Linear Algebra and Random Processes (CS6015)

DEPT. OF COMPUTER SCIENCE AND ENGINEERING
 Indian Institute of Technology Madras

TUTORIAL 1
(Time allowed: FIFTY minutes)

NOTE: Attempt ALL questions. Total Marks : 25

1. Give two examples of a 2×2 matrix A such that $A^{2}=0$ but $A \neq 0$.
(2 marks)
Solution :
$\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ are two examples
2. If B is the inverse of A^{2}, show that $A B$ is the inverse of A.

Solution :
$A^{2} B=I$ can also be written as $A(A B)=I$. Therefore A^{-1} is $A B$.
3. Let $A=\left[\begin{array}{lll}5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5\end{array}\right]$. For which X does there exist a scalar c such that $A X=c X$. (4 marks)

Solution:

$$
\left[\begin{array}{lll}
5 & 0 & 0 \\
1 & 5 & 0 \\
0 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=c\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

implies

$$
\begin{align*}
5 x & =c x \tag{13}\\
x+5 y & =c y \tag{14}\\
y+5 z & =c z \tag{15}
\end{align*}
$$

Now if $c \neq 5$ then (13) implies $x=0$, and then (14) implies $y=0$, and then (15) implies $z=0$. So it is true for $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ with $c=0$.
If $c=5$ then (14) implies $x=0$ and (15) implies $y=0$. So if $c=5$ any such vector must be of the form $\left[\begin{array}{l}0 \\ 0 \\ z\end{array}\right]$ and indeed any such vector works with $c=5$.

So the final answer is any vector of the form $X=\left[\begin{array}{l}0 \\ 0 \\ z\end{array}\right]$ and $z \in R$.
4. Show that $A B \neq B A$ in general using examples where $A, B \in R^{n \times n}$
(2 marks)
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$,
$B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$
$\mathrm{C}=\mathrm{AB}=\left[\begin{array}{ll}10 & 13 \\ 22 & 29\end{array}\right]$
$\mathrm{D}=\mathrm{BA}=\left[\begin{array}{ll}11 & 16 \\ 19 & 28\end{array}\right]$
Clearly $C \neq D$. Thereby $A B \neq B A$
5. Is the statement $\operatorname{tr}(A B)=\operatorname{tr}(A) \cdot \operatorname{tr}(B)$ where $A, B \in R^{n \times n}$ correct? Validate your claim using an example.
(2 marks)
$\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$,
$B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$
$\mathrm{C}=\mathrm{AB}=\left[\begin{array}{ll}10 & 13 \\ 22 & 29\end{array}\right]$
$\operatorname{tr}(\mathrm{A}) \operatorname{tr}(\mathrm{B})=35$ and $\operatorname{tr}(\mathrm{AB})=39$. Hence the statement is incorrect.
6. Apply Gaussian elimination and back substitution to solve

$$
\begin{array}{r}
2 x-3 y=3 \\
4 x-5 y+z=7 \\
2 x-y-3 z=5
\end{array}
$$

Circle the pivots and list the row operations.

Solution :

$$
\begin{array}{lrrrrl}
2 x-3 y & =3 \\
4 x-5 y+z=7 \\
2 x-y-3 z=5 & \text { gives } & 2 x-3 y=3 & & 2 x-3 y=3 & \\
y+z=1 & \text { and } & y+z=1 & \text { and } & y=1 \\
2 x-3 z=2 & & -5 z=0 & & z=0
\end{array}
$$

Here are steps $1,2,3$: Subtract $2 \times$ row 1 from row 2 , subtract $1 \times$ row 1 from row 3 , subtract $2 \times$ row 2 from row 3
7. Which number q makes the following system of linear equations, singular. Find the number t which gives infinitely many solutions, and the solution that has $z=1$.

$$
\begin{array}{r}
x+4 y-2 z=1 \\
x+7 y-6 z=6 \\
3 y+q z=t
\end{array}
$$

Solution :

Row 2 becomes $3 y-4 z=5$, then row 3 becomes $(q+4) z=t-5$. If $q=-4$ the system is singular-no third pivot. Then if $t=5$ the third equation is $0=0$ which allows infinitely many solutions. Choosing $z=1$ the equation $3 y-4 z=5$ gives $y=3$ and equation 1 gives $x=-9$.
8. Find the triangular matrix E that reduces "Pascals matrix" to a smaller Pascal:
$E\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1\end{array}\right]$
Hint: An elementary matrix $E_{i j}$ subtracts ℓ times row j from row i. This $E_{i j}$ includes $-\ell$ in row i, column j. An example is given below

$$
E_{31}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\ell & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Solution :

Construct and combine elementary matrices corresponding to operations:
$R 4 \rightarrow R 4-R 3$,
$R 3 \rightarrow R 3-R 2$, and
$R 2 \rightarrow R 2-R 1$

$$
E=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] .
$$

9. Prove that $\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1}$. Show from the Schwarz inequality $(|\langle u, v\rangle| \leq\|u\|\|v\|$. where u, v are vectors) that the ratios $\|x\|_{2} /\|x\|_{\infty}$ and $\|x\|_{1} /\|x\|_{2}$ are never larger than, \sqrt{n}. Which vector $\left(x_{1}, \ldots, x_{n}\right)$ gives ratios equal to \sqrt{n} ?
(3 marks)

Solution :

$x_{1}^{2}+\cdots+x_{n}^{2}$ is not smaller than $\max \left(x_{i}^{2}\right)$ and not larger than $\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right)^{2}=\|\boldsymbol{x}\|_{1}^{2}$.
$x_{1}^{2}+\cdots+x_{n}^{2} \leq n \max \left(x_{i}^{2}\right)$ so $\|\boldsymbol{x}\| \leq \sqrt{n}\|\boldsymbol{x}\|_{\infty}$. Choose $y_{i}=\operatorname{sign} x_{i}= \pm 1$ to get
$\|\boldsymbol{x}\|_{1}=\boldsymbol{x} \cdot \boldsymbol{y} \leq\|\boldsymbol{x}\|\|\boldsymbol{y}\|=\sqrt{n}\|\boldsymbol{x}\|$. The vector $\boldsymbol{x}=(1, \ldots, 1)$ has $\|\boldsymbol{x}\|_{1}=\sqrt{n}\|\boldsymbol{x}\|$.

