'Q'» or Rx=0"b

* Instead of solving QRx = b, which can’t be done, we solve
Rx = QT b which is just back-substitution because R is
triangular.

* The real cost is the mn? operations of Gram Schmidt, which
are needed to find Q and R in the first place.



