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We know how a matrix moves subspaces around when we multiply by 𝐴. The nullspace goes into the zero vector. All vectors go into the 
column space, since 𝐴𝑥 is always a combination of the columns. You 
will soon see something beautiful—that 𝐴 takes its row space into its 
column space, and on those spaces of dimension 𝑟 it is 100 percent 
invertible. That is the real action of 𝐴. It is partly hidden by nullspaces
and left nullspaces, which lie at right angles and go their own way 
(toward zero). 

What matters now is what happens inside the space—which means 
inside 𝑛 −dimensional space, if 𝐴 is 𝑛 𝑏𝑦 𝑛. That demands a closer 
look. 

Suppose 𝑥 is an 𝑛 −dimensional vector. When 𝐴 multiplies 𝑥, it 
transforms that vector into a new vector 𝐴𝑥. This happens at every 
point 𝑥 of the 𝑛 −dimensional space 𝑹 . The whole space is 
transformed, or “mapped into itself,” by the matrix 𝐴.

Introduction





Those examples could be lifted into three dimensions. There are matrices to 
stretch the earth or spin it or reflect it across the plane of the equator (forth 
pole transforming to south pole). There is a matrix that projects everything 
onto that plane (both poles to the center). 

It is also important to recognize that matrices cannot do everything, 
and some transformations 𝑇(𝑥) are not possible with 𝐴𝑥: 
i. It is impossible to move the origin, since 𝐴0 = 0 for every matrix.
ii. If the vector 𝑥 goes to 𝑥′ , then 2𝑥 must go to 2𝑥′ . in general 𝑐𝑥 must 

go to 𝑐𝑥′ , since 𝐴(𝑐𝑥) = 𝑐(𝐴𝑥).
iii. If the vectors 𝑥 and 𝑦 go to 𝑥′ and 𝑦′ , then their sum 𝑥 + 𝑦 must go to 𝑥′ + 𝑦′—since 𝐴(𝑥 + 𝑦) = 𝐴𝑥 + 𝐴𝑦.



Matrix multiplication imposes those rules on the 
transformation. The second rule contains the first (take 𝑐 = 0 to get 𝐴0 = 0). We saw rule iii. in action when (4,0) was reflected across the 
45° line. It was split into (2,2) + (2,−2) and the two parts were reflected 
separately. The same could be done for projections: split, project 
separately, and add the projections. These rules apply to any 
transformation that comes from a matrix.

Their importance has earned them a name: Transformations 
that obey rules i.–iii. are called linear transformations. The rules can be 
combined into one requirement:



Any matrix leads immediately to a linear transformation. The more 
interesting question is in the opposite direction: Does every linear 
transformation lead to a matrix?
The object of this section is to find the answer, yes. This is the 
foundation of an approach to linear algebra—starting with 
property (1) and developing its consequences—that is much more 
abstract than the main approach in this book. We preferred to 
begin directly with matrices, and now we see how they represent 
linear transformations.
A transformation need not go from 𝑹 to the same space 𝑹 . It is 
absolutely permitted to transform vectors in 𝑹 to vectors in a 
different space 𝑹 . That is exactly what is done by an 𝑚 𝑏𝑦 𝑛 matrix! The original vector 𝑥 has 𝑛 components, and the 
transformed vector 𝐴𝑥 has m components. The rule of linearity is 
equally satisfied by rectangular matrices, so they also produce 
linear transformations. 



Having gone that far, there is no reason to stop. The operations in the 
linearity condition (1) are addition and scalar multiplication, but 𝑥 and 𝑦 need not be column vectors in 𝑹 . Those are not the only spaces. By 
definition, any vector space allows the combinations 𝑐𝑥 + 𝑑𝑦—the 
“vectors” are 𝑥 and 𝑦, but they may actually be polynomials or matrices 
or functions 𝑥(𝑡) and 𝑦(𝑡). As long as the transformation satisfies 
equation (1), it is linear. 
We take as examples the spaces 𝑷 , in which the vectors are 
polynomials 𝑝(𝑡) of degree 𝑛. They look like 𝑝 = 𝑎 + 𝑎 𝑡 +··· +𝑎 𝑡 , 
and the dimension of the vector space is 𝑛 + 1 (because with the 
constant term, there are 𝑛 + 1 coefficients).





Transformations Represented by Matrices
Linearity has a crucial consequence: If we know 𝑨𝒙 for each 
vector in a basis, then we know 𝑨𝒙 for each vector in the entire 
space. Suppose the basis consists of the 𝑛 vectors 𝑥 , … , 𝑥 . Every 
other vector 𝑥 is a combination of those particular vectors (they 
span the space). Then linearity determines 𝐴𝑥: 

The transformation 𝑇(𝑥) = 𝐴𝑥 has no freedom left, after it has 
decided what to do with the basis vectors. The rest is determined 
by linearity. The requirement (1) for two vectors 𝑥 and 𝑦 leads to 
condition (4) for n vectors 𝑥 , … , 𝑥 . The transformation does have 
a free hand with the vectors in the basis (they are independent). 
When those are settled, the transformation of every vector is 
settled.



Star ng with a different basis (1,1) and (2,−1), this same A is also the only 
linear transformation with



Next we find matrices that represent differentiation and integration. 
First we must decide on a basis. For the polynomials of degree 3 
there is a natural choice for the four basis vectors:

That basis is not unique (it never is), but some choice is necessary 
and this is the most convenient. The derivatives of those four basis 
vectors are 0,1,2𝑡, 3𝑡 :

“𝑑/𝑑𝑡” is acting exactly like a matrix, but which matrix? Suppose we 
were in the usual four-dimensional space with the usual basis—the 
coordinate vectors 𝑝 =(1,0,0,0), 𝑝 =(0,1,0,0), 𝑝 =(0,0,1,0), 𝑝 =(0,0,0,1). The matrix is decided by equation (5):



𝐴𝑝 is its first column, which is zero. 𝐴𝑝  is the second column, which is 𝑝 . 𝐴𝑝 is 2𝑝 and 𝐴𝑝  is 3𝑝 . The nullspace contains 𝑝 (the derivative of 
a constant is zero). The column space contains 𝑝 , 𝑝 , 𝑝 (the derivative of 
a cubic is a quadratic). The derivative of a combination like 𝑝 = 2 + 𝑡 −𝑡 − 𝑡 is decided by linearity, and there is nothing new about that—it is 
the way we all differentiate. It would be crazy to memorize the derivative 
of every polynomial.



In short, the matrix carries all the essential information. If the basis 
is known, and the matrix is known, then the transformation of 
every vector is known. 
The coding of the information is simple. To transform a space to 
itself, one basis is enough. A transformation from one space to 
another requires a basis for each.

For the differentiation matrix, column 1 came from the first basis vector 𝑝1 = 1. Its derivative is zero, so column 1 is zero. The last column came 
from 𝑡 = 3𝑡 . Since 3𝑡 = 0𝑝 + 0𝑝 + 3𝑝 + 0𝑝 , the last column 
contained 0, 0, 3. 0. The rule (6) constructs the matrix, a column at a time.





Differentiation and integration are inverse operations. Or at least 
integration followed by differentiation brings back the original 
function. To make that happen for matrices, we need the 
differentiation matrix from quartics down to cubics, which is 4 by 5:

Differentiation is a left-inverse of integration. Rectangular matrices 
cannot have two-sided inverses! In the opposite order, 𝐴 𝐴 = 𝐼
cannot be true. The 5 𝑏𝑦 5 product has zeros in column 1. The 
derivative of a constant is zero. In the other columns 𝐴 𝐴 is the 
identity and the integral of the derivative of 𝑡 is 𝑡 .



Rotations Q, Projections P, and Reflections H
This section began with 90° rotations, projections onto the 𝑥-axis, 
and reflections through the 45° line. Their matrices were especially 
simple:

The underlying linear transformations of the 𝑥 − 𝑦 plane are also 
simple. But rotations through other angles, projections onto other 
lines, and reflections in other mirrors are almost as easy to visualize, 
They are still linear transformations, provided that the origin is 
fixed: 𝐴0 = 0. They must be represented by matrices. Using the 
natural basis 10 and 01 , we want to discover those matrices.



1. Rotation
Figure 2.10 shows rotation through an angle 𝜃. It also shows the 
effect on the two basis vectors. The first one goes to (cos𝜃, sin𝜃), whose length is still 1; it lies on the “𝜃-line.” The 
second basis vector (0,1) rotates into (−sin𝜃, cos𝜃). By rule (6), 
those numbers go into the columns of the matrix (we use 𝑐 and 𝑠
for cos𝜃 and sin𝜃). This family of rotations 𝑄 is a perfect chance to 
test the correspondence between transformations and matrices:





2V Suppose 𝐴 and 𝐵 are linear transformations from 𝑽 to 𝑾 and from 𝑼 to 𝑽. Their product 𝐴𝐵 starts with a vector 𝑢 in 𝑼, goes to 𝐵𝑢 in 𝑽, 
and finishes with 𝐴𝐵𝑢 in 𝑾. This “composition” 𝐴𝐵 is again a linear 
transformation (from 𝑼 to 𝑾). Its matrix is the product of the individual 
matrices representing 𝐴 and 𝐵.

For 𝐴 𝐴 , the composite transformation was the identity (and 𝐴 𝐴 annihilated all constants). For rotations, the order of 
multiplication does not matter. Then 𝑼 = 𝑽 = 𝑾 is the 𝑥 − 𝑦 plane, 
and 𝑄 𝑄 is the same as 𝑄 𝑄 . For a rotation and a reflection, the 
order makes a difference.

Technical note: To construct the matrices, we need bases for 𝑽 and 𝑾, 
and then for 𝑼 and 𝑽. By keeping the same basis for 𝑽, the product 
matrix goes correctly from the basis in 𝑼 to the basis in 𝑾. If we 
distinguish the transformation 𝐴 from its matrix (call that [𝐴]), then the 
product rule 2𝑽 becomes extremely concise: [𝐴𝐵] = [𝐴][𝐵]. The rule 
for multiplying matrices was totally determined by this requirement—it 
must match the product of linear transformations.



2. Projection
Figure 2.10 also shows the projection of (1,0) onto the 𝜃-line. The length 
of the projection is 𝑐 = cos𝜃. Notice that the point of projection is not (𝑐, 𝑠), as I mistakenly thought; that vector has length 1 (it is the rotation), 
so we must multiply by 𝑐. Similarly the projection of (0,1) has length s, 
and falls at 𝑠(𝑐, 𝑠) = (𝑐𝑠, 𝑠 ), that gives the second column of the 
projection matrix 𝑃: 

This matrix has no inverse, because the transformation has no inverse. 
Points on the perpendicular line are projected onto the origin; that line is 
the nullspace of 𝑃. Points on the 𝜃-line are projected to themselves! 
Projecting twice is the same as projecting once, and 𝑃 = 𝑃:





3. Reflection
Figure 2.11 shows the reflection of (1,0) in the 𝜃-line. The length of the 
reflection equals the length of the original, as it did after rotation—but 
here the 𝜃-line stays where it is. The perpendicular line reverses direction; 
all points go straight through the mirror, Linearity decides the rest.

This matrix 𝐻 has the remarkable property 𝐻 = 𝐼. Two reflections 
bring back the original. A reflection is its own inverse, 𝐻 = 𝐻 , 
which is clear from the geometry but less clear from the matrix. 
One approach is through the relationship of reflections to 
projections: 𝐻 = 2𝑃 − 𝐼. This means that 𝐻𝑥 + 𝑥 =  2𝑃𝑥—the 
image plus the original equals twice the projection. It also confirms 
that 𝐻 = 𝐼:



Other transformations Ax can increase the length of x; stretching and 
shearing are in the exercises. Each example has a matrix to represent it—
which is the main point of this section. But there is also the question of 
choosing a basis, and we emphasize that the matrix depends on the 
choice of basis. Suppose the first basis vector is on the θ-line and the 
second basis vector is perpendicular: 

i. The projection matrix is back to 𝑃 = 1 00 0 . This matrix is 
constructed as always: its first column comes from the first basis 
vector (projected to itself). The second column comes from the basis 
vector that is projected to zero.

ii. For reflections, that same basis gives 𝐻 = 1 00 −1 . The second 
basis vector is reflected onto its negative, to produce this second 
column. The matrix 𝐻 is still 2𝑃 − 𝐼 when the same basis is used for 𝐻 and 𝑃.

iii. For rotations, the matrix is not changed. Those lines are still rotated 
through 𝜃, and 𝑄 = 𝑐 −𝑠𝑠 𝑐 as before.



The whole question of choosing the best basis is absolutely central. 
The goal is to make the matrix diagonal, as achieved for 𝑃 and 𝐻. To 
make 𝑄 diagonal requires complex vectors, since all real vectors are 
rotated. 
We mention here the effect on the matrix of a change of basis, while 
the linear transformation stays the same. The matrix 𝐴 (or 𝑄 or 𝑃 or 𝐻) is altered to 𝑆 𝐴𝑆. Thus a single transformation is represented by 
different matrices (via different bases, accounted for by 𝑆). The theory 
of eigenvectors will lead to this formula 𝑆 𝐴𝑆, and to the best basis. 


