Linear Algebra and Random Processes (CS6015)

DEPT. OF COMPUTER SCIENCE AND ENGINEERING
 Indian Institute of Technology Madras

TUTORIAL 5
(Time allowed: FIFTY minutes)

NOTE: Attempt ALL questions. Total Marks : 25

1. Which of the matrices $A_{1}, A_{2}, A_{3}, A_{4}$ is positive-definite? Justify
$A_{1}=\left[\begin{array}{ll}5 & 6 \\ 6 & 7\end{array}\right] \quad A_{2}=\left[\begin{array}{ll}-1 & -2 \\ -2 & -5\end{array}\right] \quad A_{3}=\left[\begin{array}{cc}1 & 10 \\ 10 & 100\end{array}\right] \quad A_{4}=\left[\begin{array}{cc}1 & 10 \\ 10 & 101\end{array}\right]$
(6 marks)
Solution :
Each of the following tests is a necessary and sufficient condition for the real symmetric matrix A to be positive definite:
(I) $x^{\mathrm{T}} A x>0$ for all nonzero real vectors x.
(II) All the eigenvalues of A satisfy $\lambda_{i}>0$.
(III) All the upper left submatrices A_{k} have positive determinants.
(IV) All the pivots (without row exchanges) satisfy $d_{k}>0$.

Only $A_{4}=\left[\begin{array}{cc}1 & 10 \\ 10 & 101\end{array}\right]$ has two positive eigenvalues since $101>102$.
2. Which classes of matrices does P belong to: invertible, Hermitian, unitary? What are the eigenvalues of P ?
$\mathrm{P}=\left[\begin{array}{lll}0 & i & 0 \\ 0 & 0 & i \\ i & 0 & 0\end{array}\right]$

Solution :

$|P| \neq 0$. Hence invertible.
$P \neq P^{H}$. Hence not Hermitian.
$P P^{H}=I$. Hence Unitary.
This P is invertible and unitary. The eigenvalues of P are the roots of $\lambda^{3}=-i$, which are i and $i e^{2 \pi i / 3}$ and $i e^{4 \pi i / 3}$.
3. Prove that similar matrices A and B, have the same eigen values.

Solution :

The proof is quick, since $B=M^{-1} A M$ gives $A=M B M^{-1}$. Suppose $A \boldsymbol{x}=\lambda \boldsymbol{x}$:

$$
M B M^{-1} x=\lambda \boldsymbol{x} \quad \text { means that } \quad B\left(M^{-1} \boldsymbol{x}\right)=\lambda\left(M^{-1} \boldsymbol{x}\right)
$$

The eigenvalue of B is the same λ. The eigenvector has changed to $M^{-1} x$.
4. Suppose A has orthogonal columns $w_{1}, w_{2}, \ldots, w_{n}$ of lengths $\sigma_{1}, \sigma_{2}, \ldots \sigma_{n}$. What are U, Σ, and V in the SVD?
(3 marks)

Solution :

If A has orthogonal columns $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}$ of lengths $\sigma_{1}, \ldots, \sigma_{n}$, then $A^{\mathrm{T}} A$ will be diagonal with entries $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$. So the σ 's are definitely the singular values of A (as expected). The eigenvalues of that diagonal matrix $A^{\mathrm{T}} A$ are the columns of I, so $V=I$ in the SVD. Then the \boldsymbol{u}_{i} are $A \boldsymbol{v}_{i} / \sigma_{i}$ which is the unit vector $\boldsymbol{w}_{i} / \sigma_{i}$.

The SVD of this A with orthogonal columns is $A=U \Sigma V^{\mathrm{T}}=\left(A \Sigma^{-1}\right)(\Sigma)(I)$.
5. Construct the singular value decomposition (SVD) of $\mathrm{A}=\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right]$

Solution :

Solution: Compute $\mathbf{A} \mathbf{A}^{T}$, find its eigenvalues (it is generally preferred to put them into decreasing order) and then find corresponding unit eigenvectors:

$$
\begin{gathered}
\mathbf{A A}^{T}=\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right] \Rightarrow \operatorname{det}\left(\mathbf{A A}^{T}-\lambda \mathbf{I}\right)=\operatorname{det}\left[\begin{array}{cc}
8-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right]=0 \\
(8-\lambda)(2-\lambda)=0 \Rightarrow \lambda_{1}=8, \lambda_{2}=2
\end{gathered}
$$

Their corresponding unit eigenvectors are:

$$
\begin{aligned}
& \mathbf{A} \mathbf{A}^{T} \underline{u}_{1}=\lambda_{1} \underline{u}_{1} \Rightarrow\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{11} \\
u_{12}
\end{array}\right]=8\left[\begin{array}{l}
u_{11} \\
u_{12}
\end{array}\right] \Rightarrow \begin{array}{l}
8 u_{11}=8 u_{11} \Rightarrow u_{11}=1 \\
2 u_{12}=8 u_{12} \Rightarrow u_{12}=0
\end{array} \Rightarrow \underline{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \mathbf{A A}^{T} \underline{u}_{2}=\lambda_{2} \underline{u}_{2} \Rightarrow\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{21} \\
u_{22}
\end{array}\right]=2\left[\begin{array}{l}
u_{21} \\
u_{22}
\end{array}\right] \Rightarrow \begin{array}{l}
8 u_{21}=2 u_{21} \Rightarrow u_{21}=0 \\
2 u_{22}=2 u_{22} \Rightarrow u_{22}=1
\end{array} \Rightarrow \underline{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

The matrix \mathbf{U} is then:

$$
\mathbf{U}=\left[\begin{array}{ll}
\underline{u}_{1} & \underline{u}_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

The eigenvalues of the $\mathbf{A}^{T} \mathbf{A}$ are the same as the eigenvalues of the $\mathbf{A} \mathbf{A}^{T}$. The eigenvectors of the $\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$ are:

$$
\mathbf{A}^{T} \mathbf{A} \underline{v}_{1}=\lambda_{1} \underline{v}_{1} \Rightarrow\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
v_{11} \\
v_{12}
\end{array}\right]=8\left[\begin{array}{l}
v_{11} \\
v_{12}
\end{array}\right] \Rightarrow \begin{aligned}
& 5 v_{11}+3 v_{12}=8 v_{11} \Rightarrow v_{11}=v_{12} \\
& 3 v_{11}+5 v_{12}=8 v_{12} \Rightarrow v_{12}=v_{11}
\end{aligned}
$$

Choice of v_{11} will define v_{12} and vice versa. In general v_{11} and v_{12} can be any numbers, but since vector \underline{v}_{1} should have length of 1 , the v_{11} and v_{12} are chosen as follows:

$$
\left\|\underline{v}_{1}\right\|=1 \Rightarrow \sqrt{v_{11}^{2}+v_{12}^{2}}=1 \Rightarrow v_{11}=v_{12}=\frac{1}{\sqrt{2}} \Rightarrow \underline{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] .
$$

Unit eigenvector \underline{v}_{2} is:

$$
\begin{gathered}
\mathbf{A}^{T} \mathbf{A}_{\underline{v}_{2}}=\lambda_{2} \underline{v}_{2} \Rightarrow\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
v_{21} \\
v_{22}
\end{array}\right]=2\left[\begin{array}{l}
v_{21} \\
v_{22}
\end{array}\right] \Rightarrow \begin{array}{l}
5 v_{21}+3 v_{22}=2 v_{21} \Rightarrow v_{21}=0 \\
3 v_{21}+5 v_{22}=2 v_{22} \Rightarrow v_{22}=1
\end{array} \\
v_{21}=-v_{22} \Rightarrow \underline{v}_{2}=\left[\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] .
\end{gathered}
$$

The matrix \mathbf{V} is then:

$$
\mathbf{V}=\left[\begin{array}{ll}
\underline{v}_{1} & \underline{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \text { and } \mathbf{V}^{T}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] .
$$

The matrix \mathbf{S} is:

$$
\mathbf{S}=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{\lambda_{1}} & 0 \\
0 & \sqrt{\lambda_{2}}
\end{array}\right]=\left[\begin{array}{cc}
2 \sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right] .
$$

6. You are given the quadratic polynomial $f(x, y, z)$:

$$
f(x, y, z)=2 x^{2}-2 x y-4 x z+y^{2}+2 y z+3 z^{2}-2 x+2 z
$$

(a) Write $f(x, y, z)$ in the form $f(x, y, z)=x^{T} A x-b^{T} x$ where $x=(x, y, z)^{T}, A$ is a real symmetric matrix, and b is some constant vector. Solution :
We have

$$
A=\left(\begin{array}{ccc}
2 & -1 & -2 \\
-1 & 1 & 1 \\
-2 & 1 & 3
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right)
$$

(b) Find the point (x, y, z) where $f(x, y, z)$ is at an extremum. Solution :

We compute the partial derivatives to find the extremum point:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=4 x-2 y-4 z-2=0 \\
& \frac{\partial f}{\partial y}=-2 x+2 y+2 z=0 \\
& \frac{\partial f}{\partial x}=-4 x+2 y+6 z+2=0
\end{aligned}
$$

The equation is just $2 A \mathbf{x}=\mathbf{b}$. The solution to the the equations above is $x=1, y=1, z=0$. So the extreme point is $(1,1,0)$.
(c) Is this point a minimum, maximum, or a saddle point of some kind? Solution :

We look for the pivots of A :

$$
\left(\begin{array}{ccc}
2 & -1 & -2 \\
-1 & 1 & 1 \\
-2 & 1 & 3
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc}
2 & -1 & -2 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since A is positive definite, the extreme point is a minimum.
(4 marks)
7. Toss a fair coin 3 times. Let $H_{1}=$ 'heads on first toss' and $A=$ 'two heads total'. Are H_{1} and A independent?
(2 marks)

Solution :

We know that $P(A)=3 / 8$. Since this is not 0 we can check if the formula in Equation 5 holds. Now, $H_{1}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}\}$ contains exactly two outcomes $(H H T, H T H)$ from A, so we have $P\left(A \mid H_{1}\right)=2 / 4$. Since $P\left(A \mid H_{1}\right) \neq P(A)$ these events are not independent.
8. How many permutations of the letters ABCDEFGH contain the string ABC ?

Solution :

Think of the letters ABC as glued together. Thus we really have six objects, namely, the superletter ABC , and the individual letters $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, and H. Because these six objects can occur in any order, there are $6!=720$ permutations of the letters ABCDEFGH in which ABC occurs as a block.

