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• Random variable definition : A random variable is a function 
𝑋 ∶ Ω → ℝ with the property that 𝑤 ∈ Ω 𝑋 𝑤 ≤ 𝑥} ∈ ℱ for each 
𝑥 ∈ ℝ. Such a function is said to be 𝓕-measurable.  

• We shall always use upper-case letters, such as 𝑋, 𝑌, and 𝑍, to 
represent generic random variables, whilst lowercase letters, such 
as 𝑥, 𝑦, and 𝑧, will be used to represent possible numerical values 
of these variables.

• Every random variable has a distribution function.

• Distribution function definition : The distribution function of a 
random variable 𝑋 is the function 𝐹 ∶ ℝ➔ [0, 1] given by 

𝑭 𝒙 = 𝑷 𝑿 ≤ 𝒙 ; the Prob. that X (w) <= x.

• Events written as 𝑤 ∈ Ω 𝑋 𝑤 ≤ 𝑥} are commonly abbreviated to 

{𝑤 ∶ 𝑋 𝑤 ≤ 𝑥} or {𝑋 ≤ 𝑥}.

(2) F(x) = P(A(x))



Example
• A fair coin is tossed twice: Ω = {𝐻𝐻,𝐻𝑇, 𝑇𝐻, 𝑇𝑇}. For 𝑤 ∈ Ω, 

let 𝑋(𝑤) be the number of heads, so that 

𝑋(𝐻𝐻) = 2, 𝑋 𝐻𝑇 = 𝑋 𝑇𝐻 = 1, 𝑋 𝑇𝑇 = 0. 

• Now suppose that a gambler wagers his fortune of £1 on the 
result of this experiment. He gambles cumulatively so that his 
fortune is doubled each time a head appears, and is annihilated 
on the appearance of a tail. His subsequent fortune 𝑊 is a 
random variable given by :

𝑊(𝐻𝐻) = 4,𝑊(𝐻𝑇) = 𝑊(𝑇𝐻) = 𝑊(𝑇𝑇) = 0.

• A typical distribution function 𝐹𝑋 of 𝑋 is given by : 

𝐹𝑋 𝑥 =

0 𝑖𝑓 𝑥 < 0
1/4 𝑖𝑓 0 ≤ 𝑥 < 1
3/4 𝑖𝑓 1 ≤ 𝑥 < 2

1 𝑖𝑓 𝑥 ≥ 2



• The distribution function 𝐹𝑊 of 𝑊 is given by 

𝐹𝑊 𝑥 =  

0 𝑖𝑓 𝑥 < 0
3/4 𝑖𝑓 0 ≤ 𝑥 < 4

1 𝑖𝑓 𝑥 ≥ 4

Lemma : 

1. A distribution function 𝐹 has the following

properties : 

𝐥𝐢𝐦
𝒙→−∞

𝑭 𝒙 = 𝟎 , 𝐥𝐢𝐦
𝒙→∞

𝑭 𝒙 = 𝟏

Proof : Part 1 : Let 𝐵𝑛 = 𝑤 ∈ Ω 𝑋 𝑤 ≤ −𝑛} = {𝑋 ≤ −𝑛}

The sequence 𝐵1, 𝐵2, … is decreasing with the empty set as limit. 

i.e., 𝐵1 ⊇ 𝐵2 ⊇ 𝐵3 ⊇ ⋯

The distribution function of a random variable X tells us about the 
values taken by X and their relative likelihoods,
rather than about the sample space and the collection of events.



𝐵 =  

𝑖

𝐵𝑖 = 𝜙

𝑃 𝐵 = lim
𝑛→∞

𝑃 𝐵𝑛

(From chapter 1 we know that if 𝐵1, 𝐵2…is a decreasing 
sequence of events, so that 𝐵1 ⊇ 𝐵2 ⊇ ⋯and 𝐵 is written 
for their limit, then:

B =  

𝑖=1

∞

𝐵𝑖 = lim
𝑖→∞

𝐵𝑖

Then, 𝑃 𝐵 = lim
𝑖→∞

𝑃(𝐵𝑖) )

𝑃 𝐵𝑛 = 𝐹 −𝑛

So, 𝑷 𝑩 = 𝟎. Hence 𝐥𝐢𝐦
𝒙→−∞

𝑭 𝒙 = 𝟎



• Part 2 : 

Let 𝐴𝑛 = 𝑋 ≤ 𝑛
The sequence 𝐴1, 𝐴2, … is increasing.
i.e., 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ⊆ ⋯

𝐴 =  

𝑖

𝐴𝑖 = Ω

𝑃 𝐴 = lim
𝑛→∞

𝑃 𝐴𝑛 = 1

But 𝑃 𝐴 = 𝐹 𝑛 = 1.

Hence 𝐥𝐢𝐦
𝒙→∞

𝑭 𝒙 = 𝟏



Lemma : 

2. If 𝒙 ≤ 𝒚, 𝑭 𝒙 ≤ 𝑭(𝒚)

Proof :   

Let 𝐴 𝑥 = 𝑋 ≤ 𝑥 , 𝐴 𝑥, 𝑦 = {𝑥 < 𝑋 ≤ 𝑦}

Then 𝐴 𝑦 = 𝐴 𝑥 ∪ 𝐴 𝑥, 𝑦 is a disjoint union.

So, 𝑃 𝐴(𝑦) = 𝑃 𝐴 𝑥 + 𝑃 𝐴 𝑥, 𝑦

Giving, 𝑭 𝒚 = 𝐹 𝑥 + 𝑃 𝑥 < 𝑋 ≤ 𝑦 ≥ 𝑭 𝒙

2.1) F is right-continuous, that is, F(x + h)  F(x)



Before going to the next lemma,  visit:

𝑷( 

𝒊=𝟏

∞

𝑨𝒊) = 𝐥𝐢𝐦
𝒏→∞

𝑷( 

𝒊=𝟏

𝒏

𝑨𝒊)

Proof :
Let 𝐵1 = 𝐴1, 𝐵2 = 𝐴2\A1, 𝐵3 = 𝐴3\(𝐴2𝐴1), …

𝐵𝑖 ∩ 𝐵𝑗 = 𝜙

 

𝑖=1

∞

𝐴𝑖 =  

𝑖=1

∞

𝐵𝑖



𝐵𝑖 ∩ 𝐵𝑗 = 𝜙

 

𝑖=1

∞

𝐴𝑖 =  

𝑖=1

∞

𝐵𝑖

𝑃  

𝑖=1

∞

𝐴𝑖 = 𝑃  

𝑖=1

∞

𝐵𝑖 =  

𝑖=1

∞

𝑃(𝐵𝑖)

lim
𝑛→∞

 

𝑖=1

𝑛

𝑃 𝐵𝑖 = lim
𝑛→∞

𝑃  

𝑖=1

𝑛

𝐵𝑖

= lim
𝑛→∞

𝑃( 𝑖=1
𝑛 𝐴𝑖)

Thus, 𝑷( 𝒊=𝟏
∞ 𝑨𝒊) = 𝐥𝐢𝐦

𝒏→∞
𝑷( 𝒊=𝟏

𝒏 𝑨𝒊)



• Constant R.V :  The simplest random variable takes a constant value on 
the whole domain Ω. Let 𝑐 ∈ ℝ and define 
𝑋 ∶ Ω → ℝ by 

𝑋 𝑤 = 𝑐 for all 𝑤 ∈ Ω. 

𝐹 𝑥 =  
0 𝑖𝑓 𝑥 < 𝑐
1 𝑖𝑓 𝑥 ≥ 𝑐

the step function

More generally, we call X constant (almost surely) if 
there exists 𝑐 ∈ ℝ such that     P(X = c) = 1.

• Bernoulli R.V : Let 𝑋 ∶ Ω → ℝ be given by 𝑋 𝐻 = 1, 𝑋(𝑇) = 0. Then 
𝑋 is the simplest non-trivial random variable, having two possible 
values, 0 and 1. Its distribution function  ( Bern(P) )
𝐹 𝑥 = 𝑃(𝑋 ≤ 𝑥) is:

𝐹 𝑥 =  

0 𝑖𝑓 𝑥 < 0
1 − 𝑝 𝑖𝑓 0 ≤ 𝑥 < 1

1 𝑖𝑓 𝑥 ≥ 1



Indicator functions

• Let 𝐴 be an event and let 𝐼𝐴: Ω → ℝ be the 
indicator function of 𝐴; that is,

𝐼𝐴 𝑤 =  
1 𝑖𝑓 𝑤 ∈ 𝐴

0 𝑖𝑓 𝑤 ∈ 𝐴𝑐

• Then 𝐼𝐴 is a Bernoulli random variable taking the 
values 1 and 0 with probabilities 𝑃 𝐴 and 
P Ac respectively.



Let 𝐹 be the distribution function of 𝑋. Then,

• 𝑃 𝑋 > 𝑥 = 1 − 𝐹 𝑥

• 𝑃 𝑥 < 𝑋 ≤ 𝑦 = 𝐹 𝑦 − 𝐹 𝑥

• 𝑃 𝑋 = 𝑥 = 𝐹 𝑥 − lim
𝑦↑𝑥

𝐹(𝑦)

Properties of Distribution function
Lemma : 



The law of averages

• The law of averages is the law that a particular outcome or 
event is inevitable or certain, simply because it is statistically 
possible. This notion can lead to the gambler’s fallacy when 
one becomes convinced that a particular outcome must 
come soon simply because it has not occurred recently.

• In gambler’s fallacy the gambler believes that a particular 
outcome is more likely because it has not happened 
recently, or (conversely) that because a particular outcome 
has recently occurred, it will be less likely in the immediate 
future.



Example

• A common example of how the law of averages can mislead 
involves the tossing of a fair coin (a coin equally likely to 
come up heads or tails on any given toss). 

• If someone tosses a fair coin and gets several heads in a row, 
that person might think that the next toss is more likely to 
come up tails than heads in order to "even things out." 

• But the true probabilities of the two outcomes are still equal 
for the next coin toss and any coin toss that might follow. 

• Past results have no effect whatsoever: Each toss is an 
independent event.



• The law of large numbers is often confused with the law of 
averages, and many texts use the two terms interchangeably. 
However, the law of averages, strictly defined, is not a law at 
all, but a logic error that is sometimes referred to as the 
gambler’s fallacy.

• The law of averages is not a mathematical principle, whereas 
the law of large numbers is. 

• In probability theory, the law of large numbers is a theorem 
that describes the result of performing the same experiment a 
large number of times. 

• According to the law, the average of the results obtained from 
a large number of trials should be close to the expected value, 
and will tend to become closer as more trials are performed.



Discrete and Continuous R.V.s 
(just the definitions)

• The random variable 𝑋 is called discrete if it takes values in 
some countable subset {𝑥1, 𝑥2, … } only, of ℝ. The discrete 
random variable 𝑋 has (probability) mass function  (PMF) 
𝑓:ℝ➔ [0, 1] given by :

𝒇(𝒙) = 𝑷(𝑿 = 𝒙).

• The random variable X is called continuous if its distribution 
function (CDF) can be expressed as:

𝑭 𝒙 =  

−∞

𝒙

𝒇 𝒖 𝒅𝒖 𝒙 ∈ ℝ

for some integrable function 𝑓:ℝ➔ [0,∞) called the     
(probability) density function (PDF) of 𝑋.

𝒇 =  𝜹𝑭
𝜹𝒙



If the sample space is the set of possible numbers rolled on 
two dice, and the random variable of interest is the sum S of the 
numbers on the two dice, then S is a discrete random variable whose 
distribution is described by the probability mass function (PMF) 
plotted as the height of picture columns here. < Src: WIKI >
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• Distribution function definition : The distribution function (CDF) of 
a random variable 𝑋 is the function 𝐹 ∶ ℝ➔ [0, 1] given by 

𝑭 𝒙 = 𝑷 𝑿 ≤ 𝒙 ; the Prob. that X (w) <= x.

(probability) mass function  (PMF) 𝑓:ℝ➔ [0, 1] of discrete x, is given by 
𝒇(𝒙) = 𝑷(𝑿 = 𝒙).

𝑭 𝒙 =  

−∞

𝒙

𝒇 𝒖 𝒅𝒖 𝒙 ∈ ℝ

for some integrable function 𝑓:ℝ➔ [0,∞) called the     
(probability) density function (PDF) of continuous 𝑋.

𝒇 =  𝜹𝑭
𝜹𝒙





Random Vectors

• Suppose that 𝑋 and 𝑌 are random variables on the 
probability space Ω, 𝐹, 𝑃 . Their distribution functions, 
𝐹𝑋 and 𝐹𝑌, contain information about their associated 
probabilities. 

• But how may we encapsulate information about their 
properties relative to each other? 

• The key is to think of 𝑋 and 𝑌 as being the components of 
a 'random vector' (𝑋, 𝑌) taking values in ℝ2, rather than 
being unrelated random variables each taking values in ℝ.



Example: Coin Tossing

• Suppose that we toss a coin 𝑛 times, and set 
𝑋𝑖 equal to 0 or 1 depending on whether the 𝑖𝑡ℎ
toss results in a tail or a head. 

• We think of the vector 𝑿 = (𝑋1, 𝑋2, … . , 𝑋𝑛) as 
describing the result of this composite experiment. 
The total number of heads is the sum of the entries 
in 𝑿.



Joint Distribution Function

• An individual random variable 𝑋 has a distribution 
function 𝐹𝑋 defined by 𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥 𝑓𝑜𝑟 𝑥 ∈ ℝ.

• The corresponding 'joint' distribution function of a 
random vector (𝑋1, 𝑋2, … . , 𝑋𝑛) is the quantity 
𝑃 𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, … , 𝑋𝑛 ≤ 𝑥𝑛 , a function of 𝑛 real 
variables 𝑥1, 𝑥2, … , 𝑥𝑛.

• In order to aid the notation, we introduce an ordering 
of vectors of real numbers: for vectors 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) we write   
𝒙 ≤ 𝒚 if 𝑥𝑖 ≤ 𝑦𝑖 for each 𝑖 = 1,2, … , 𝑛. 



Definition and Properties of Joint 
Distribution Function
• The joint distribution function of a random vector 

𝑿 = (𝑋1, 𝑋2, … . , 𝑋𝑛) on the probability space Ω, 𝐹, 𝑃 is the  

function 𝐹𝑿 ∶ ℝn → 0,1 given by 𝐹𝑿 𝒙 = 𝑃 𝑿 ≤ 𝒙 𝑓𝑜𝑟 𝒙 ∈

ℝn.

• Joint distribution function  𝐹𝑋,𝑌 of random vector (𝑋, 𝑌) have 
properties similar to those of ordinary distribution functions which 
are as follows:

1. lim
𝑥,𝑦→−∞

𝐹𝑋,𝑌 𝑥, 𝑦 = 0 𝑎𝑛𝑑 lim
𝑥,𝑦→∞

𝐹𝑋,𝑌 𝑥, 𝑦 = 1

2. 𝐼𝑓 𝑥1, 𝑦1 ≤ 𝑥2, 𝑦2 𝑡ℎ𝑒𝑛 𝐹𝑋,𝑌 𝑥1, 𝑦1 ≤ 𝐹𝑋,𝑌 𝑥2, 𝑦2

3. 𝐹𝑋,𝑌 is continuous from above, in that 

𝐹𝑋,𝑌 𝑥 + 𝑢, 𝑦 + 𝑣 → 𝐹𝑋,𝑌 𝑥, 𝑦 as 𝑢, 𝑣 ↓ 0.

Lemma : 



• Note: The individual distribution functions of X and Y 
can be recaptured from a knowledge of their joint 
distribution function. 

• The converse is false : it is not generally possible to 
calculate 𝐹𝑋,𝑌 from a knowledge of 𝐹𝑋 and 𝐹𝑌 alone. 

• The functions F𝑋 and 𝐹𝑌 are called the 'marginal'
distribution functions of 𝐹𝑋,𝑌.



Example

• A schoolteacher asks each member of his or her class to flip a 
fair coin twice and to record the outcomes. 

• The diligent pupil D does this and records a pair (𝑋𝐷 , 𝑌𝐷) of 
outcomes. The lazy pupil L flips the coin only once and writes 
down the result twice, recording thus a pair (𝑋𝐿, 𝑌𝐿)where 
𝑋𝐿 = YL. 

• Clearly 𝑋𝐷 , 𝑌𝐷 , 𝑋𝐿 , 𝑌𝐿 are random variables with the same 
distribution functions. However, the pairs (𝑋𝐷 , 𝑌𝐷) and 
(𝑋𝐿 , 𝑌𝐿) have different joint distribution functions. 

• In particular, 𝑃 𝑋𝐷 = 𝑌𝐷 = ℎ𝑒𝑎𝑑𝑠 =
1

4
since only one of the 

four possible pairs of outcomes contains heads only, 

whereas 𝑃 𝑋𝐿 = 𝑌𝐿 = ℎ𝑒𝑎𝑑𝑠 =
1

2
.



• The random variables 𝑋 and 𝑌 on the probability space Ω, 𝐹, 𝑃
are called (jointly) discrete if the vector 𝑋, 𝑌 takes values in 
some countable subset of ℝ2 only. The jointly discrete random 
variables 𝑋, 𝑌 have joint (probability) mass function 
𝑓 ∶ ℝ2 → 0,1 given by 𝑓 𝑥, 𝑦 = 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 .

• The random variables 𝑋 and 𝑌 on the probability space Ω, 𝐹, 𝑃
are called (jointly) continuous if their joint distribution function 
can be expressed as

𝐹𝑋,𝑌 𝑥, 𝑦 =  

𝑢=−∞

𝑥

 

𝑣=−∞

𝑦

𝑓 𝑢, 𝑣 𝑑𝑢𝑑𝑣 𝑥, 𝑦 ∈ ℝ

for some integrable function 𝑓 ∶ ℝ2 → [0,∞) called the joint 
(probability) density function of the pair (𝑋, 𝑌).



Monte Carlo Simulation (MCS)
• 'Monte Carlo simulation' is used to describe a method for 

propagating uncertainties in model inputs into uncertainties 
in model outputs (results). 

• Hence, it is a type of simulation that explicitly and 
quantitatively represents uncertainties. 

• Monte Carlo simulation relies on the process of explicitly 
representing uncertainties by specifying inputs as probability 
distributions. If the inputs describing a system are uncertain, 
the prediction of future performance is necessarily 
uncertain.

• That is, the result of any analysis based on inputs 
represented by probability distributions is itself a probability 
distribution.



• Compared to deterministic analysis, the Monte Carlo method 
provides a superior simulation of risk. It gives an idea of not 
only what outcome to expect but also the probability of 
occurrence of that outcome.

• Different explanation : When you develop a forecasting model –
any model that plans ahead for the future – you make certain 
assumptions. 

• Because these are projections into the future, the best you can 
do is estimate the expected value. Based on historical data, or 
expertise in the field, or past experience, you can draw an 
estimate. While this estimate is useful for developing a model, it 
contains some inherent uncertainty and risk, because it's an 
estimate of an unknown value.



In telecommunications, when planning a wireless network, 
design must be proved to work for a wide variety of scenarios that 
depend mainly on the number of users, their locations and the 
services they want to use. Monte Carlo methods are typically used to 
generate these users and their states. The network performance is 
then evaluated and, if results are not satisfactory, the network 
design goes through an optimization process.

In autonomous robotics, Monte Carlo localization can 
determine the position of a robot. It is often applied to stochastic 
filters such as the Kalman filter or particle filter that forms the heart 
of the SLAM (simultaneous localization and mapping) algorithm.

Path tracing, occasionally referred to as Monte Carlo ray 
tracing, renders a 3D scene by randomly tracing samples of possible 
light paths. Repeated sampling of any given pixel will eventually 
cause the average of the samples to converge on the correct solution 
of the rendering equation, making it one of the most physically 
accurate 3D graphics rendering methods.

Monte Carlo methods have been developed into a technique 
called Monte-Carlo tree search that is useful for searching for the 
best move in a game. Possible moves are organized in a search tree 
and a large number of random simulations are used to estimate the 
long-term potential of each move. A black box simulator represents 
the opponent's moves.

https://en.wikipedia.org/wiki/Telecommunications












• In some cases, it's possible to estimate a range of values. In a 
construction project, you might estimate the time it will take to 
complete a particular job; based on some expert knowledge, you 
can also estimate the absolute maximum time it might take, in 
the worst possible case, and the absolute minimum time, in the 
best possible case. 

• The key feature of a Monte Carlo simulation is that it can tell you 
– based on how you create the ranges of estimates – how likely 
the resulting outcomes are.

• Example: A dam. It is proposed to build a dam in order to 
regulate the water supply, and in particular to prevent seasonal 
flooding downstream. How high should the dam be? 

• Dams are expensive to construct, and some compromise 
between cost and risk is necessary. 



• It is decided to build a dam which is just high enough to ensure 
that the chance of a flood of some given extent within ten years is 
less than 10−2,say. 

• No one knows exactly how high such a dam need be, and a young 
probabilist proposes the following scheme. 

• Through examination of existing records of rainfall and water 
demand we may arrive at an acceptable model for the pattern of 
supply and demand. 

• This model includes, for example, estimates for the distributions 
of rainfall on successive days over long periods.

• With the aid of a computer, the 'real world' situation is simulated 
many times in order to study the likely consequences of building 
dams of various heights.

• In this way we may arrive at an accurate estimate of the height 
required.



Example

• A dentist schedules all his/her patients for 30 
minutes appointments. 

• Some of the patients take more or less than 
30 minutes depending on the type of dental 
work to be done. 

• The following summary shows the categories 
of work, their probabilities and the time 
actually needed to complete the work:



Category Time required No. of patients

Filling 45 min 40

Crown 60 min 15

Cleaning 15 min 15

Extracting 45 min 10

Checkup 15 min 20

• Simulate the dentist’s clinic for 4 hours and find out the average 
waiting time for the patients as well as the idleness of the 
doctor. Assume that all the patients show up at the clinic at 
exactly their scheduled arrival time starting at 8:00 a.m.

• Use the following random numbers for handling the above 
problem:

40, 82, 11, 34, 25, 66, 17, 79



Steps:

• Find the probability distribution

• Cumulative distribution

• Setting random number intervals

• Generating random numbers

• Find the solution based on the above details

• Keep repeating above several times to get different 
distributions of the solution space. 



Category Time required No. of patients

Filling 45 min 40

Crown 60 min 15

Cleaning 15 min 15

Extracting 45 min 10

Checkup 15 min 20

Category Probability Cumulative 
Probability

Random No. 
Interval

Filling 0.40 0.40 0-39

Crown 0.15 0.55 40-54

Cleaning 0.15 0.70 55-69

Extracting 0.10 0.80 70-79

Checkup 0.20 1.00 80-99



Patient Scheduled 
arrival

Random 
Number

Category Service 
time 
needed

1 8:00 40 Crown 60 min

2 8:30 82 Checkup 15 min

3 9:00 11 Filling 45 min

4 9:30 34 Filling 45 min

5 10:00 25 Filling 45 min

6 10:30 66 Cleaning 15 min

7 11:00 17 Filling 45 min

8 11:30 79 Extracting 45 min



Patient Scheduled 
arrival

Service 
start

Service 
duration 
(in min)

Service 
end

Waiting
(in min)

Idle 
time

1 8:00 8:00 60 9:00 0 0

2 8:30 9:00 15 9:15 30 0

3 9:00 9:15 45 10:00 15 0

4 9:30 10:00 45 10:45 30 0

5 10:00 10:45 45 11:30 45 0

6 10:30 11:30 15 11:45 60 0

7 11:00 11:45 45 12:30 45 0

8 11:30 12:30 45 1:15 60 0










