BASICS OF PROBABILITY

CHAPTER 1
CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

Additive rule

- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- If two events are mutually exclusive, then

$$
P(A \cap B)=0
$$

Hence

$$
P(A \cup B)=P(A)+P(B)
$$

Example

- Saskatoon and Moncton are two of the cities competing for the World university games. (There are also many others). The organizers are narrowing the competition to the final 5 cities.
There is a 20% chance that Saskatoon will be amongst the final 5 . There is a 35% chance that Moncton will be amongst the final 5 and an 8% chance that both Saskatoon and Moncton will be amongst the final 5 . What is the probability that Saskatoon or Moncton will be amongst the final 5.

Solution

- Let $A=$ the event that Saskatoon is amongst the final 5.
- Let $B=$ the event that Moncton is amongst the final 5.
- Given $P(A)=0.20, P(B)=0.35$, and $P(A \cap B)=0.08$
- To find: $P(A \cup B)$

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =0.20+0.35-0.08=0.47
\end{aligned}
$$

Rule for complements

- $P\left(A^{c}\right)=1-P(A)$
- A and A^{c} are mutually exclusive.
- Sample space $S=A \cup A^{c}$
- Thus $P(S)=P(A)+P\left(A^{c}\right)=1$
- So, $\boldsymbol{P}\left(A^{c}\right)=1-P(A)$

Multiplicative rule

- $P(A \cap B)=P(A) P(B \mid A)$ if $P(A) \neq 0$
- $P(A \cap B)=P(B) P(A \mid B)$ if $P(B) \neq 0$
- If A and B are independent events,

$$
P(A \cap B)=P(A) P(B)
$$

Example

- An urn contains 6 red marbles and 4 black marbles. Two marbles are drawn without replacement from the urn. What is the probability that both the marbles are black?
Solution: Let $A=$ the event that the first marble is black; and let $B=$ the event that the second marble is black. We know the following:
- In the beginning, there are 10 marbles in the urn, 4 of which are black.
- Therefore, $P(A)=\square$
- After the first selection, there are 9 marbles in the urn, 3 of which are black.
- Therefore, $P(B \mid A)=\square$
- Therefore, based on the multiplicative rule:

$$
P(A \cap B)=
$$

Techniques for counting

Rule 1

- Suppose we have sets $A_{1}, A_{2}, A_{3}, \ldots$ and that any pair is mutually exclusive (i.e. $A_{1} \cap A_{2}=\phi$ and likewise).
- Let $n_{i}=n\left(A_{i}\right)$ be the number of elements in A_{i}.
- Let $A=A_{1} \cup A_{2} \cup A_{3} \cup \ldots$
- Then $N=n(A)=$ the number of elements in A

$$
=n_{1}+n_{2}+n_{3}+\ldots
$$

Rule 2

Suppose we carry out two operations in sequence.
Let

- $n_{1}=$ the number of ways the first operation can be performed
- $n_{2}=$ the number of ways the second operation can be performed once the first operation has been completed.

Then $\boldsymbol{N}=\boldsymbol{n}_{\mathbf{1}} \boldsymbol{n}_{\mathbf{2}}=$ the number of ways the two operations can be performed in sequence.

Example

1. We have a committee of 10 people. We choose from this committee, a chairman and a vice chairman. How may ways can this be done?

Solution:

Let $n_{1}=$ the number of ways the chairman can be chosen $=10$.

Let $n_{2}=$ the number of ways the vice-chairman can be chosen once the chair has been chosen = 9.

Then $\boldsymbol{N}=\boldsymbol{n}_{1} \boldsymbol{n}_{\mathbf{2}}=(\mathbf{1 0})(\mathbf{9})=\mathbf{9 0}$

Permutations

A Permutation is an arrangement of items in a particular order.

ORDER MATTERS!

Permutations

The number of ways to arrange the letters $A B C$:

Number of choices for first blank?
Number of choices for second blank?
Number of choices for third blank?
3
$\begin{array}{lll}3 & 2 & \\ 3 & 2 & 1\end{array}$

$$
3 * 2 * 1=6 \quad 3!=3 * 2 * 1=6
$$

ABC ACB BAC BCA CAB CBA

How many ways can you order n objects

Ordering n objects is equivalent to performing n operations in sequence.

1. Choosing the first object in the sequence $\left(n_{1}=n\right)$
2. Choosing the $2^{\text {nd }}$ object in the sequence $\left(n_{2}=n-1\right)$.
k. Choosing the $k^{\text {th }}$ object in the sequence $\left(n_{k}=n-k+1\right)$
n. Choosing the $n^{\text {th }}$ object in the sequence $\left(n_{n}=1\right)$

The total number of ways this can be done is:

$$
\mathrm{N}=n(n-1) \ldots(n-k+1) \ldots(3)(2)(1)=n!
$$ objects in a specific order

This operation is equivalent to performing k operations in sequence.

1. Choosing the first object in the sequence ($n_{1}=n$)
2. Choosing the $2^{\text {nd }}$ object in the sequence $\left(n_{2}=n-1\right)$.
k. Choosing the $k^{\text {th }}$ object in the sequence $\left(n_{k}=n-k+1\right)$ The total number of ways this can be done is:

$$
N=n(n-1) \ldots(n-k+1)=n!/(n-k)!
$$

This number is denoted by the symbol

$$
{ }_{n} P_{k}=\frac{n!}{(n-k)!}
$$

Example: We have a committee of $n=10$ people and we want to choose a chairperson, a vice-chairperson and a treasurer

Solution: Essentially we want to select 3 persons from the committee of 10 in a specific order. (Permutations of size 3 from a group of 10).

$$
{ }_{10} P_{3}=\frac{10!}{(10-3)!}=\frac{10!}{7!}=10(9)(8)=720
$$

Combinations

A Combination is an arrangement of items in which order does not matter.

ORDER DOES NOT MATTER!

Combinations

To find the number of combinations of n items chosen r at a time, use the formula

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Combinations

To play a particular card game, each player is dealt five cards from a standard deck of 52 cards. How many different hands are possible?

$$
\begin{gathered}
{ }_{52} C_{5}=\frac{52!}{5!(52-5)!}=\frac{52!}{5!47!} \\
=\frac{52(51)(50)(49)(48)}{5(4)(3)(2)(1)}=2,598,960
\end{gathered}
$$

Combinations

A basketball team consists of two centers, five forwards, and four guards. In how many ways can the coach select a starting line up of one center, two forwards, and two guards?

Center:

$$
\begin{gathered}
{ }_{2} C_{1}=\frac{2!}{1!1!}=2{ }_{5} C_{2}=\frac{5!}{2!3!}=\frac{5 * 4}{2 * 1}=10 \quad{ }_{4} C_{2}=\frac{4!}{2!2!}=\frac{4 * 3}{2 * 1}=6 \\
{ }_{2} C_{1} *{ }_{5} C_{2} *{ }_{4} C_{2}
\end{gathered}
$$

Thus, the number of ways to select the starting line up is $2 * 10 * 6=\mathbf{1 2 0}$.

