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Subspaces can be described in two ways. First, we may be given a set 
of vectors that span the space. (Example: The columns span the 
column space.) Second, we may be told which conditions the vectors 
in the space must satisfy. (Example: The null space consists of all 
vectors that satisfy Ax = 0.)

The first description may include useless vectors (dependent columns). 
The second description may include repeated conditions (dependent 
rows). We can’t write a basis by inspection, and a systematic 
procedure is necessary.

When elimination on A produces an echelon matrix U or a reduced R, 
we will find a basis for each of the subspaces associated with A. Then 
we have to look at the extreme case of full rank:



To organize the whole discussion, we take each of the four subspaces in 
turn. Two of them are familiar and two are new.

1. The column space of 𝐴 is denoted by 𝐶(𝐴). Its dimension is the rank 𝑟. 

2. The nullspace of 𝐴 is denoted by 𝑁(𝐴). Its dimension is 𝑛 − 𝑟.

3. The row space of 𝐴 is the column space of 𝐴𝑇 . It is 𝐶(𝐴𝑇), and it is 
spanned by the rows of 𝐴. Its dimension is also 𝑟.

4. The left nullspace of 𝐴 is the nullspace of 𝐴𝑇 . It contains all vectors 𝑦
such that 𝐴𝑇𝑦 = 0, and it is written 𝑁 𝐴𝑇 .

5. The point about the last two subspaces is that they come from 𝐴𝑇 . If 𝐴
is an 𝑚 𝑏𝑦 𝑛 matrix, you can see which “host” spaces contain the four 
subspaces by looking at the number of components:

The rows have 𝑛 components and the columns have 𝑚.



For a simple matrix like

the column space is the line through 
1
0

. The row space is the line 

through 1 0 0 𝑇. It is in 𝑹3 . The nullspace is a plane in 𝑹3 and the left 
nullspace is a line in 𝑹2 :

Note that all vectors are column vectors. Even the rows are transposed, 
and the row space of 𝐴 is the column space of 𝐴𝑇. Our problem will be to 
connect the four spaces for 𝑈 (after elimination) to the four spaces for 𝐴: 



The row space of 𝐴 For an echelon matrix like 𝑈, the row space is clear. 
It contains all combinations of the rows, as every row space does—but 
here the third row contributes nothing. The first two rows are a basis for 
the row space. A similar rule applies to every echelon matrix 𝑈 or 𝑅, 
with 𝑟 pivots and 𝑟 nonzero rows: The nonzero rows are a basis, and 
the row space has dimension 𝑟. That makes it easy to deal with the 
original matrix 𝐴.

2M The row space of 𝐴 has the same dimension 𝑟 as the row space of 
𝑈, and it has the same bases, because the row spaces of 𝐴 and 𝑈 (and 
𝑅) are the same.

The reason is that each elementary operation leaves the row space 
unchanged. The rows in 𝑈 are combinations of the original rows in 𝐴. 
Therefore the row space of 𝑈 contains nothing new. At the same time, 
because every step can be reversed, nothing is lost; the rows of 𝐴 can 
be recovered from 𝑈. It is true that 𝐴 and 𝑈 have different rows, but the 
combinations of the rows are identical: same space!

Row Space



Note that we did not start with the 𝑚 rows of 𝐴, which span the row 
space, and discard 𝑚 − 𝑟 of them to end up with a basis. According 
to 2L, we could have done so. But it might be hard to decide which 
rows to keep and which to discard, so it was easier just to take the 
nonzero rows of 𝑈.



The nullspace of 𝐴 Elimination simplifies a system of linear equations 
without changing the solutions. The system 𝐴𝑥 = 0 is reduced to 𝑈𝑥 =
0, and this process is reversible. The nullspace of 𝐴 is the same as the 
nullspace of 𝑈 and 𝑅. Only 𝑟 of the equations 𝐴𝑥 = 0 are independent. 
Choosing the 𝑛 − 𝑟 “special solutions” to 𝐴𝑥 = 0 provides a definite 
basis for the nullspace: 

2N The nullspace 𝑁(𝐴) has dimension 𝑛 − 𝑟. The “special solutions” 
are a basis—each free variable is given the value 1, while the other free 
variables are 0. Then 𝐴𝑥 = 0 or 𝑈𝑥 = 0 or 𝑅𝑥 = 0 gives the pivot 
variables by back-substitution. 

This is exactly the way we have been solving 𝑈𝑥 = 0. The basic example 
above has pivots in columns 1 and 3. Therefore its free variables are the 
second and fourth 𝑣 and 𝑦.

Nullspace



Any combination 𝑐1𝑥1 + 𝑐2𝑥2 has 𝑐1 as its 𝑣 component, and 𝑐2
as its 𝑦 component. The only way to have 𝑐1𝑥1 + 𝑐2𝑥2 = 0 is to 
have 𝑐1 = 𝑐2 = 0, so these vectors are independent. They also 
span the nullspace; the complete solution is 𝑣𝑥1 + 𝑦𝑥2. Thus the 
𝑛 − 𝑟 = 4 − 2 vectors are a basis. 

The nullspace is also called the kernel of 𝐴, and its dimension 𝑛 −
𝑟 is the nullity. 



The column space of 𝐴 The column space is sometimes called the 
range. This is consistent with the usual idea of the range, as the set of 
all possible values 𝑓(𝑥); 𝑥 is in the domain and 𝑓(𝑥) is in the range. In 
our case the function is 𝑓(𝑥) = 𝐴𝑥. Its domain consists of all 𝑥 in 𝑹𝑛 ; 
its range is all possible vectors 𝐴𝑥, which is the column space. (In an 
earlier edition of this book we called it 𝑅(𝐴).)

Our problem is to find bases for the column spaces of 𝑈 and 𝐴. Those 
spaces are different (just look at the matrices!) but their dimensions 
are the same. 

The first and third columns of 𝑈 are a basis for its column space. They 
are the columns with pivots. Every other column is a combination of 
those two. Furthermore, the same is true of the original 𝐴—even 
though its columns are different. The pivot columns of 𝐴 are a basis for 
its column space. The second column is three times the first, just as in 
𝑈. The fourth column equals (column 3) − (column 1). The same 
nullspace is telling us those dependencies.

Column space



The reason is this: 𝐴𝑥 = 0 exactly when 𝑈𝑥 = 0. The two systems 
are equivalent and have the same solutions. The fourth column of 
𝑈 was also (column 3) − (column 1). Every linear dependence 𝐴𝑥 =
0 among the columns of 𝐴 is matched by a dependence 𝑈𝑥 = 0
among the columns of 𝑈, with exactly the same coefficients. If a set 
of columns of 𝐴 is independent, then so are the corresponding 
columns of 𝑈, and vice versa.

To find a basis for the column space 𝐶(𝐴), we use what is already 
done for 𝑈. The 𝑟 columns containing pivots are a basis for the 
column space of 𝑈. We will pick those same 𝑟 columns in 𝐴: 

2O The dimension of the column space 𝐶(𝐴) equals the rank 𝑟, 
which also equals the dimension of the row space: The number of 
independent columns equals the number of independent rows. 𝐴
basis for 𝐶(𝐴) is formed by the 𝑟 columns of 𝐴 that correspond, in 
𝑈, to the columns containing pivots.



The row space and the column space have the same dimension r! This is 
one of the most important theorems in linear algebra. It is often 
abbreviated as “row rank = column rank.” It expresses a result that, for a 
random 10 𝑏𝑦 12 matrix, is not at all obvious. It also says something 
about square matrices: If the rows of a square matrix are linearly 
independent, then so are the columns (and vice versa). Again, that does 
not seem self-evident (at least, not to the author). 

To see once more that both the row and column spaces of 𝑈 have 
dimension 𝑟, consider a typical situation with rank 𝑟 = 3. The echelon 
matrix 𝑈 certainly has three independent rows:



We claim that 𝑈 also has three independent columns, and no more, The 
columns have only three nonzero components. If we can show that the 
pivot columns—the first, fourth, and sixth—are linearly independent, 
they must be a basis (for the column space of 𝑈, not 𝐴!). Suppose a 
combination of these pivot columns produced zero:

Working upward in the usual way, 𝑐3 must be zero because the pivot 
𝑑3 ≠ 0, then 𝑐2 must be zero because 𝑑2 ≠ 0, and finally 𝑐1 = 0. This 
establishes independence and completes the proof. Since 𝐴𝑥 = 0 if and 
only if 𝑈𝑥 = 0, the first, fourth, and sixth columns of 𝐴— whatever the 
original matrix 𝐴 was, which we do not even know in this example—are a 
basis for 𝐶(𝐴).



The row space and column space both became clear after 
elimination on 𝐴. Now comes the fourth fundamental subspace, 
which has been keeping quietly out of sight. Since the first three 
spaces were 𝐶(𝐴), 𝑁(𝐴), and 𝐶(𝐴𝑇), the fourth space must be 
𝑁(𝐴𝑇), It is the nullspace of the transpose, or the left nullspace of 
𝐴. 𝐴𝑇𝑦 = 0 means 𝑦𝑇𝐴 = 0, and the vector appears on the left-
hand side of 𝐴.



The left nullspace of 𝐴 (= the nullspace of 𝐴𝑇 ) If 𝐴 is an m by n 
matrix, then 𝐴𝑇 is 𝑛 𝑏𝑦 𝑚. Its nullspace is a subspace of 𝑹𝑚; the vector 
𝑦 has 𝑚 components. Written as 𝑦𝑇𝐴 = 0, those components multiply 
the rows of 𝐴 to produce the zero row:

𝑦𝑇𝐴 = 𝑦1 ⋅⋅⋅ 𝑦𝑚 𝐴 = 0 ⋅⋅⋅ 0 .

The dimension of this nullspace 𝑁(𝐴𝑇) is easy to find, For any matrix, 
the number of pivot variables plus the number of free variables must 
match the total number of columns. For 𝐴, that was 𝑟 + (𝑛 − 𝑟) = 𝑛. 
In other words, rank plus nullity equals 𝑛:

This law applies equally to 𝐴𝑇, which has m columns. 𝐴𝑇 is just as good 
a matrix as 𝐴. But the dimension of its column space is also 𝑟, so 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐶 𝐴 + 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑁 𝐴 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠.

𝑟 + 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑁 𝐴𝑇 = 𝑚

Left nullspace



2P The left nullspace 𝑁(𝐴𝑇) has dimension 𝑚 − 𝑟.

The 𝑚 − 𝑟 solutions to 𝑦𝑇𝐴 = 0 are hiding somewhere in elimination. 
The rows of 𝐴 combine to produce the 𝑚 − 𝑟 zero rows of 𝑈. Start 
from 𝑃𝐴 = 𝐿𝑈, or 𝐿−1𝑃𝐴 = 𝑈. The last 𝑚 − 𝑟 rows of the invertible 
matrix 𝐿−1𝑃 must be a basis of 𝑦’s in the left nullspace— because they 
multiply 𝐴 to give the zero rows in 𝑈.

In our 3 𝑏𝑦 4 example, the zero row was row 3 − 2(𝑟𝑜𝑤 2) +
5(𝑟𝑜𝑤 1). Therefore the components of 𝑦 are 5, −2, 1. This is the 
same combination as in 𝑏3 − 2𝑏2 + 5𝑏1 on the right-hand side, leading 
to 0 = 0 as the final equation. That vector 𝑦 is a basis for the left 
nullspace, which has dimension 𝑚 − 𝑟 = 3 − 2 = 1. It is the last 
row of 𝐿−1𝑃, and produces the zero row in 𝑈—and we can often see it 
without computing 𝐿−1. When desperate, it is always possible just to 
solve 𝐴𝑇𝑦 = 0.



1. The column space contains all multiples of 
1
3

. The second column is 

in the same direction and contributes nothing new.

2. The nullspace contains all multiples of 
−2
1

. The vector satisfies 

𝐴𝑥 = 0.

3. The row space contains all multiples 
1
2

. It is written as a column 

vector, since strictly speaking it is in the column space of 𝐴𝑇.

4. The left nullspace contains all multiples of y=
−3
1

. The rows of 𝐴

with coefficients -3 and 1 add to zero, so 𝐴𝑇𝑦 = 0. 



In the previous example, all four subspaces are lines. That is an accident, 
coming from 𝑟 = 1 and 𝑛 − 𝑟 = 1 and 𝑚 − 𝑟 = 1. Figure 2.5 shows that two 
pairs of lines are perpendicular. That is no accident!

If you change the last entry of 𝐴 from 6 to 7, all the dimensions are different. 
The column space and row space have dimension 𝑟 = 2. The nullspace and 
left nullspace contain only the vectors 𝑥 = 0 and 𝑦 = 0. The matrix is 
invertible.



We know that if 𝐴 has a left-inverse (𝐵𝐴 = 𝐼) and a right-inverse 
(𝐴𝐶 = 𝐼), then the two inverses are equal: 𝐵 = 𝐵(𝐴𝐶)(𝐵𝐴)𝐶 = 𝐶. 
Now, from the rank of a matrix, it is easy to decide which matrices 
actually have these inverses. Roughly speaking, an inverse exists 
only when the rank is as large as possible.

The rank always satisfies 𝑟 ≤ 𝑚 and also 𝑟 ≤ 𝑛. An 𝑚 𝑏𝑦 𝑛 matrix 
cannot have more than 𝑚 independent rows or 𝑛 independent 
columns. There is not space for more than 𝑚 pivots, or more than 𝑛. 
We want to prove that when 𝑟 = 𝑚 there is a right-inverse, and 
𝐴𝑥 = 𝑏 always has a solution. When 𝑟 = 𝑛 there is a left-inverse, 
and the solution (if it exists) is unique.

Only a square matrix can have both 𝑟 = 𝑚 and 𝑟 = 𝑛, and therefore 
only a square matrix can achieve both existence and uniqueness. 
Only a square matrix has a two-sided inverse.

Existence of Inverses



2Q EXISTENCE: Full row rank 𝑟 = 𝑚. 𝐴𝑥 = 𝑏 has at least one solution 𝑥
for every 𝑏 if and only if the columns span 𝑹𝑚. Then 𝐴 has a right-
inverse 𝐶 such that 𝐴𝐶 = 𝐼𝑚 (𝑚 𝑏𝑦 𝑚). This is possible only if 𝑚 ≤ 𝑛.

UNIQUENESS: Full column rank 𝑟 = 𝑛. 𝐴𝑥 = 𝑏 has at most one solution 
𝑥 for every 𝑏 if and only if the columns are linearly independent. Then 𝐴
has an 𝑛 𝑏𝑦 𝑚 left-inverse 𝐵 such that 𝐵𝐴 = 𝐼𝑛. This is possible only if 
𝑚 ≥ 𝑛.

In the existence case, one possible solution is 𝑥 = 𝐶𝑏, since then 𝐴𝑥 =
𝐴𝐶𝑏 = 𝑏. But there will be other solutions if there are other right-
inverses. The number of solutions when the columns span 𝑹𝑚 is 1 or ∞.

In the uniqueness case, if there is a solution to 𝐴𝑥 = 𝑏, it has to be 𝑥 =
𝐵𝐴𝑥 = 𝐵𝑏. But there may be no solution. The number of solutions is 0
or 1. 



There are simple formulas for the best left and right inverses, if they 
exist:

Certainly 𝐵𝐴 = 𝐼 and 𝐴𝐶 = 𝐼. What is not so certain is that 𝐴𝑇𝐴 and 
𝐴𝐴𝑇 are actually invertible. We show in next chapter that 𝐴𝑇𝐴 does 
have an inverse if the rank is 𝑛, and 𝐴𝐴𝑇 has an inverse when the rank 
is 𝑚. Thus the formulas make sense exactly when the rank is as large as 
possible, and the one-sided inverses are found.



There are many right-inverses because the last row of 𝐶 is completely 
arbitrary. This is a case of existence but not uniqueness. The matrix 𝐴
has no left-inverse because the last column of 𝐵𝐴 is certain to be zero. 
The specific right-inverse 𝐶 = 𝐴𝑇 𝐴𝐴𝑇 −1 chooses 𝑐31 and 𝑐32 to be 
zero:



This is the pseudoinverse—a way of choosing the best 𝐶. The transpose 
of 𝐴 yields an example with infinitely many left-inverses:

Now it is the last column of 𝐵 that is completely arbitrary. The best 
left-inverse (also the pseudoinverse) has 𝑏13 = 𝑏23 = 0. This is a 
“uniqueness case,” when the rank is 𝑟 = 𝑛. There are no free variables, 
since 𝑛 − 𝑟 = 0. If there is a solution it will be the only one. You can 
see when this example has one solution or no solution:



A rectangular matrix cannot have both existence and uniqueness. If 𝑚 is 
different from 𝑛, we cannot have 𝑟 = 𝑚 and 𝑟 = 𝑛.

A square matrix is the opposite. If 𝑚 = 𝑛, we cannot have one property 
without the other. A square matrix has a left-inverse if and only if it has a 
right-inverse. There is only one inverse, namely 𝐵 = 𝐶 = 𝐴−1. Existence 
implies uniqueness and uniqueness implies existence, when the matrix is 
square. The condition for invertibility is full rank: 𝑟 = 𝑚 = 𝑛. Each of 
these conditions is a necessary and sufficient test:

1. The columns span 𝑹𝑛 , so 𝐴𝑥 = 𝑏 has at least one solution for every 𝑏.

2. The columns are independent, so 𝐴𝑥 = 0 has only the solution 𝑥 = 0.

This list can be made much longer, especially if we look ahead to later 
chapters. Every condition is equivalent to every other, and ensures that 𝐴
is invertible.

3. The rows of 𝐴 span 𝑹𝑛.

4. The rows are linearly independent.

5. Elimination can be completed: 𝑃𝐴 = 𝐿𝐷𝑈, with all 𝑛 pivots.

6. The determinant of 𝐴 is not zero.



7. Zero is not an eigenvalue of 𝐴.

8. 𝐴𝑇𝐴 is positive definite.

Here is a typical application to polynomials 𝑃(𝑡) of degree 𝑛 − 1. The 
only such polynomial that vanishes at 𝑡1, … , 𝑡𝑛 is 𝑃(𝑡) ≡ 0. No other 
polynomial of degree 𝑛 − 1 can have 𝑛 roots. This is uniqueness, and it 
implies existence: Given any values 𝑏1, … , 𝑏𝑛, there exists a polynomial of 
degree 𝑛 − 1 interpolating these values: 𝑃(𝑡𝑖) = 𝑏𝑖. The point is that we 
are dealing with a square matrix; the number n of coefficients in 𝑃 𝑡 =
𝑥1 + 𝑥2𝑡 +··· +𝑥𝑛𝑡

𝑛−1 matches the number of equations:

That Vandermonde matrix is 𝑛 𝑏𝑦 𝑛 and full rank. 𝐴𝑥 = 𝑏 always has a 
solution—a polynomial can be passed through any 𝑏𝑖 at distinct points 𝑡𝑖. 
Later we shall actually find the determinant of 𝐴; it is not zero.



Matrices of Rank 1
Finally comes the easiest case, when the rank is as small as possible 
(except for the zero matrix with rank 0), One basic theme of mathematics 
is, given something complicated, to show how it can be broken into 
simple pieces. For linear algebra, the simple pieces are matrices of rank 1:

Every row is a multiple of the first row, so the row space is one-
dimensional. In fact, we can write the whole matrix as the product of a 
column vector and a row vector:



The product of a 4 𝑏𝑦 1 matrix and a 1 𝑏𝑦 3 matrix is a 4 𝑏𝑦 3 matrix. 
This product has rank 1. At the same time, the columns are all multiples 
of the same column vector; the column space shares the dimension 
𝑟 = 1 and reduces to a line.

The rows are all multiples of the same vector 𝑣𝑇 , and the columns are 
all multiples of 𝑢. The row space and column space are lines—the 
easiest case.


