Linear Algebra and Random Processes (CS6015)

DEPT. OF COMPUTER SCIENCE AND ENGINEERING Indian Institute of Technology Madras

TUTORIAL 4 (Time allowed: FIFTY minutes)

NOTE: Attempt ALL questions. Total Marks : 27

- **1.** Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbb{R}^3 . Find the possible values for the following 3 by 3 determinants:
 - (a) $det([q_1 \quad q_2 \quad q_3])$ Solution :

The determinant of any square matrix with orthonormal columns ("orthogonal matrix") is ± 1 .

(b) $det([q_1 + q_2 \quad q_2 + q_3 \quad q_3 + q_1])$ Solution :

$$\det \begin{bmatrix} q_1 + q_2 & q_2 + q_3 & q_3 + q_1 \end{bmatrix} = \det \begin{bmatrix} q_1 + q_2 & -q_1 + q_3 & q_3 + q_1 \end{bmatrix}$$
$$= \det \begin{bmatrix} q_1 + q_2 & -q_1 + q_3 & 2q_3 \end{bmatrix}$$
$$= 2 \det \begin{bmatrix} q_1 + q_2 & -q_1 + q_3 & q_3 \end{bmatrix}$$
$$= 2 \det \begin{bmatrix} q_1 + q_2 & -q_1 + q_3 & q_3 \end{bmatrix}$$
$$= 2 \det \begin{bmatrix} q_1 + q_2 & -q_1 & q_3 \end{bmatrix}$$
$$= 2 \det \begin{bmatrix} q_2 & -q_1 & q_3 \end{bmatrix}$$
$$= 2 \det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$$

Again, whatever det $\begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$ is, this determinant will be twice that, or ± 2 .

(3 marks)

2. What matrix P projects every point of ℝ³ onto the line of intersection of the planes x + y + t = 0 and x - t = 0? (4 marks)
Solution :

First, we need to find a vector on the line of intersection. Note that any such vector is necessarily a solution of the matrix equation

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

To solve this equation, we'll do Gaussian elimination on the augmented matrix

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}.$$

Subtract row 1 from row 2 to get

$$\left[\begin{array}{rrrr} 1 & 1 & 1 & 0 \\ 0 & -1 & -2 & 0 \end{array}\right],$$

Then add row 2 to row 1 and multiply row 2 by -1:

$$\left[\begin{array}{rrrr} 1 & 0 & -1 & & 0 \\ 0 & 1 & 2 & & 0 \end{array}\right].$$

This corresponds to the system of equations

$$\begin{aligned} x_1 - x_3 &= 0\\ x_2 + 2x_3 &= 0 \end{aligned}$$

or, equivalently,

$$\begin{aligned} x_1 &= x_3 \\ x_2 &= -2x_3. \end{aligned}$$

Therefore, solutions to the matrix equation are of the form

$$x_3 \left[\begin{array}{c} 1\\ -2\\ 1 \end{array} \right],$$

meaning that the vector $\mathbf{a} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$ is in the desired line of intersection. Now, just recall that the projection matrix P is given by

$$P = \frac{\mathbf{a} \, \mathbf{a}^T}{\mathbf{a}^T \mathbf{a}}.$$

The denominator is simply

$$\mathbf{a}^T \mathbf{a} = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = 1 + 4 + 1 = 6.$$

The numerator is

$$\mathbf{a}\,\mathbf{a}^{T} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1\\ -2 & 4 & -2\\ 1 & -2 & 1 \end{bmatrix}.$$

Therefore,

$$P = \frac{\mathbf{a} \, \mathbf{a}^{T}}{\mathbf{a}^{T} \mathbf{a}} = \frac{1}{6} \begin{bmatrix} 1 & -2 & 1\\ -2 & 4 & -2\\ 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & -\frac{1}{3} & \frac{1}{6}\\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3}\\ \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix}.$$

3. (a) Find orthonormal vectors q_1 , q_2 , q_3 such that q_1 , q_2 span the column space of $A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$ Solution :

CONTINUED

Gram-Schmidt chooses $q_1 = a/||a|| = \frac{1}{3}(1, 2, -2)$ and $q_2 = \frac{1}{3}(2, 1, 2)$. Then $q_3 = \frac{1}{3}(2, -2, -1)$.

(b) Solve Ax = (1, 2, 7) by least squares. Solution :

$$\hat{x} = (A^{T}A)^{-1}A^{T} \begin{bmatrix} 1\\2\\7 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$$
$$A^{T}A = \begin{bmatrix} 9 & -9\\-9 & 18 \end{bmatrix}$$
$$(A^{T}A)^{-1} = \frac{1}{9} \begin{bmatrix} 2 & 1\\1 & 1 \end{bmatrix}$$
$$(A^{T}A)^{-1}A^{T} = \frac{1}{9} \begin{bmatrix} 3 & 3 & 0\\2 & 1 & 2 \end{bmatrix}$$
$$(A^{T}A)^{-1}A^{T} \begin{bmatrix} 1\\2\\7 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$$

(6 marks)

4. Find the determinant of the following matrix by Gaussian elimination:

$$A = \begin{bmatrix} 1 & t & t^{2} \\ t & 1 & t \\ t^{2} & t & 1 \end{bmatrix}$$
(3 marks)
Solution :

$$A = \begin{vmatrix} 1 & t & t^{2} \\ t & 1 & t \\ t^{2} & t & 1 \end{vmatrix} = \begin{vmatrix} 1 & t & t^{2} \\ t & 1 & t \\ t^{2} - 1 & 0 & 1 - t^{2} \end{vmatrix} = (1 - t^{2}) \begin{vmatrix} 1 & t & t^{2} \\ t & 1 & t \\ -1 & 0 & 1 \end{vmatrix}$$
$$= (1 - t^{2}) \begin{vmatrix} 1 - t^{2} & 0 & 0 \\ t & 1 & t \\ -1 & 0 & 1 \end{vmatrix} = (1 - t^{2})^{2} \begin{vmatrix} 1 & 0 & 0 \\ t & 1 & t \\ -1 & 0 & 1 \end{vmatrix}$$
The determinant is $1 - 2t^{2} + t^{4} = (1 - t^{2})^{2}$

5. A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2. Find

- (a) the rank of BSolution : rank = 2
- (b) the determinant of $B^T B$ Solution : The matrix B and its trans

The matrix B and its transpose B^T has the same eigenvalues. The product of the n eigenvalues of B is the same as the determinant of B. $det(B^TB) = 0$

(c) the eigenvalues of $(B^2 + I)^{-1}$. Let the eigenvalues for the matrix B be λ , and x be the eigenvectors. $Bx = \lambda x$ and Ix = x $B^2x = \lambda Bx \implies B^2x = \lambda^2 x$ $(B^2 + I)x = (\lambda^2 + 1)Bx \implies (B^2 + I)^{-1}x = \frac{1}{(\lambda^2 + 1)}Bx$ The eigenvalues of $(B^2 + I)^{-1}$ are $1, \frac{1}{2}, \frac{1}{5}$

(3 marks)

6. Describe all matrices S that diagonalize this matrix A (find all eigenvectors):

 $A = \begin{bmatrix} 4 & 0\\ 1 & 2 \end{bmatrix}$ (3 marks)

CONTINUED

Solution : $|A - \lambda I| = 0 \implies \lambda_1 = 4, \lambda_2 = 2$

Using the eigenvalues we obtain the eigenvectors (2,1) and (0,1). The columns of S are nonzero multiples of (2,1) and (0,1): either order

7. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the eigenvalues of matrix A. Likewise, let $\mu_1, \mu_2, ..., \mu_n$ be the eigenvalues of matrix B.(Note: Both A and B are $n \times n$ matrices.) If the eigenvectors of A and B are the same, are the eigenvalues of $(AB)^T$ and $(AB)^{-1}$ related? If so, how? (3 marks)

Hint : Use the properties of eigenvalues Solution :

The characteristic polynomial $p_X(t) = det(X - sI)$ of X is the same as the characteristic polynomial $p_{X^T}(s) = det(X^T - sI)$ of the transpose X^T . Therefore, the eigenvalues of X and X^T are the same. If t is an eigenvalue of Y, then $\frac{1}{t}$ is an eigenvalue of the matrix Y^{-1} .

Consider λ to be an eigenvalue of A and μ to be an eigenvalue of B and **x** be the corresponding eigenvector.

$$(AB)\mathbf{x} = A(B\mathbf{x})$$
$$= A(\mu\mathbf{x})$$
$$= \mu(A\mathbf{x})$$
$$= \mu(\lambda\mathbf{x})$$
$$= (\lambda\mu)\mathbf{x}.$$

Therefore, the eigenvalues of $(AB)^T$ are $\lambda_1\mu_1, \lambda_2\mu_2, ..., \lambda_n\mu_n$ and that of $(AB)^{-1}$ is $\frac{1}{\lambda_1\mu_1}, \frac{1}{\lambda_2\mu_2}, ..., \frac{1}{\lambda_n\mu_n}$

- 8. Find all cofactors of A and put them into the cofactor matrix C. Find det(A). A = $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
 - $\begin{bmatrix} 4 & 5 & 6 \\ 7 & 0 & 0 \end{bmatrix}$ Solution: $C = \begin{bmatrix} 0 & 42 & -35 \\ 0 & -21 & 14 \\ -3 & 6 & -3 \end{bmatrix}$ det(A) = 1(0) + 2(42) + 3(-35) = -21.(2 marks)