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Introduction
Chapter 1 concentrated on square invertible matrices. There was one 

solution to 𝐴𝑥 = 𝑏 and it was 𝑥 = −𝐴ିଵ𝑏. That solution was found by 
elimination (not by computing 𝐴ିଵ ). A rectangular matrix brings new 
possibilities - 𝑈 may not have a full set of pivots. This section goes onward 
from 𝑈 to a reduced form 𝑅 − the simplest matrix that elimination can give. 𝑅 reveals all solutions immediately.

For an invertible matrix, the null space contains only 𝑥 = 0
(multiply 𝐴𝑥 = 0 by 𝐴ିଵ ). The column space is the whole space (𝐴𝑥 = 𝑏
has a solution for every 𝑏). The new questions appear when the null space 
contains more than the zero vector and/or the column space contains less 
than all vectors: 

1. Any vector 𝑥௡ in the null space can be added to a particular solution 𝑥௣. The 
solutions to all linear equations have this form, 𝑥 = 𝑥௣ + 𝑥௡: 

2. When the column space doesn’t contain every 𝑏 in 𝑹௠, we need the 
conditions on 𝑏 that make 𝐴𝑥 = 𝑏 solvable. 



Approach:

First write down all solutions to 𝐴𝑥 = 0.
Then find the conditions for b to lie in the column space (so that 𝐴𝑥 = 𝑏 is solvable). 

The 1 𝑏𝑦 1 system 0𝑥 = 𝑏, one equation and one unknown, shows two 
possibilities:
• 0𝑥 = 𝑏 has no solution unless 𝑏 = 0. The column space of the 1 𝑏𝑦 1 zero 

matrix contains only 𝑏 = 0. 
• 0𝑥 = 0 has infinitely many solutions. The null space contains all 𝑥. A 

particular solution is 𝑥௣ = 0, and the complete solution is:𝒙 = 𝒙𝒑 + 𝒙𝒏 = 𝟎 + (𝒂𝒏𝒚 𝒙).



The matrix 1 12 2 is not invertible: 

𝑦 + 𝑧 = 𝑏ଵ and 2𝑦 + 2𝑧 = 𝑏ଶ usually have no solution. 
There is no solution unless 𝑏ଶ = 2𝑏ଵ.

The column space of 𝐴 contains only those 𝑏’s, the multiples of 1,2 . 
When 𝑏ଶ = 2𝑏ଵ there are infinitely many solutions. A particular 
solution to 𝑦 + 𝑧 = 2 and 2𝑦 + 2𝑧 =  4 is 𝑥௣ = (1, 1). 
The nullspace of A contains  - ??

(-1, 1) and all its multiples xn = (-c, c).



Fig 2.2: The parallel lines 
of solutions to 𝐴𝑥௡ = 0

and 1 12 2 𝑦𝑧 = 24

The null space of 𝐴 in figure below contains (−1, 1) and all its multiples 𝑥௡ = (−𝑐, 𝑐):



Echelon Form and Row Reduced Form 
We start by simplifying this 3 𝑏𝑦 4 matrix, first to 𝑈 and then 

further to 𝑅: 

The pivot 𝑎ଵଵ = 1 is nonzero. The usual elementary operations 
will produce zeros in the first column below this pivot. The bad news 
appears in column 2: 

The candidate for the second pivot has become zero: unacceptable. 
We look below that zero for a nonzero entry—intending to carry out a row 
exchange. In this case the entry below it is also zero. If 𝐴 were square, this 
would signal that the matrix was singular. With a rectangular matrix, we 
must expect trouble anyway, and there is no reason to stop.
All we can do is to go on to the next column, where the pivot entry is 3. 
Subtracting twice the second row from the third, we arrive at 𝑈:



Strictly speaking, we proceed to the fourth column. A zero is in the third 
pivot position, and nothing can be done. 𝑈 is upper triangular, but its pivots are 
not on the main diagonal. The nonzero entries of 𝑈 have a “staircase pattern,” or 
echelon form. For the 5 𝑏𝑦 8 case in Figure 2.3, the starred entries may or may 
not be zero. 

We can always reach this echelon form 𝑈, with zeros below the pivots: 
1. The pivots are the first nonzero entries in their rows.
2. Below each pivot is a column of zeros, obtained by elimination. 
3. Each pivot lies to the right of the pivot in the row above. This produces the 

staircase pattern, and zero rows come last.

Echelon Form and Row Reduced Form (contd.)



Since we started with 𝐴 and ended with 𝑈, the reader is certain to 
ask: Do we have 𝐴 = 𝐿𝑈 as before? There is no reason why not, since the 
elimination steps have not changed. Each step still subtracts a multiple of one 
row from a row beneath it. The inverse of each step adds back the multiple 
that was subtracted. These inverses come in the right order to put the 
multipliers directly into 𝐿: 

Note that 𝐿 is square. It has the same number of rows as 𝐴 and 𝑈. 
The only operation not required by our example, but needed in general, is 
row exchange by a permutation matrix 𝑃. Since we keep going to the next 
column when no pivots are available, there is no need to assume that 𝐴 is 
nonsingular. Here is 𝑃𝐴 = 𝐿𝑈 for all matrices:

2B For any 𝑚 𝑏𝑦 𝑛 matrix 𝐴 there is a permutation 𝑃, a lower triangular 𝐿
with unit diagonal, and an 𝑚 𝑏𝑦 𝑛 echelon matrix 𝑈, such that 𝑃𝐴 = 𝐿𝑈.

Echelon Form and Row Reduced Form (contd.)



Now comes 𝑅.    We can go further than 𝑈, to make the matrix 
even simpler. Divide the second row by its pivot 3, so that all pivots 
are 1. Then use the pivot row to produce zero above the pivot. This 
time we subtract a row from a higher row. The final result (the best 
form we can get) is the reduced row echelon form 𝑅:

This matrix 𝑅 is the final result of elimination on 𝐴. 
What is the row reduced form of a square invertible matrix? In that case 𝑅 is 
the identity matrix. There is a full set of pivots, all equal to 1, with zeros 
above and below. 
So 𝑟𝑟𝑒𝑓(𝐴) = 𝐼, when 𝐴 is invertible.

Echelon Form and Row Reduced Form (contd.)



For a 5 𝑏𝑦 8 matrix with four pivots, Figure 2.3 shows the 
reduced form 𝑅. It still contains an identity matrix, in the four 
pivot rows and four pivot columns. From 𝑅 we will quickly find the 
null space of 𝐴. 𝑅𝑥 = 0 has the same solutions as 𝑈𝑥 = 0 and 𝐴𝑥 = 0.



Pivot Variables and Free Variables
Our goal is to read off all the solutions to 𝑅𝑥 = 0. The pivots are crucial:

The unknowns 𝑢, 𝑣, 𝑤, 𝑦 go into two groups. One group contains 
the pivot variables, those that correspond to columns with pivots. The 
first and third columns contain the pivots, so 𝑢 and 𝑤 are the pivot 
variables. The other group is made up of the free variables, corresponding 
to columns without pivots. These are the second and fourth columns, so 𝑣 and 𝑦 are free variables. 

To find the most general solution to 𝑅𝑥 = 0 (or, equivalently, to 𝐴𝑥 = 0) we may assign arbitrary values to the free variables. Suppose we 
call these values simply 𝑣 and 𝑦. The pivot variables are completely 
determined in terms of 𝑣 and 𝑦:



There is a “double infinity” of solutions, with v and y free and 
independent. The complete solution is a combination of two special 
solutions: 

Relook at the complete solution to 𝑅𝑥 = 0 and 𝐴𝑥 = 0. The special 
solution (−3, 1, 0, 0) has free variables 𝑣 = 1, 𝑦 = 0. The other special solution (1, 0, −1, 1) has 𝑣 = 0 and 𝑦 = 1. 

All solutions are linear combinations of these two. The best way to find all 
solutions to 𝐴𝑥 = 0 is from the special solutions:
1. After reaching 𝑅𝑥 = 0, identify the pivot variables and free variables.
2. Give one free variable the value 1, set the other free variables to 0, and solve 𝑅𝑥 = 0 for the pivot variables. This 𝑥 is a special solution.
3. Every free variable produces its own “special solution” by step 2. The 

combinations of special solutions form the null space—all solutions to 𝐴𝑥 = 0.

Within the four-dimensional space of all possible vectors x, the solutions 
to 𝐴𝑥 = 0 form a two-dimensional subspace—the null space of 𝐴. In the example, 𝑁(𝐴) is generated by the special vectors (−3, 1, 0, 0) and (1, 0, −1, 1). The 
combinations of these two vectors produce the whole null space.



The special solutions are especially easy from 𝑅. The numbers [3 and 
0] and [−1 and 1] lie in the “non-pivot columns” of 𝑅. Reverse their signs to 
find the pivot variables (not free) in the special solutions. Two special 
solutions from equation (2) are put into a null space matrix 𝑁:

The free variables have values 1 and 0. When the free columns 
moved to the right-hand side of equation (2), their coefficients 3 and 0 and 
−1 and 1 switched sign. That determined the pivot variables in the special 
solutions (the columns of 𝑁). 

This is the place to recognize one extremely important theorem. 
Suppose a matrix has more columns than rows, 𝑛 > 𝑚. Since m rows can 
hold at most 𝑚 pivots, there must be at least 𝑛 − 𝑚 free variables. There 
will be even more free variables if some rows of 𝑅 reduce to zero; but no 
matter what, at least one variable must be free. This free variable can be 
assigned any value, leading to the following conclusion:

2C If 𝐴𝑥 = 0 has more unknowns than equations (𝑛 > 𝑚), it has at least 
one special solution: There are more solutions than the trivial 𝑥 = 0.



There must be infinitely many solutions, since any multiple 𝑐𝑥 will also satisfy 𝐴(𝑐𝑥) = 0. The null space contains the line 
through 𝑥. And if there are additional free variables, the null space 
becomes more than just a line in 𝑛-dimensional space. The null 
space has the same “dimension” as the number of free variables 
and special solutions. 

This central idea—the dimension of a subspace—is made 
precise in the next section. We count the free variables for the null 
space. We count the pivot variables for the column space! 



Solving , , and 
The case 𝑏 ≠ 0 is quite different from 𝑏 = 0. The row 

operations on 𝐴 must act also on the right-hand side (on 𝑏). We 
begin with letters (𝑏1, 𝑏2, 𝑏3) to find the solvability condition—for 𝑏
to lie in the column space. Then we choose:𝑏 = 1, 5, 5    < − 𝑤ℎ𝑦 ? ? ;   and find all solutions 𝑥.

For the original example 𝐴𝑥 = 𝑏 = (𝑏1, 𝑏2, 𝑏3), apply to 
both sides the operations that led from 𝐴 to 𝑈. The result is an 
upper triangular system 𝑈𝑥 = 𝑐:

The vector c on the right-hand side, which appeared after 
the forward elimination steps, is just 𝐿ିଵ𝑏 as in the previous 
chapter. Start now with 𝑈𝑥 = 𝑐.



It is not clear that these equations have a solution. The third 
equation is very much in doubt, because its left-hand side is zero.

The equations are inconsistent unless 𝑏ଷ − 2𝑏ଶ + 5𝑏ଵ = 0. 
Even though there are more unknowns than equations, there 
may be no solution. 

We know another way of answering the same question: 𝐴𝑥 = 𝑏 can be solved if and only if 𝑏 lies in the column space of 𝐴. This subspace comes from the four columns of 𝐴 (not of 𝑈!):



Even though there are four vectors, their combinations only 
fill out a plane in three dimensional space. Column 2 is three times 
column 1. The fourth column equals the third minus the first. 

These dependent columns, the second and fourth, are 
exactly the ones without pivots. 

The column space 𝐶(𝐴) can be described in two different 
ways. On the one hand, it is the plane generated by columns 1 and 
3. The other columns lie in that plane, and contribute nothing new. 
Equivalently, it is the plane of all vectors b that satisfy 𝑏ଷ − 2𝑏ଶ +5𝑏ଵ = 0; this is the constraint if the system is to be solvable.

Every column satisfies this constraint, so it is forced on b!
Geometrically, we shall see that the vector (5, −2, 1) is 
perpendicular to each column.



If 𝑏 belongs to the column space, the solutions of 𝐴𝑥 = 𝑏 are easy 
to find. The last equation in 𝑈𝑥 = 𝑐 is 0 = 0. To the free variables 𝑣 and 𝑦, we may assign any values, as before. The pivot variables 𝑢 and 𝑤 are still determined by back-substitution. For a specific 
example with 𝑏ଷ − 2𝑏ଶ + 5𝑏ଵ = 0, choose 𝑏 = (1, 5, 5):





This has all solutions to 𝐴𝑥 = 0, plus the new 𝑥௣ = (−2,0,1,0). That 𝑥௣ is a particular solution to 𝐴𝑥 = 𝑏. The last two terms with 𝑣 and 𝑦 yield more solutions (because they satisfy 𝐴𝑥 = 0). Every solution 
to 𝐴𝑥 = 𝑏 is the sum of one particular solution and a solution to 𝐴𝑥 = 0: 𝑥௖௢௠௣௟௘௧௘ = 𝑥௣௔௥௧௜௖௨௟௔௥ + 𝑥௡௨௟௟௦௣௔௖௘

The particular solution in equation (4) comes from solving 
the equation with all free variables set to zero. That is the only new 
part, since the null space is already computed. When you multiply 
the above equation by A, you get 𝐴𝑥௖௢௠௣௟௘௧௘ = 𝑏 + 0.

Geometrically, the solutions again fill a two-dimensional 
surface—but it is not a subspace. It does not contain 𝑥 = 0. It is 
parallel to the null space we had before, shifted by the particular 
solution 𝑥௣ as in Figure 2.2



Equation (4) is a good way to write the answer: 

1. Reduce 𝐴𝑥 = 𝑏 to 𝑈𝑥 = 𝑐.
2. With free variables = 0, find a particular solution to 𝐴𝑥௣ = 𝑏 and 𝑈𝑥௣ = 𝑐.
3. Find the special solutions to 𝐴𝑥 = 0 (or 𝑈𝑥 = 0 or 𝑅𝑥 = 0). Each 

free variable, in turn, is 1. Then 𝑥 = 𝑥௣ + (any combination 𝑥௡ of 
special solutions).

When the equation was 𝐴𝑥 = 0, the particular solution was 
the zero vector! It fits the pattern, but 𝑥௣௔௥௧௜௖௨௟௔௥ = 0 was not 
written in equation (2). Now 𝑥௣ is added to the null space solutions, 
as in equation (4).



Question: How does the reduced form 𝑅 make this solution even 
clearer? You will see it in our example. Subtract equation 2 from 
equation 1, and then divide equation 2 by its pivot. On the left-
hand side, this produces 𝑅, as before. On the right-hand side, 
these operations change 𝑐 = (1,3,0) to a new vector 𝑑 =(−2,1,0):

Our particular solution 𝑥௣, (one choice out of many) has free 
variables 𝑣 = 𝑦 = 0. Columns 2 and 4 can be ignored. Then we 
immediately have 𝑢 = −2 and 𝑤 = 1, exactly as in equation (4). The 
entries of 𝑑 go directly into 𝑥௣. This is because the identity matrix is 
sitting in the pivot columns of 𝑅!

Thus, elimination reveals the pivot variables and free variables. If 
there are 𝑟 pivots, there are 𝑟 pivot variables and 𝑛 − 𝑟 free variables.
That important number r will be given a name—it is the rank of the 
matrix.



2D Suppose elimination reduces 𝐴𝑥 = 𝑏 to 𝑈𝑥 = 𝑐 and 𝑅𝑥 = 𝑑, with 𝑟
pivot rows and 𝑟 pivot columns. The rank of those matrices is 𝑟. The last 𝑚 − 𝑟 rows of 𝑈 and 𝑅 are zero, so there is a solution only if the last 𝑚 −r entries of 𝑐 and 𝑑 are also zero.

The complete solution is 𝑥 = 𝑥௣ + 𝑥௡. One particular solution 𝑥௣ has all 
free variables zero. Its pivot variables are the first 𝑟 entries of 𝑑, so 𝑅𝑥௣ = 𝑑.

The null space solutions 𝑥_𝑛 are combinations of 𝑛 − 𝑟 special solutions, 
with one free variable equal to 1. The pivot variables in that special 
solution can be found in the corresponding column of 𝑅 (with sign 
reversed).

Thus, rank 𝑟 is crucial. It counts the pivot rows in the “row space” and 
the pivot columns in the column space. There are 𝑛 − 𝑟 special solutions 
in the null space. There are 𝑚 − 𝑟 solvability conditions on 𝑏 or 𝑐 or 𝑑.



Another Worked Example
The full picture uses elimination and pivot columns to find the column space, 
nullspace, and rank. The 3 by 4 matrix 𝐴 has rank 2: 



Solution: (Notice how the right-hand side is included as an extra 
column!)



Solution (contd.)


