Linear Algebra and Random Processes (CS6015)

DEPT. OF COMPUTER SCIENCE AND ENGINEERING
 Indian Institute of Technology Madras

TUTORIAL 3
(Time allowed: FIFTY minutes)

NOTE: Attempt ALL questions. Total Marks : 25

1. Describe the nullspaces of A and B in two ways.
(a) Give the equations for the plane (or line)
(b) Give all vectors x that satisfy those equations as combinations of the special solutions.
$A=\left[\begin{array}{ccc}-1 & 3 & 5 \\ -2 & 6 & 10\end{array}\right], \quad B=\left[\begin{array}{ccc}-1 & 3 & 5 \\ -2 & 6 & 7\end{array}\right]$
(4 marks)
Solution :
A: $\left[\begin{array}{ccc}-1 & 3 & 5 \\ -2 & 6 & 10\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0 \Longrightarrow-x_{1}+3 x_{2}+5 x_{3}=0$; an equation of a plane.
In another way, all vectors of the form $x_{2}\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}5 \\ 0 \\ 1\end{array}\right]$
B: $\left[\begin{array}{lll}-1 & 3 & 5 \\ -2 & 6 & 7\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0 \Longrightarrow-x_{1}+3 x_{2}+5 x_{3}=0,-3 x_{3}=0 \therefore-x_{1}+3 x_{2}=0$; an equation of a line.
In another way, all vectors of the form $x_{2}\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$
2. Describe the column space and nullspace of A and the complete solution to $A x=b$.

$$
A=\left[\begin{array}{llll}
2 & 4 & 6 & 4 \\
2 & 5 & 7 & 6 \\
2 & 3 & 5 & 2
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right]
$$

Solution :

$\mathbf{1}\left[\begin{array}{ccccc}2 & 4 & 6 & 4 & \mathbf{b}_{1} \\ 2 & 5 & 7 & 6 & \mathbf{b}_{2} \\ 2 & 3 & 5 & 2 & \mathbf{b}_{3}\end{array}\right] \rightarrow\left[\begin{array}{ccccl}2 & 4 & 6 & 4 & \mathbf{b}_{1} \\ 0 & 1 & 1 & 2 & \mathbf{b}_{2}-\mathbf{b}_{1} \\ 0 & -1 & -1 & -2 & \mathbf{b}_{3}-\mathbf{b}_{1}\end{array}\right] \rightarrow\left[\begin{array}{lllll}2 & 4 & 6 & 4 & \mathbf{b}_{1} \\ 0 & 1 & 1 & 2 & \mathbf{b}_{2}-\mathbf{b}_{1} \\ 0 & 0 & 0 & 0 & \mathbf{b}_{3}+\mathbf{b}_{2}-\mathbf{2} \mathbf{b}_{1}\end{array}\right]$ $A \boldsymbol{x}=\boldsymbol{b}$ has a solution when $b_{3}+b_{2}-2 b_{1}=0$; the column space contains all combinations of $(2,2,2)$ and $(4,5,3)$. This is the plane $b_{3}+b_{2}-2 b_{1}=0(!)$.

Considering $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] ; \mathrm{Ax}=0 \Longrightarrow$

$$
\begin{array}{r}
2 x_{1}+4 x_{2}+6 x_{3}+4 x_{4}=0 \\
x_{2}+x_{3}+2 x_{4}=0 \tag{2}
\end{array}
$$

From Equation 2

$$
\begin{equation*}
x_{2}=-x_{3}-2 x_{4} \tag{3}
\end{equation*}
$$

Substituting Equation 3 in Equation 1

$$
\begin{equation*}
x_{1}=-x_{3}+2 x_{4} \tag{4}
\end{equation*}
$$

\therefore The nullspace is $\left[\begin{array}{c}-x_{3}+2 x_{4} \\ -x_{3}-2 x_{4} \\ x_{3} \\ x_{4}\end{array}\right] \quad x_{3}\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}2 \\ -2 \\ 0 \\ 1\end{array}\right]$
The nullspace contains all combinations of $s_{1}=(-1,-1,1,0)$ and $s_{2}=(2,-2,0,1)$;

$$
\boldsymbol{x}_{\text {complete }}=\boldsymbol{x}_{p}+c_{1} \boldsymbol{s}_{1}+c_{2} \boldsymbol{s}_{2}
$$

Alternatively substitute $\left(x_{3}, x_{4}\right)=(0,1)$ and $=\left(x_{3}, x_{4}\right)=(1,0)$ in Equation 3 and 4 to obtain s_{1} and s_{2}.

$$
\left[\begin{array}{rr}
R & \boldsymbol{d}
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 0 & 1 & -2 & 4 \\
0 & 1 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \text { gives the particular solution } x_{p}=(4,-1,0,0)
$$

3. Show that the vectors $a_{1}=(1,0,-1) ; a_{2}=(1,2,1) ; a_{3}=(0,-3,2)$ form a basis for $\mathbb{R}^{3} \quad(2$ marks $)$

Solution :

Show the vectors are linearly independent by showing that matrix whose rows are a_{i} 's is invertible

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
0 & -3 & 2
\end{array}\right] . \\
{\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
0 & -3 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 2 \\
0 & -3 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & -3 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .}
\end{gathered}
$$

And any set of three linearly independent vectors in \mathbb{R}^{3} spans \mathbb{R}^{3}. Hence the set of vectors is indeed a basis for \mathbb{R}^{3}.
4. Consider a vector $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in \mathbb{R}^{4}. It has 24 rearrangements like $\left(x_{2}, x_{1}, x_{3}, x_{4}\right)$, $\left(x_{4}, x_{3}, x_{1}, x_{2}\right)$, and so on. Those 24 vectors, including x itself, span a subspace S. Find examples of particular vectors x so that the dimension of S is:
(a) 0, (b) 1, (c) 3, (d) 4. Justify your answer.

Solution :

(a) A subspace of dimension 0 in \mathbb{R}^{4} is the origin. So the vector that spans it is $(0,0,0,0)$.
(b) A subspace of dimension 1 implies it has only one vector in its basis. This is possible only if the vector does not change on rearrangement. One such vector is (1,1,1,1).
(c) Consider a non-zero vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that $x_{1}+x_{2}+x_{3}+x_{4}=0$, i.e., its dot product with $(1,1,1,1)$ is 0 . This vector along with its permutations will span a 3-dimensional subspace that is perpendicular to the line through $(1,1,1,1)$ and origin.
(d) Take the standard basis for \mathbb{R}^{4}, i.e., $(1,0,0,0)$ and its permutations since any vector space is a subspace of itself.
5. Let V and W be subspaces of \mathbb{R}^{n} with $V \cap W=\{0\}$. Show that $\operatorname{dim}(V)+\operatorname{dim}(W) \leq n$.

Hint: Consider v_{1}, \ldots, v_{k} to be a basis for V, and w_{1}, \ldots, w_{l} to be a basis for W, and show that $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{l}$ are linearly independent.
(3 marks)

Solution :

Let v_{1}, \ldots, v_{k} be a basis for V, and let w_{1}, \ldots, w_{l} be a basis for W. I claim that $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{l}$ are linearly independent. To see this, suppose $a_{1} v_{1}+\ldots+a_{k} v_{k}+b_{1} w_{1}+\ldots+b_{l} w_{l}=0$. We need to show that $a_{1}=\ldots=a_{k}=b_{1}=\ldots=b_{l}=0$. To simplify the notation, let $v=a_{1} v_{1}+\ldots+a_{k} v_{k}$ and $w=b_{1} w_{1}+\ldots+b_{l} w_{l}$. Then $v+w=0$, so $v=-w$. Now v is in V and $-w$ is in W, so v and w are both in the intersection of V and W . But this intersection was assumed to be $\{0\}$. So $v=w=0$. Since v_{1}, \ldots, v_{k} are independent, $v=0$ implies $a_{1}=\ldots=a_{k}=0$. Since w_{1}, \ldots, w_{l} are independent, $w=0$ implies $b_{1}=\ldots=b_{l}=0$.
So we have $k+l$ linearly independent vectors in \mathbb{R}^{n}. Therefore $k+l$ is less than or equal to n. Since $k=\operatorname{dim}(V)$ and $l=\operatorname{dim}(W)$, this proves what we wanted.
6. Which of the following functions T from \mathbb{R}^{2} into \mathbb{R}^{2} are linear transformations?
(a) $T\left(x_{1} ; x_{2}\right)=\left(1+x_{1} ; x_{2}\right)$
(b) $T\left(x_{1} ; x_{2}\right)=\left(x_{2} ; x_{1}\right)$
(c) $T\left(x_{1} ; x_{2}\right)=\left(x_{1}^{2} ; x_{2}\right)$
(d) $T\left(x_{1} ; x_{2}\right)=\left(\sin x_{1} ; x_{2}\right)$

Solution :

(a) T is not a linear transformation because $T(0,0)=(1,0)$. If T were a linear transformation then it must always be that $T(0,0)=(0,0)$.
(b) T is a linear transformation. Let $\alpha=\left(x_{1}, x_{2}\right)$ and $\beta=\left(y_{1}, y_{2}\right)$. Then $T(c \alpha+\beta)=T\left(\left(c x_{1}+y_{1}, c x_{2}+y_{2}\right)\right)=\left(c x_{2}+y_{2}, c x_{1}+y_{1}\right)=$ $c\left(x_{2}, x_{1}\right)+\left(y_{2}, y_{1}\right)=c T(\alpha)+T(\beta)$.
(c) T is not a linear transformation. If T were a linear transformation then we'd have $(1,0)=T((-1,0))=T(-1 \cdot(1,0))=$ $-1 \cdot T(1,0)=-1 \cdot(1,0)=(-1,0)$ which is a contradiction, $(1,0) \neq(-1,0)$.
(d) T is not a linear transformation. If T were a linear transformation then $(0,0)=T(\pi, 0)=T(2(\pi / 2,0))=2 T((\pi / 2,0))=$ $2(\sin (\pi / 2), 0)=2(1,0)=(2,0)$ which is a contradiction, $(0,0) \neq(2,0)$.
7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation of the 2 -dimensional vector space \mathbb{R}^{2} (the x-y-plane) to itself which is the reflection across a line $y=m x$ for some $m \in \mathbb{R}$.
Find the matrix representation of the linear transformation T with respect to the standard basis $B=\left\{e_{1}, e_{2}\right\}$ of \mathbb{R}^{2}, where $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Solution :

Let A be the matrix representation of T with respect to the standard basis B.

Observe that each vector on the line $y=m x$ does not move under the linear transformation T.
Since the vector $\left[\begin{array}{c}1 \\ m\end{array}\right]$ is on the line $y=m x$, it follows that

$$
A\left[\begin{array}{c}
1 \tag{}\\
m
\end{array}\right]=\left[\begin{array}{c}
1 \\
m
\end{array}\right]
$$

Note that if $m \neq 0$ then the line $y=\frac{-1}{m} x$ is perpendicular to the line $y=m x$ at the origin.
If $m=0$, then the line $x=0$ is perpendicular to the line $y=0$ at the origin.
In either case the vector $\left[\begin{array}{c}-m \\ 1\end{array}\right]$ is on the perpendicular line.
Thus, by the reflection across the line $y=m x$, this vector is mapped to $\left[\begin{array}{c}m \\ -1\end{array}\right]$.
That is, we have

$$
A\left[\begin{array}{c}
-m \tag{**}\\
1
\end{array}\right]=\left[\begin{array}{c}
m \\
-1
\end{array}\right]
$$

It follows from (*) and (**) that

$$
A\left[\begin{array}{cc}
1 & -m \\
m & 1
\end{array}\right]=\left[A\left[\begin{array}{c}
1 \\
m
\end{array}\right] \quad A\left[\begin{array}{c}
-m \\
1
\end{array}\right]\right]=\left[\begin{array}{cc}
1 & m \\
m & -1
\end{array}\right]
$$

The determinant of the matrix $\left[\begin{array}{cc}1 & -m \\ m & 1\end{array}\right]$ is $1+m^{2} \neq 0$, hence it is invertible.
(Note that since column vectors are nonzero orthogonal vectors, we knew it is invertible.)

The inverse matrix is

$$
\left[\begin{array}{cc}
1 & -m \\
m & 1
\end{array}\right]^{-1}=\frac{1}{1+m^{2}}\left[\begin{array}{cc}
1 & m \\
-m & 1
\end{array}\right]
$$

Therefore, we have

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
1 & m \\
m & -1
\end{array}\right]\left[\begin{array}{cc}
1 & -m \\
m & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
1 & m \\
m & -1
\end{array}\right] \cdot \frac{1}{1+m^{2}}\left[\begin{array}{cc}
1 & m \\
-m & 1
\end{array}\right] \\
& =\frac{1}{1+m^{2}}\left[\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right]
\end{aligned}
$$

