
Projections and Least Squares

Orthogonal Bases and Gram-Schmidt



• either has a solution or not. 
• If b is not in the column space C( ), the system is 

inconsistent and Gaussian elimination fails. 
• This failure is almost certain when there are several 

equations and only one unknown:
• More equations than unknowns— no solution?

• This is solvable when are in the ratio . 
• The solution will exist only if is on the same line as 

the column 

Projections and Least Squares



• In spite of their insolvability, inconsistent equations 
arise all the time in practice. 

• One possibility is to determine from part of the 
system, and ignore the rest; this is hard to justify if 
all m equations come from the same source. 

• Rather than expecting no error in some equations 
and large errors in the others, it is much better to 
choose the that minimizes an average error in 
the m equations. 

• The most convenient “average” comes from the 
sum of squares: 

Squared error: 



• If there is an exact solution, the minimum error is 
. In the more likely case that is not 

proportional to , the graph of will be a 
parabola. 

• The minimum error is at the lowest point, where 
the derivative is zero:

• Solving for , the least-squares solution of this 
model system is denoted by :



• The general case is the same. We “solve” by 
minimizing:

• The derivative of is zero at the point , if:

• We are minimizing the distance from to the line 
through , and calculus gives the same answer, 
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• The error vector connecting to must be 
perpendicular to :



• Goal: To project onto subspace—rather than just 
onto a line.

• where is an m by n matrix. 
• Instead of one column and one unknown , the 

matrix now has n columns. 
• The number m of observations is still larger than the 

number n of unknowns, so it must be expected that 
will be inconsistent. 

• Probably, there will not exist a choice of that 
perfectly fits the data . In other words, the vector 
probably will not be a combination of the columns of 

; it will be outside the column space.

Least Squares Problems with Several Variables



• Again the problem is to choose so as to minimize 
the error, and again this minimization will be done 
in the least-squares sense. 

• The error is , and this is exactly the 
distance from to the point in the column 
space. 

• Searching for the least-squares solution , which 
minimizes , is the same as locating the point 

that is closer to than any other point in 
the column space.

• In n dimensions, must be the “projection of 
onto the column space.” 

• The error vector must be perpendicular 
to that space.



Projection onto the column space of a 3 by 2 matrix.



• Finding and the projection is so fundamental that 
we do it in two ways:

1. All vectors perpendicular to the column space lie in the left 
nullspace. Thus the error vector must be in the 
nullspace of ்:

2. The error vector must be perpendicular to each column 
ଵ  of :

• This is again and 
• The equations are known in statistics as the 

normal equations.





• has no solution. gives the best .

Example 1

• In this special case, the best we can do is to solve the first two 
equations of . Then ଵ and ଶ . The error in the 
equation is sure to be .





• The matrix is certainly symmetric.
• has the same null space as .
• Certainly if then 
• Vectors in the null space of are also in the null space 

of . To go in the other direction, start by supposing 
that , and take the inner product with to 
show that :

• The two null spaces are identical. In particular, if has 
independent columns (and only is in its null 
space), then the same is true for :

The Cross-Product Matrix 



• The closest point to is . This formula 
expresses in matrix terms the construction of a perpendicular 
line from to the column space of . 

• The matrix that gives is a projection matrix, denoted by :

• This matrix projects any vector onto the column space of . 
• In other words, is the component of in the column 

space, and the error is the component in the 
orthogonal complement. 

• is also a projection matrix! It projects onto the 
orthogonal complement, and the projection is .

• In short, we have a matrix formula for splitting any into two 
perpendicular components. is in the column space C( ), 
and the other component is in the left nullspace

which is orthogonal to the column space.

Projection Matrices



Proof:

• For the converse, we have to deduce from and 
that is the projection of onto the column space of . 

• The error vector is orthogonal to the space. For any vector 
in the space, the inner product is zero:

• Thus is orthogonal to the space, and is the projection 
onto the column space.



• Suppose is actually invertible. If it is , then its 
four columns are independent and its column space is all 
of . What is the projection onto the whole space? 

• It is the identity matrix.
• The identity matrix is symmetric, , and the error 

is zero.

Example 2



Least-Squares Fitting of Data
• Consider an overdetermined system, with m equations 

and only two unknowns.

• If errors are present, it will have no solution. has two 
columns, and 



• The best solution is the that minimizes the 
squared error :

• The vector is as close as possible to . Of 
all straight lines , we are choosing the 
one that best fits the data. On the graph, the errors 
are the vertical distances to the straight 
line (not perpendicular distances!). 

• It is the vertical distances that are squared, 
summed, and minimized.



• Straight-line approximation matches the projection 
of . 



• Three measurements are marked on the figure:
• at , at at . 
• Note that the values are not required to be 

equally spaced. 
• The first step is to write the equations that would hold if 

a line could go through all three points. Then every 
would agree exactly with : 



• If those equations could be solved, there would be no 
errors. They can’t be solved because the points are not on a line. 
Therefore they are solved by least squares:

• The best solution is and the best line is .



Orthogonal Bases and Gram-Schmidt
• In an orthogonal basis, every vector is perpendicular to 

every other vector. The coordinate axes are mutually 
orthogonal.

• Orthonormal basis: Divide each vector by its length, to 
make it a unit vector. That changes an orthogonal basis 
into an orthonormal basis of :



Example of Orthonormal Basis



• An orthogonal matrix is a square matrix with orthonormal 
columns.

• Then is . For square orthogonal matrices, the 
transpose is the inverse.

• When row of multiplies column of , the result is 
. On the diagonal where , we have 
. That is the normalization to unit vectors of 

length .

Orthogonal Matrices



Example 1

• rotates every vector through the angle , and 
rotates it back through . The columns are 

clearly orthogonal, and they are orthonormal 
because . The matrix is just 
as much an orthogonal matrix as .



• Any permutation matrix is an orthogonal matrix. 
The columns are certainly unit vectors and certainly 
orthogonal—because the appears in a different 
place in each column: The transpose is the inverse.

Example 2

• Projections reduce the length of a vector, whereas 
orthogonal matrices have a property that is the 
most important and most characteristic of all:



It also preserves inner products and angles, since

• The preservation of lengths comes directly from 

• All inner products and lengths are preserved, when 
the space is rotated or reflected.



• We come now to the calculation that uses the special 
property 

• If we have a basis, then any vector is a combination of the 
basis vectors. 

• The problem is to find the coefficients of the basis vectors:

• To compute , multiply both sides of the equation by 
• On the left-hand side is . On the right-hand side all 

terms disappear (because ) except the first term. 
• We are left with .
• Since , we have found . Similarly the 

second coefficient is 



• Putting this orthonormal basis into a square matrix , 
the vector equation is identical to 

. 
• The columns of multiply the components of .
• Its solution is . But since —this is 

where orthonormality enters—the solution is also 
: 

• The components of are the inner products 



• The rows of a square matrix are orthonormal whenever 
the columns are.

• Example:



• The n orthonormal vectors in the columns of have 
m n components. Then is an m by n matrix and we 
cannot expect to solve exactly. We solve it by 
least squares. 

• The key is to notice that we still have . So is 
still the left-inverse of . 

• The normal equations are . But is the 
identity matrix! Therefore , whether is square 
and is an exact solution, or is rectangular and we 
need least squares.

Rectangular Matrices with 
Orthogonal Columns



• The projection matrix is usually , and here 
it simplifies to



• This method is used to make the vectors orthonormal 
to each other.

• We are given and we want . 
• There is no problem with : it can go in the direction 

of . 
• We divide by the length, so that is a unit 

vector. 
• Now the second vector —has to be orthogonal to . 

If the second vector has any component in the 
direction of (which is the direction of ), that 
component has to be subtracted: 

The Gram-Schmidt Process



• is orthogonal to . It is the part of that goes in a 
new direction, and not in the . is perpendicular to . 
It sets the direction for .

The component of is removed; and 
normalized to and .



• At this point and are set. 
• The third orthogonal direction starts with . 
• It will not be in the plane of and , which is the plane 

of and . 
• However, it may have a component in that plane, and 

that has to be subtracted.
• What is left is the component we want, the part that 

is in a new direction perpendicular to the plane:

• This is the one idea of the whole Gram-Schmidt process, 
to subtract from every new vector its components in 
the directions that are already settled.



• Suppose the independent vectors are :

• To find , make the first vector into a unit vector: = 
. To find , subtract from the second vector its 

component in the first direction:

Example



• The normalized is divided by its length, to produce 
a unit vector: 

• To find , subtract from its components along and 
:

• This is already a unit vector, so it is .



• Final Answer:





• We started with a matrix , whose columns were 

• We ended with a matrix , whose columns are 

• What is the relation between those matrices?
• The matrices and are m by n when the n 

vectors are in m-dimensional space, and there has 
to be a third matrix that connects them.

The Factorization 



• The idea is to write the ’s as combinations of the ’s. 
The vector is a combination of the orthonormal and 

, and the combination is:

• Every vector in the plane is the sum of its and 
components. Similarly is the sum of its 

components: 
• If we express that in matrix form we have the new 

factorization :

Where is upper triangular



• Orthogonalization simplifies the least-squares problem 
. The normal equations are still correct, but 

becomes easier:

• The fundamental equation simplifies to a 
triangular system:

• Instead of solving , which can’t be done, we solve 
which is just back-substitution because is 

triangular.
• The real cost is the operations of Gram Schmidt, which 

are needed to find and in the first place.


