## BASICS OF PROBABILITY

CHAPTER-1
CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

## COMMON TERMS RELATED TO PROBABILITY

- Probability is the measure of the likelihood that an event will occur
- Probability values are between $\mathbf{0}$ (the event never occurs) and $\mathbf{1}$ (the event always occurs)
- Random experiment: It is a process whose outcome is uncertain
- Outcome: A possible result of a random experiment. These individual outcomes are also called as simple events.
- Sample space: The set of all possible outcomes of an experiment is called the sample space and is denoted by $\Omega$.
- Example: Toss a coin.

$$
\Omega=\{H, T\}
$$

Some of the possible occurrences of events:
(a) the outcome is a head.
(b) the outcome is not a head.
(c) the outcome is either a head or a tail.

- They can be rewritten as:
(a) $A=\{H\}$
(b) $A=\{H\}^{c}$
(c) $A=\{H\} \cup\{T\}$


## Mutually Exclusive Events

Two events $A$ and $B$ are called mutually exclusive if:

$$
A \cap B=\phi
$$

In such a case, $P(A \cup B)=P(A)+P(B)$


Example: When a coin is tossed, occurrence of head and tail is mutually exclusive. These two events cannot happen at the same time.

- Suppose we repeat an experiment $N$ number of times and suppose $A$ is some event which may or may not occur on each repetition, then probability $P(A)=N(A) / N$
- If $A=\phi$, then $N(\phi)=0$ and hence $P(\phi)=0$
- If $A=\Omega$, then $N(\Omega)=N$ and hence $P(\Omega)=1$
- If $A$ and $B$ are two disjoint events then,

$$
N(A \cup B)=N(A)+N(B)
$$

Dividing by $N$ on both sides

$$
P(A \cup B)=P(A)+P(B)
$$

- If $A_{1}, \ldots, A_{n}$ are disjoint events, then

$$
P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{n}\right)
$$

## Example problems

Toss a fair coin twice. What is the probability of observing at least one head?


$$
\begin{aligned}
& P(\text { at least } 1 \text { head) } \\
& =P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right) \\
& =1 / 4+1 / 4+1 / 4=3 / 4
\end{aligned}
$$

## Example 2

A bowl contains three marbles, one red, one blue and one green. A child selects two marbles at random. What is the probability that at least one is red?


## LEMMA

1. For any event $A, \boldsymbol{P}\left(\boldsymbol{A}^{\boldsymbol{c}}\right)=\mathbf{1}-\boldsymbol{P}(\boldsymbol{A})$

Proof:

$$
A \cup A^{c}=\Omega
$$

And $A \cap A^{c}=\phi$
So, $\quad P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)=1$
2. For any event $A, \boldsymbol{P}(\boldsymbol{A}) \leq \mathbf{1}$

## Proof:

We know that $P(A)+P\left(A^{c}\right)=1$
i.e., $P(A)=1-P\left(A^{c}\right)$

So, $P(A) \leq 1$
3. $P(\phi)=0$ and $P(\Omega)=1$
$\frac{\text { Proof: }}{P(\phi)}=1-P(\Omega)=1-1=0$
Likewise, it can be shown that
$P(\Omega)=1$
4. If $A \subseteq B$ then $P(A) \leq P(B)$

## Proof:

$B=A \cup\left(B \cap A^{c}\right)$ This is the union of disjoint sets.
$P(B)=P(A)+P\left(B \cap A^{c}\right)$
$P\left(B \cap A^{c}\right) \geq 0$ (Since probability always lies from 0 to 1 )
So, $P(B)=P(A)+P\left(B \cap A^{c}\right) \geq P(A)$

## 5. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Proof:
$A \cup B=\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right) \cup(A \cap B)$
Since they are disjoint sets,
$P(A \cup B)=P\left(A \cap B^{c}\right)+P\left(A^{c} \cap B\right)+P(A \cap B)$
Adding and subtracting $P(A \cap B)$ in the RHS,
$P(A \cup B)=P\left(A \cap B^{c}\right)+P\left(A^{c} \cap B\right)+P(A \cap B)$ $+P(A \cap B)-P(A \cap B)$
Rearranging the terms,

$$
\begin{aligned}
P(A \cup B)= & P\left(A \cap B^{c}\right)+P(A \cap B)+P\left(A^{c} \cap B\right) \\
& +P(A \cap B)-P(A \cap B)
\end{aligned}
$$

Hence,
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$

This is called the additive rule.
6. If $A_{1}, A_{2}, \ldots, A_{n}$ are events,

$$
\mathrm{P}\left(\bigcup_{i=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{i}}\right)=\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cap A_{j} \cap A_{k}\right)+\ldots+(-1)^{n+1} P\left(A_{1} \cap \cdots \cap A_{n}\right)
$$

Proof: The proof is by induction similar to 5 .
7. Let $A_{1}, A_{2} \ldots$ be an increasing sequence of events, so that $A_{1} \subseteq A_{2} \subseteq \cdots$ and write $A_{\infty}$ for their limit :

$$
\mathrm{A}=\bigcup_{i=1} A_{i}=\lim _{i \rightarrow \infty} A_{i}
$$

Then, $P(A)=\lim _{i \rightarrow \infty} P\left(A_{i}\right)$

Similarly $B_{1}, B_{2}$...be a decreasing sequence of events, so that $B_{1} \supseteq B_{2} \supseteq \cdots$ and write $B$ for their limit :

$$
\mathrm{B}=\bigcap_{i=1}^{\infty} B_{i}=\lim _{i \rightarrow \infty} B_{i}
$$

Then, $P(B)=\lim _{i \rightarrow \infty} P\left(B_{i}\right)$


A sequence of increasing events and their union


A sequence of decreasing events and their intersection

Proof: $A=A_{1} \cup\left(A_{2} \backslash A_{1}\right) \cup\left(A_{3} \backslash \mathrm{~A}_{2}\right) \cup \cdots$ is the union of a disjoint family of events.

$$
\begin{aligned}
P(A) & =P\left(A_{1}\right)+\sum_{i=1}^{\infty} P\left(A_{i+1} \backslash \mathrm{~A}_{i}\right) \\
& =P\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{i=1}^{n-1} P\left(A_{i+1} \backslash \mathrm{~A}_{i}\right) \\
& =P\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{i=1}^{n-1}\left[P\left(A_{i+1}\right)-P\left(A_{i}\right)\right] \\
& \quad \text { Since } P(A \backslash \mathrm{~B})=P(A)-P(B) \\
& =\mathrm{P}\left(\mathrm{~A}_{1}\right)+\lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}\left(\mathrm{~A}_{\mathbf{n}}\right)-\mathrm{P}\left(\mathrm{~A}_{1}\right)=\lim _{(\mathbf{n} \rightarrow \infty)} \mathbf{P}\left(\mathbf{A}_{\mathbf{n}}\right)
\end{aligned}
$$

To show the result for decreasing families of events, take complements and use the first part.

- If $P(A)=0$, then it is called a null event. Note that this is different from an impossible event.


## Conditional Probability

- If $P(B)>0$ then the conditional probability that $A$ occurs given $B$ occurs is

$$
P(A \mid B)=\frac{P(A \cap B)--\rightarrow \text { Joint Probability }}{P(B)--\rightarrow \text { Marginal Probability }}
$$

- Example: A family has two children. What is the probability that both are boys, given that at least one is a boy?

Answer: The older and younger child may each be male or female, so there are four possible combinations, which we assume to be equally likely. Hence we can represent the sample space in the obvious way as:

$$
\Omega=\{G G, G B, B G, B B\}
$$

where $P(G G)=P(B B)=P(G B)=P(B G)=1 / 4$. From the definition of conditional probability,

$$
\begin{gathered}
P(B B \mid \text { one boy atleast })=P(B B \mid G B \cup B G \cup B B) \\
=\frac{P(B B \cap(G B \cup B G \cup B B))}{P(G B \cup B G \cup B B)} \\
=\frac{P(B B)}{P(G B \cup B G \cup B B)}=\frac{\frac{1}{4}}{\frac{3}{4}}=1 / 3
\end{gathered}
$$

- For a family with two children, what is the probability that both are boys given that the younger is a boy?

Answer: $P(B B \mid$ younger is a boy $)$

$$
=P(B B \mid G B \cup B B)
$$

$=\frac{P(B B \cap(G B \cup B B))}{P(G B \cup B B)}$
$=\frac{P(B B)}{P(G B \cup B B)}=\frac{\left(\frac{1}{4}\right)}{\frac{1}{2}}=\frac{1}{2}$

- For any events $A$ and $B$ such that $0<P(B)<1$,

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
$$

Proof: $\quad A=A \cap\left(B \cup B^{c}\right)=(\mathrm{A} \cap B) \cup\left(A \cap B^{c}\right)$

$$
\begin{aligned}
P(A)= & P(A \cap B)+P\left(A \cap B^{c}\right) \\
& =P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
\end{aligned}
$$

More generally, let $B_{1}, B_{2}, \ldots, B_{n}$ be a partition of $\Omega$ such that $P\left(B_{i}\right)>0 \forall i$. Then,

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

## Example

- Only two factories manufacture goggles. 20 per cent of the goggles from factory I and 5 per cent from factory II are defective. Factory I produces twice as many goggles as factory II each week. What is the probability that a goggle, randomly chosen from a week's production, is satisfactory?


## Answer:

Let $A$ be the event that the chosen goggle is satisfactory, and let B be the event that it was made in factory $l$.

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
$$

$$
=\frac{4}{5} \cdot \frac{2}{3}+\frac{19}{20} \cdot \frac{1}{3}=\frac{51}{60}
$$

- If the chosen goggle is defective, what is the probability that it came from factory I?


## Answer:

In our notation this is just $P\left(B \mid A^{c}\right)$.

$$
P\left(B \mid A^{c}\right)=\frac{P\left(B \cap A^{c}\right)}{P\left(A^{c}\right)}=
$$

## Example

The academy awards is soon to be shown.
For a specific married couple the probability that the husband watches the show is $80 \%$, the probability that his wife watches the show is $65 \%$, while the probability that they both watch the show is $60 \%$.If the husband is watching the show, what is the probability that his wife is also watching the show?

Solution: Let $B=$ the event that the husband watches the show

$$
P(B)=
$$

Let $A=$ the event that his wife watches the show

$$
P(A)=\square P(A \cap B)=\square
$$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=
$$

## Example

- Instructor has a list of 100 questions for quiz. Student has to answer 3 questions picked randomly from the list of 100 questions. If the student answers all 3 questions, he passes else he fails. What is the probability of the student passing given he knows answers to 90 questions?

Answer : Let $A_{1}$ be the probability that the student gets first answer right.

So, $P\left(A_{1}\right)=\frac{90}{100}$

Likewise, let $A_{2}$ be the probability that the student gets second answer right and so on.

$$
P\left(A_{2} \mid A_{1}\right)=\frac{P\left(A_{2} \cap A_{1}\right)}{P\left(A_{1}\right)}=\frac{89}{99}
$$

$$
P\left(A_{3} \mid A_{1} \cap A_{2}\right)=\frac{88}{98}
$$

So, $P(A)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right)$

$$
=\frac{90}{100} \times \frac{89}{99} \times \frac{88}{98}
$$

## Independence

- $P(A \mid B)=P(A)$, then we call $A$ and $B$ 'independent'.
- This is well defined only if $P(B)>0$.
- Definition: Events $A$ and $B$ are called independent if

$$
P(A \cap B)=P(A) P(B)
$$

- More generally, a family $\left\{A_{i}: i \in I\right\}$ is called independent if

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} P\left(A_{i}\right) \quad \forall J \subseteq I
$$

- If the family $\left\{A_{i}: i \in I\right\}$ has the property that

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) P\left(A_{j}\right) \forall i \neq j
$$

then it is called pairwise independent. Pairwise-independent families are not necessarily independent.

## Example

- Suppose $\Omega=\{a b c, a c b, c a b, c h a, b c a, b a c, a a a, b b b, c c c\}$, and each of the nine elementary events in $\Omega$ occurs with equal probability $1 / 9$. Let $A_{k}$ be the event that the $k^{t h}$ letter is $a$. Show that the family $\left\{A_{1}, A_{2}, A_{3}\right\}$ is pairwise independent but not independent.
Answer:

$$
\begin{gathered}
P\left(A_{1}\right)=\frac{3}{9}=\frac{1}{3}, \quad P\left(A_{2}\right)=\frac{1}{3} \text { and } P\left(A_{3}\right)=\frac{1}{3} \\
P\left(A_{1} \cap A_{2}\right)=\frac{1}{9}=P\left(A_{1}\right) P\left(A_{2}\right) \\
P\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{1}{9}
\end{gathered}
$$

But, $P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}=\frac{1}{27}$
Clearly, $P\left(A_{1} \cap A_{2} \cap A_{3}\right) \neq P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)$

## Difference between mutually exclusive events and independent events

## Mutually exclusive events

Events are mutually exclusive if the occurrence of one event excludes the occurrence of the other(s). Mutually exclusive events cannot happen at the same time.

Example: when tossing a coin, the result can either be heads or tails but cannot be both.

$$
\begin{gathered}
P(A \cap B)=0 \\
P(A \cup B)=P(A)+P(B) \\
P(A \mid B)=0
\end{gathered}
$$

## Independent events

Events are independent if the occurrence of one event does not influence (and is not influenced by) the occurrence of the other(s).

Example: when tossing two coins, the result of one flip does not affect the result of the other.

$$
\begin{gathered}
P(A \cap B)=P(A) P(B) \\
P(A \cup B)=P(A)+P(B)-P(A) P(B) \\
P(A \mid B)=P(A)
\end{gathered}
$$





## Bayes' Theorem

If

- $A_{1} \ldots A_{n} \rightarrow$ partition of $\Omega$
- $A_{i} \cap A_{j}=\phi$
- $A_{1} \cup \cdots \cup A_{n}=\Omega$

Then,

$$
P\left(A_{k} \mid B\right)=\frac{P\left(A_{k}\right) P\left(B \mid A_{k}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+\cdots+P\left(A_{n}\right) P\left(B \mid A_{n}\right)}
$$

$B$ is any event with $P(B)>0$

## Example

- A rare disease $X$ affects 1 in $10^{6}$. Test $T$ is $99 \%$ accurate. Person having no $X$ and chance of $T$ being positive is $1 \%$. Person having $X$ and chance of $T$ being negative is also $1 \%$.
Suppose a person has tested positive, what is the probability of this person having $X$ ?


## Answer :

$A \rightarrow$ person has $X$
$B \rightarrow$ person tests positive


## Conditional Independence

- Let $C$ be an event such that $P(C)>0$.
- $A$ and $B$ are conditionally independent given $C$ if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

