DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER-3
CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

Sometimes the sum $S=\sum x f(x)$ does not converge absolutely, and the mean of the distribution does not exist. If $S=-\infty$ or $S=+\infty$, then we can sometimes speak of the mean as taking these values also. Of course, there exist distributions which do not have a mean value.
(12) Example. A distribution without a mean. Let X have mass function

$$
f(k)=A k^{-2} \text { for } k= \pm 1, \pm 2, \ldots
$$

where A is chosen so that $\sum f(k)=1$. The sum $\sum_{k} k f(k)=A \sum_{k \neq 0} k^{-1}$ does not converge absolutely, because both the positive and the negative parts diverge.

$$
I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { if } \omega \in A^{c}\end{cases}
$$

and $\mathbb{E} I_{A}=\mathbb{P}(A)$.
(1) Example. Proofs of Lemma (1.3.4c, d). Note that

$$
I_{A}+I_{A^{c}}=I_{A \cup A^{c}}=I_{\Omega}=1
$$

and that $I_{A \cap B}=I_{A} I_{B}$. Thus

$$
\begin{aligned}
I_{A \cup B} & =1-I_{(A \cup B)^{c}}=1-I_{A^{c} \cap B^{c}} \\
& =1-I_{A^{c}} I_{B^{c}}=1-\left(1-I_{A}\right)\left(1-I_{B}\right) \\
& =I_{A}+I_{B}-I_{A} I_{B} .
\end{aligned}
$$

Take expectations to obtain

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

More generally, if $B=\bigcup_{i=1}^{n} A_{i}$ then

$$
I_{B}=1-\prod_{i=1}^{n}\left(1-I_{A_{t}}\right)
$$

multiply this out and take expectations to obtain

$$
\begin{equation*}
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\cdots+(-1)^{n+1} \mathbb{P}\left(A_{1} \cap \cdots \cap A_{n}\right) \tag{2}
\end{equation*}
$$

This very useful identity is known as the inclusion-exclusion formula.

Discrete Probability Distributions

- Bernoulli distribution
- Binomial distribution
- Trinomial distribution
- Poisson distribution
- Geometric distribution
- Negative binomial distribution

Bernoulli distribution

- A random variable X takes values 1 and 0 with probabilities p and q (= $1-p$), respectively.
- Sometimes we think of these values as representing the 'success' or the 'failure' of a trial.
- The mass function is

$$
f(0)=1-p, f(1)=p
$$

- and it follows that $\boldsymbol{E X}=\boldsymbol{p}$ and $\operatorname{var}(\boldsymbol{X})=\boldsymbol{p}(\mathbf{1}-$ p).

Binomial Distribution

- We perform n independent Bernoulli trials $X_{1}, X_{2}, \ldots, X_{n}$ and count the total number of successes $Y=X_{1}+X_{2}+\ldots+X_{n}$.
- The mass function of Y is

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n
$$

- $E Y=n p$ and $\operatorname{var}(Y)=n p(1-p)$

Example

- A coin is tossed 10 times. What is the probability of getting exactly 6 heads?

Solution :

$$
n=10, p=0.5,1-p=0.5, x=6
$$

Using the formula from previous slide and substituting the above values we get

$$
P(x=6)=\square
$$

Trinomial Distribution

- Suppose we conduct n trials, each of which results in one of three outcomes (red, white, or blue, say), where red occurs with probability p, white with probability q, and blue with probability $1-p-q$. The probability of r reds, w whites, and $n-r-w$ blues is

$$
\frac{n!}{r!w!(n-r-w)!} p^{r} q^{w}(1-p-q)^{n-r-w}
$$

this is the trinomial distribution, with parameters n, p, and q.

- The 'multinomial distribution' is the obvious generalization of this distribution to the case of some number, say t, of possible outcomes.

Poisson Distribution

- A Poisson variable is a random variable with the Poisson mass function

$$
f(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1,2, \ldots
$$

For some $\lambda>0$

- Both the mean and the variance of this distribution are equal to λ.

Practice problems

1a. If calls to your cell phone are a Poisson process with a constant rate $\lambda=2$ calls per hour, what's the probability that, if you forget to turn your phone off in a 1.5 hour movie, your phone rings during that time?

1b. How many phone calls do you expect to get during the movie?

Answer

1a. If calls to your cell phone are a Poisson process with a constant rate $\lambda=2$ calls per hour, what's the probability that, if you forget to turn your phone off in a 1.5 hour movie, your phone rings during that time?

$$
\begin{aligned}
& X \sim \text { Poisson }(\lambda=2 \text { calls/hour }) \quad f(\boldsymbol{k})=\frac{\lambda^{k}}{k!} e^{-\lambda} \\
& P(X \geq 1)=1-P(X=0) \\
& \quad P(X=0)= \\
& \therefore P(X \geq 1)=1-.05=95 \% \text { chance }
\end{aligned}
$$

1b. How many phone calls do you-ment+n duen the movie?

$$
E(X)=
$$

Geometric Distribution

- A geometric variable is a random variable with the geometric mass function

$$
f(k)=p(1-p)^{k-1}, k=1,2, \ldots
$$

For some p in $(0,1)$.

- Mean $=\frac{1}{p}$
- Variance $=\frac{1-p}{p^{2}}$

Negative Binomial Distribution

- $P\left(W_{r}=k\right)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, k=r, r+1, \ldots$
- The random variable W_{r} is the sum of r independent geometric variables. To see this, let X_{1} be the waiting time for the first success, X_{2} the further waiting time for the second success, X_{3} the further waiting time for the third success, and so on. Then $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots$ are independent and geometric, and

$$
W_{r}=X_{1}+X_{2}+\cdots+X_{r}
$$

1. De Moivre trials. Each trial may result in any of t given outcomes, the i th outcome having probability p_{i}. Let N_{i} be the number of occurrences of the i th outcome in n independent trials. Show that

$$
\mathbb{P}\left(N_{i}=n_{i} \text { for } 1 \leq i \leq t\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{t}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{t}^{n_{t}}
$$

for any collection $n_{1}, n_{2}, \ldots, n_{t}$ of non-negative integers with sum n. The vector N is said to have the multinomial distribution.
(2) Definition. The joint distribution function $F: \mathbb{R}^{2} \rightarrow[0,1]$ of X and Y, where X and Y are discrete variables, is given by

$$
F(x, y)=\mathbb{P}(X \leq x \text { and } Y \leq y) .
$$

Their joint mass function $f: \mathbb{R}^{2} \rightarrow[0,1]$ is given by

$$
f(x, y)=\mathbb{P}(X=x \text { and } Y=y) .
$$

(3) Lemma. The discrete random variables X and Y are independent if and only if

$$
\begin{equation*}
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all } x, y \in \mathbb{R} \tag{4}
\end{equation*}
$$

More generally, X and Y are independent if and only if $f_{X, Y}(x, y)$ can be factorized as the product $g(x) h(y)$ of a function of x alone and a function of y alone.

Read about Random Walks

