Linear Algebra and Random Processes (CS6015)

DEPT. OF COMPUTER SCIENCE AND ENGINEERING
 Indian Institute of Technology Madras

TUTORIAL 2

(Time allowed: FIFTY minutes)

NOTE: Attempt ALL questions. Total Marks : 25

1. Prove that a square matrix A can have at most one inverse.
(2 marks)

Solution :

Suppose B and C are both inverses of A i.e. $A B=B A=I$ and $A C=C A=I$.
Then $B=B I=B(A C)=(B A) C=I C=C$. Thus $B=C$, and A can have at most one inverse
2. Compute L and U for the symmetric matrix A such that $A=L U$.
$A=\left[\begin{array}{llll}a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d\end{array}\right]$ Find four conditions on a, b, c, d to get $A=L U$ with four pivots.

Solution :

$$
\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]=\left[\begin{array}{lll}
1 & & \\
1 & 1 & \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
a & a & a & a \\
& b-a & b-a & b-a \\
& & c-b & c-b \\
& & & d-c
\end{array}\right] . \text { Need } \begin{aligned}
& a \neq 0 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& d \neq b
\end{aligned}
$$

3. Find a 3 by 3 permutation matrix with $P^{3}=I$ (but $\left.P \neq I\right)$.
(2 marks)

Solution :

A cyclic $P=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ or its transpose will have $P^{3}=I:(1,2,3) \rightarrow(2,3,1) \rightarrow$ $(3,1,2) \rightarrow(1,2,3)$.
4. Find the transpose of a block matrix $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$. Under what conditions on A, B, C, D is the block matrix symmetric.
Hint: A block matrix is a matrix that is defined using smaller matrices, called blocks which fit together to form a rectangle

Solution :

$M^{\mathrm{T}}=\left[\begin{array}{ll}A^{\mathrm{T}} & C^{\mathrm{T}} \\ B^{\mathrm{T}} & D^{\mathrm{T}}\end{array}\right] ; M^{\mathrm{T}}=M$ needs $A^{\mathrm{T}}=A$ and $B^{\mathrm{T}}=C$ and $D^{\mathrm{T}}=D$.
5. Discover whether
$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4\end{array}\right]$ is invertible, and find A^{-1} if it exists using Gauss-Jordan method.

Solution :

The inverse exists since the matrix produces 4 non-zero pivots.
We row-reduce the augmented matrix as follows:

$$
\begin{aligned}
& {\left[\begin{array}{llll|llll}
1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
0 & 2 & 3 & 4 & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 4 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 2 & 3 & 4 & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 4 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 4 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \hline
\end{aligned}
$$

Thus the A does have an inverse and

$$
A^{-1}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 / 2 & -1 / 2 & 0 \\
0 & 0 & 1 / 3 & -1 / 3 \\
0 & 0 & 0 & 1 / 4
\end{array}\right] .
$$

6. Let W_{1} and W_{2} be subspaces of a vector space V. Prove that the intersection $W_{1} \cap W_{2}$ is a subspace of V.
(2 marks)

Solution :

Nonempty: since W_{1} and W_{2} are subspaces, they both contain the 0 vector, so 0 is in the intersection of W_{1} and W_{2}, so this intersection is nonempty.
Closure under addition: suppose x and y are in the intersection of W_{1} and W_{2}. Then x and y are in both W_{1} and W_{2}. Since W_{1} is a subspace, and x and y are in W_{1}, it follows that $x+y$ is in W_{1}.

Likewise, since W_{2} is a subspace, $x+y$ is in W_{2}. Since $x+y$ is in both W_{1} and in W_{2}, it follows that $x+y$ is in the intersection of W_{1} and W_{2}.
Closure under scalar multiplication: same idea, but simpler.
7. Which of the following subsets of \mathbb{R}^{3} are actually subspaces?
(a) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=b_{2}$
(b) The plane of vectors with $b_{1}=1$.
(c) The vectors with $b_{1} b_{2} b_{3}=0$.
(d) All linear combinations of $v=(1,4,0)$ and $w=(2,2,2)$.
(e) All vectors that satisfy $b_{1}+b_{2}+b_{3}=0$.
(f) All vectors with $b_{1} \leq b_{2} \leq b_{3}$
(3 marks)

Solution :

The only subspaces are (a) the plane with $b_{1}=b_{2}$ (d) the linear combinations of v and w (e) the plane with $b 1+b 2+b 3=0$.
8. Describe the column spaces (lines or planes) of the following matrices.
(2 marks)

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 0 \\
0 & 0
\end{array}\right] B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \\
0 & 0
\end{array}\right]
$$

Solution :

The column space of A is the line of vectors $(x, 2 x, 0)$. The column space of B is the xy plane $=$ all vectors $(x, y, 0)$.
9. For which right-hand sides (find a condition on b_{1}, b_{2}, b_{3}) are these systems solvable? Solve using Gaussian elimination.
(a) $\left[\begin{array}{ccc}1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 4 \\ 2 & 9 \\ -1 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
(4 marks)

Solution :

(a) Elimination leads to $0=b_{2}-2 b_{1}$ and $0=b_{1}+b_{3}$ in equations 2 and 3 :

Solution only if $b_{2}=2 b_{1}$ and $b_{3}=-b_{1} \quad$ (b) Elimination leads to $0=b_{1}+b_{3}$
in equation 3: Solution only if $b_{3}=-b_{1}$.

