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The goal of this section is to explain and use four ideas:

1. Linear independence or dependence.
2. Spanning a subspace.
3. Basis for a subspace (a set of vectors).
4. Dimension of a subspace (a number).



Linear Independence
Given a set of vectors 𝑣 , … , 𝑣  , we look at their combinations 𝑐 𝑣 + 𝑐 𝑣 + ··· +𝑐 𝑣  . The trivial combination, with all weights 𝑐𝑖 = 0, 
obviously produces the zero vector: 0𝑣 +··· +0𝑣 = 0. The question is whether 
this is the only way to produce zero. If so, the vectors are independent. 
If any other combination of the vectors gives zero, they are dependent.

2E Suppose 𝑐 𝑣 + 𝑐 𝑣 + ··· +𝑐 𝑣 = 0 only happens when 𝑐 = ⋯ = 𝑐 = 0.
Then the vectors 𝑣 , … , 𝑣  are linearly independent. If any 𝑐’s are nonzero, the 𝑣’s are linearly dependent. One vector is a combination of the others.

Linear dependence is easy to visualize in three-dimensional space, 
when all vectors go out from the origin. Two vectors are dependent if they lie 
on the same line. Three vectors are dependent if they lie in the same plane. A 
random choice of three vectors, without any special accident, should produce 
linear independence (not in a plane). Four vectors are always linearly dependent 
in 𝑹 .

Example 1. If 𝑣 = zero vector, then the set is linearly dependent. We may 
choose 𝑐 = 3 and all other 𝑐 = 0; this is a nontrivial combination that 
produces zero.



are linearly dependent, since the second column is three times the first. The 
combination of columns with weights −3, 1, 0, 0 gives a column of zeros.
The rows are also linearly dependent; row 3 is two times row 2 minus five times 
row 1. (This is the same as the combination of 𝑏 , 𝑏 , 𝑏 , that had to vanish on 
the right-hand side in order for 𝐴𝑥 = 𝑏 to be consistent. Unless 𝑏 − 2𝑏 +5𝑏 = 0, the third equation would not become 0 = 0.)



We have to show that 𝑐 , 𝑐 , 𝑐 are all forced to be zero. The last equation 
gives 𝑐 = 0. Then the next equation gives 𝑐 = 0, and substituting into the 
first equation forces 𝑐 = 0. The only combination to produce the zero vector 
is the trivial combination. The null space of 𝐴 contains only the zero vector 𝑐 = 𝑐 = 𝑐 = 0.

The nonzero rows of any echelon matrix 𝑈 must be independent. 
Furthermore, if we pick out the columns that contain the pivots, they also are 
linearly independent. In our earlier example, with

the pivot columns 1 and 3 are independent. No set of three columns is 
independent, and certainly not all four. It is true that columns 1 and 4 are also 
independent, but if that last 1 were changed to 0 they would be dependent. It 
is the columns with pivots that are guaranteed to be independent.



The general rule is:
2F The r nonzero rows of an echelon matrix 𝑈 and a reduced matrix 𝑅 are 
linearly independent. So are the 𝑟 columns that contain pivots. 

Most sets of four vectors in 𝑹 are independent. Those e’s might be the safest.



To check any set of vectors 𝑣 , … , 𝑣 for independence, put them in the 
columns of 𝐴. Then solve the system 𝐴𝑐 = 0; the vectors are dependent if there is 
a solution other than 𝑐 = 0. With no free variables (rank 𝑛), there is no null space 
except 𝑐 = 0; the vectors are independent. If the rank is less than 𝑛, at least one 
free variable can be nonzero and the columns are dependent.

One case has special importance. Let the 𝑛 vectors have m components, 
so that 𝐴 is an 𝑚 𝑏𝑦 𝑛 matrix. Suppose now that 𝑛 > 𝑚. There are too many 
columns to be independents There cannot be 𝑛 pivots, since there are not enough 
rows to hold them. The rank will be less than 𝑛. Every system 𝐴𝑐 = 0 with more 
unknowns than equations has solutions 𝑐 ≠ 0.

2G A set of 𝑛 vectors in 𝑹 must be linearly dependent if 𝑛 > 𝑚. 

The reader will recognize this as a disguised form of 2C: Every 𝑚 𝑏𝑦 𝑛 system 𝐴𝑥 = 0 has nonzero solutions if 𝑛 > 𝑚.





Spanning a Subspace
Now we define what it means for a set of vectors to span a 

space. The column space of 𝐴 is spanned by the columns. Their 
combinations produce the whole space: 

2H If a vector space 𝑽 consists of all linear combinations of 𝑤 , … , 𝑤ℓ , 
then these vectors span the space. Every vector 𝑣 in 𝑽 is some 
combination of the 𝑤’s: 
Every 𝑣 comes from 𝑤’s          𝑣 = 𝑐 𝑤 +··· +𝑐ℓ𝑤ℓ for some 
coefficients 𝑐 .

It is permitted that a different combination of 𝑤’s could give the 
same vector 𝑣. The 𝑐’s need not be unique, because the spanning set 
might be excessively large—it could include the zero vector, or even all 
vectors. 

Example 6.  The vectors 𝑤 = (1,0,0), 𝑤 = (0,1,0), 𝑎𝑛𝑑 𝑤 = (−2,0,0)
span a plane (the 𝑥 − 𝑦 plane) in 𝑹  . The first two vectors also span this 
plane, whereas 𝑤 and 𝑤 span only a line.



Example 7. The column space of 𝐴 is exactly the space that is spanned by its 
columns. The row space is spanned by the rows. The definition is made to 
order. Multiplying 𝐴 by any 𝑥 gives a combination of the columns; it is a vector 𝐴𝑥 in the column space.
The coordinate vectors 𝑒 , … , 𝑒  coming from the identity matrix span 𝑹 . 
Every vector 𝑏 = (𝑏 , … , 𝑏 ) is a combination of those columns. In this 
example the weights are the components 𝑏𝑖 themselves: 𝑏 = 𝑏 𝑒 +··· +𝑏 𝑒 . 
But the columns of other matrices also span 𝑹  !

Spanning a Subspace (contd.)



Basis for a Vector Space
To decide if 𝑏 is a combination of the columns, we try to solve 𝐴𝑥 = 𝑏. To decide 
if the columns are independent, we solve 𝐴𝑥 = 0. Spanning involves the 
column space, and independence involves the null space. The coordinate 
vectors 𝑒 , … , 𝑒 span 𝑅 and they are linearly independent. Roughly speaking, 
no vectors in that set are wasted. This leads to the crucial idea of a basis.

2I A basis for 𝑽 is a sequence of vectors having two properties at once: 
1. The vectors are linearly independent (not too many vectors). 
2. They span the space 𝑽 (not too few vectors).

This combination of properties is absolutely fundamental to linear 
algebra. It means that every vector in the space is a combination of the basis 
vectors, because they span. It also means that the combination is unique: If 𝑣 =𝑎 𝑣  + ···  + 𝑎 𝑣 and also 𝑣 = 𝑏 𝑣  + ···  + 𝑏_𝑘 𝑣  , then subtraction gives 0 =  ∑ 𝑎 − 𝑏 𝑣  . Now independence plays its part; every coefficient 𝑎 −𝑏  must be zero. Therefore 𝑎 = 𝑏  . There is one and only one way to write 𝑣 as 
a combination of the basis vectors.



We had better say at once that the coordinate vectors 𝑒 , … , 𝑒  are not the only 
basis for 𝑹 . Some things in linear algebra are unique, but not this. A vector 
space has infinitely many different bases. Whenever a square matrix is 
invertible, its columns are independent—and they are a basis for 𝑹 . The two 
columns of this non-singular matrix are a basis for 𝑹 :

Every two-dimensional vector is a combination of those (independent!) columns.

Basis for a Vector Space (contd.)

Example 8. The 𝑥 − 𝑦 plane in Figure 2.4 is just 𝑹 . The vector 𝑣 by itself is linearly 
independent, but it fails to span 𝑹 . The three 
vectors 𝑣 , 𝑣 , 𝑣  certainly span 𝑹 , but are not 
independent. Any two of these vectors, say 𝑣
and 𝑣 , have both properties—they span, and 
they are independent. So they form a basis. 
Notice again that a vector space does not have a 
unique basis.

Figure 2.4: A spanning set 𝑣 , 𝑣 , 𝑣 . Bases 𝑣 , 𝑣  and 𝑣 , 𝑣 and 𝑣 , 𝑣 .



There are many possibilities for a basis, but we propose a specific choice: 
The columns that contain pivots (in this case the first and third, which 
correspond to the basic variables) are a basis for the column space. These 
columns are independent, and it is easy to see that they span the space. In fact, 
the column space of 𝑈 is just the 𝑥 − 𝑦 plane within 𝑹 . 𝐶(𝑈) is not the same as 
the column space 𝐶(𝐴) before elimination—but the number of independent 
columns didn’t change.

To summarize: The columns of any matrix span its column space. If they are 
independent, they are a basis for the column space—whether the matrix is 
square or rectangular. If we are asking the columns to be a basis for the whole 
space 𝑹  , then the matrix must be square and invertible.

Basis for a Vector Space (contd.)



A space has infinitely many different bases, but there is something 
common to all of these choices. The number of basis vectors is a property of 
the space itself:
2J Any two bases for a vector space 𝑽 contain the same number of vectors. 
This number, which is shared by all bases and expresses the number of 
“degrees of freedom” of the space, is the dimension of 𝑽. 

We have to prove this fact: All possible bases contain the same 
number of vectors. The 𝑥 − 𝑦 plane in Figure 2.4 has two vectors in every basis; 
its dimension is 2. In three dimensions we need three vectors, along the 𝑥 −𝑦 − 𝑧 axes or in three other (linearly independent!) directions. The dimension 
of the space 𝑹 is 𝑛. 

The column space of 𝑈 in Example 9 had dimension 2; it was a “two-
dimensional subspace of 𝑹 .” The zero matrix is rather exceptional, because its 
column space contains only the zero vector. By convention, the empty set is a 
basis for that space, and its dimension is zero.
Here is our first big theorem in linear algebra:
2K If 𝑣 , … , 𝑣  and 𝑤 , … , 𝑤  are both bases for the same vector space, then 𝑚 = 𝑛. The number of vectors is the same.

Dimension of a Vector Space



Proof of theorem: 2K 
Proof. Suppose there are more 𝑤’s than 𝑣’s (𝑛 > 𝑚). We will arrive at a 
contradiction. Since the 𝑣’s form a basis, they must span the space. 
Every 𝑤 can be written as a combination of the 𝑣’s: If 𝑤 = 𝑎 𝑣 +···+ 𝑎 𝑣 , this is the first column of a matrix multiplication 𝑉𝐴: 

We don’t know each 𝑎 , but we know the shape of 𝐴 (it is 𝑚 𝑏𝑦 𝑛). The second vector 𝑤 is also a combination of the 𝑣’s. The 
coefficients in that combination fill the second column of 𝐴. The key is 
that 𝐴 has a row for every 𝑣 and a column for every 𝑤. 𝐴 is a short, wide 
matrix, since 𝑛 > 𝑚. There is a nonzero solution to 𝐴𝑥 = 0. Then 𝑉𝐴𝑥 =0 which is 𝑊𝑥 = 0. A combination of the 𝑤’s gives zero! The w’s could 
not be a basis—so we cannot have 𝑛 > 𝑚. 

If 𝑚 > 𝑛 we exchange the 𝑣’s and 𝑤’s and repeat the same 
steps. The only way to avoid a contradiction is to have 𝑚 = 𝑛. This 
completes the proof that 𝑚 = 𝑛. To repeat: The dimension of a space is 
the number of vectors in every basis.



There are other “dual” theorems, of which we mention 
only one. We can start with a set of vectors that is too small or 
too big, and end up with a basis: 
2L Any linearly independent set in 𝑽 can be extended to a basis, 
by adding more vectors if necessary.

Any spanning set in 𝑽 can be reduced to a basis, by 
discarding vectors if necessary. 

The point is that a basis is a maximal independent set. It 
cannot be made larger without losing independence. A basis is 
also a minimal spanning set. It cannot be made smaller and still 
span the space.

This proof was used earlier to show that every set of 𝑚 + 1 vectors 
in 𝑹^𝑚 must be dependent. The 𝑣’s and 𝑤’s need not be column 
vectors—the proof was all about the matrix 𝐴 of coefficients. In fact we 
can see this general result: In a subspace of dimension 𝑘, no set of more 
than 𝑘 vectors can be independent, and no set of more than 𝑘 vectors 
can span the space.



You must notice that the word “dimensional” is used in two 
different ways. We speak about a four-dimensional vector, 
meaning a vector in 𝑹 . Now we have defined a four dimensional 
subspace; an example is the set of vectors in 𝑹 whose first and 
last components are zero. The members of this four-dimensional 
subspace are six-dimensional vectors like (0,5,1,3,4,0). 

One final note about the language of linear algebra. We 
never use the terms “basis of a matrix” or “rank of a space” or 
“dimension of a basis.” These phrases have no meaning. It is the 
dimension of the column space that equals the rank of the matrix, 
as we prove in the coming section


