Linear Algebra and Random Processes (CS6015)

DEPT. OF COMPUTER SCIENCE AND ENGINEERING Indian Institute of Technology Madras

TUTORIAL 1 (Time allowed: FIFTY minutes)

NOTE: Attempt ALL questions. Total Marks : $\mathbf{25}$

- **1.** Give two examples of a 2×2 matrix A such that $A^2 = 0$ but $A \neq 0$. (2 marks)
 - **Solution :** $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ are two examples
- **2.** If *B* is the inverse of A^2 , show that *AB* is the inverse of *A*. (2 marks) Solution :

 $A^2B = I$ can also be written as A(AB) = I. Therefore A^{-1} is AB.

3. Let
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix}$$
. For which X does there exist a scalar c such that $AX = cX$. (4 marks)

Solution:

5	0 0	x		<i>x</i>
1	5 0) y	= c	у
)	1 5	z		z

implies

$$5x = cx \tag{13}$$

$$x + 5y = cy \tag{14}$$

$$y + 5z = cz \tag{15}$$

Now if $c \neq 5$ then (13) implies x = 0, and then (14) implies y = 0, and then (15) implies z = 0. So it is true for $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$ with c = 0. If c = 5 then (14) implies x = 0 and (15) implies y = 0. So if c = 5 any such vector must be of the form $\begin{bmatrix} 0\\0\\z \end{bmatrix}$ and indeed any such vector works with c = 5.

So the final answer is any vector of the form $X = \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix}$ and $z \in R$.

4. Show that $AB \neq BA$ in general using examples where $A, B \in \mathbb{R}^{n \times n}$ (2 marks)

 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},$ $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$

CONTINUED

- $C = AB = \begin{bmatrix} 10 & 13\\ 22 & 29 \end{bmatrix}$ $D = BA = \begin{bmatrix} 11 & 16\\ 19 & 28 \end{bmatrix}$ Clearly $C \neq D$. Thereby $AB \neq BA$
- **5.** Is the statement tr(AB) = tr(A).tr(B) where $A, B \in \mathbb{R}^{n \times n}$ correct? Validate your claim using an example. (2 marks)

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},$$
$$B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
$$C = AB = \begin{bmatrix} 10 & 13 \\ 22 & 29 \end{bmatrix}$$
$$tr(A)tr(B) = 35 \text{ and}$$

tr(A)tr(B) = 35 and tr(AB) = 39. Hence the statement is incorrect.

6. Apply Gaussian elimination and back substitution to solve

$$2x - 3y = 3$$
$$4x - 5y + z = 7$$
$$2x - y - 3z = 5.$$

Circle the pivots and list the row operations.

Solution :

subtract $2 \times \text{row} 2$ from row 3

7. Which number q makes the following system of linear equations, singular. Find the number t which gives infinitely many solutions, and the solution that has z = 1.

$$x + 4y - 2z = 1$$
$$x + 7y - 6z = 6$$
$$3y + qz = t$$

(3 marks)

Solution :

Row 2 becomes 3y - 4z = 5, then row 3 becomes (q + 4)z = t - 5. If q = -4 the system is singular—no third pivot. Then if t = 5 the third equation is 0 = 0 which allows infinitely many solutions. Choosing z = 1 the equation 3y - 4z = 5 gives y = 3 and equation 1 gives x = -9.

(3 marks)

8. Find the triangular matrix E that reduces "Pascals matrix" to a smaller Pascal:

	1	0	0	0		[1	0	0	0
$\mathbf{\Gamma}$	1	1	0	0	_	0	1	0	0
Ľ	1	2	1	0	_	0	1	1	0
	1	3	3	1		0	1	2	1

Hint: An elementary matrix E_{ij} subtracts ℓ times row j from row i. This E_{ij} includes $-\ell$ in row i, column j. An example is given below

$$E_{31} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\ell & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solution :

Construct and combine elementary matrices corresponding to operations: $R4 \rightarrow R4 - R3$, $R3 \rightarrow R3 - R2$, and $R2 \rightarrow R2 - R1$

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

9. Prove that $||x||_{\infty} \leq ||x||_{2} \leq ||x||_{1}$. Show from the Schwarz inequality ($|\langle u, v \rangle| \leq ||u|| ||v||$. where u, v are vectors) that the ratios $||x||_{2}/||x||_{\infty}$ and $||x||_{1}/||x||_{2}$ are never larger than, \sqrt{n} . Which vector $(x_{1}, ..., x_{n})$ gives ratios equal to \sqrt{n} ? (3 marks)

 $\begin{aligned} x_1^2 + \dots + x_n^2 &\text{ is not smaller than } \max(x_i^2) \text{ and not larger than } (|x_1| + \dots + |x_n|)^2 &= \|x\|_1^2. \\ x_1^2 + \dots + x_n^2 &\leq n \, \max(x_i^2) \text{ so } \|x\| \leq \sqrt{n} \|x\|_{\infty}. \text{ Choose } y_i &= \text{sign } x_i = \pm 1 \text{ to get} \\ \|x\|_1 &= x \cdot y \leq \|x\| \|y\| = \sqrt{n} \|x\|. \text{ The vector } x = (1, \dots, 1) \text{ has } \|x\|_1 = \sqrt{n} \|x\|. \end{aligned}$