DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER-3

CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

Sometimes the sum $S = \sum x f(x)$ does not converge absolutely, and the mean of the distribution does not exist. If $S = -\infty$ or $S = +\infty$, then we can sometimes speak of the mean as taking these values also. Of course, there exist distributions which do not have a mean value.

(12) Example. A distribution without a mean. Let X have mass function

$$f(k) = Ak^{-2}$$
 for $k = \pm 1, \pm 2, \dots$

where A is chosen so that $\sum f(k) = 1$. The sum $\sum_k kf(k) = A \sum_{k \neq 0} k^{-1}$ does not converge absolutely, because both the positive and the negative parts diverge.

$$I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A, \\ 0 & \text{if } \omega \in A^c, \end{cases}$$

and $\mathbb{E}I_A = \mathbb{P}(A)$.

(1) Example. Proofs of Lemma (1.3.4c, d). Note that

$$I_A + I_{A^c} = I_{A \cup A^c} = I_\Omega = 1$$

and that $I_{A\cap B} = I_A I_B$. Thus

$$I_{A\cup B} = 1 - I_{(A\cup B)^c} = 1 - I_{A^c \cap B^c}$$

= 1 - I_{A^c} I_{B^c} = 1 - (1 - I_A)(1 - I_B)
= I_A + I_B - I_A I_B.

Take expectations to obtain

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

More generally, if $B = \bigcup_{i=1}^{n} A_i$ then

$$I_B = 1 - \prod_{i=1}^n (1 - I_{A_i});$$

multiply this out and take expectations to obtain

(2)
$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i} \mathbb{P}(A_{i}) - \sum_{i < j} \mathbb{P}(A_{i} \cap A_{j}) + \dots + (-1)^{n+1} \mathbb{P}(A_{1} \cap \dots \cap A_{n}).$$

This very useful identity is known as the inclusion-exclusion formula.

Discrete Probability Distributions

- Bernoulli distribution
- Binomial distribution
- Trinomial distribution
- Poisson distribution
- Geometric distribution
- Negative binomial distribution

Bernoulli distribution

- A random variable X takes values 1 and 0 with probabilities p and q (= 1 - p), respectively.
- Sometimes we think of these values as representing the 'success' or the 'failure' of a trial.
- The mass function is

f(0) = 1 - p, f(1) = p,

• and it follows that EX = p and var(X) = p(1 - p).

Binomial Distribution

• We perform *n* independent Bernoulli trials X_1, X_2, \ldots, X_n and count the total number of successes $Y = X_1 + X_2 + \ldots + X_n$.

• The mass function of Y is

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, ..., n$$

• EY = np and var(Y) = np(1-p)

Example

• A coin is tossed 10 times. What is the probability of getting exactly 6 heads?

Solution : n = 10, p = 0.5, 1 - p = 0.5, x = 6

Using the formula from previous slide and substituting the above values we get P(x - 6) = 0

$$P(x=6) =$$

Trinomial Distribution

• Suppose we conduct n trials, each of which results in one of three outcomes (red, white, or blue, say), where red occurs with probability p, white with probability q, and blue with probability 1 - p - q. The probability of r reds, w whites, and n - r - w blues is

$$\frac{n!}{r!w!(n-r-w)!}p^{r}q^{w}(1-p-q)^{n-r-w}$$

this is the *trinomial distribution*, with parameters *n*, *p*, and *q*.

 The 'multinomial distribution' is the obvious generalization of this distribution to the case of some number, say t, of possible outcomes.

Poisson Distribution

• A *Poisson* variable is a random variable with the Poisson mass function $f(L) = \lambda^{k} - \lambda = 0.1.2$

$$f(k) = \frac{\lambda^{\kappa}}{k!} e^{-\lambda}, \qquad k = 0, 1, 2, ...$$

For some $\lambda > 0$

• Both the mean and the variance of this distribution are equal to λ .

Practice problems

1a. If calls to your cell phone are a Poisson process with a constant rate $\lambda = 2$ calls per hour, what's the probability that, if you forget to turn your phone off in a 1.5 hour movie, your phone rings during that time?

1b. How many phone calls do you expect to get during the movie?

Answer

1a. If calls to your cell phone are a Poisson process with a constant rate λ =2 calls per hour, what's the probability that, if you forget to turn your phone off in a 1.5 hour movie, your phone rings during that time?

$$X \sim \text{Poisson} (\lambda = 2 \text{ calls/hour})$$

$$P(X \ge 1) = 1 - P(X = 0)$$

$$P(X = 0) =$$

$$P(X \ge 1) = 1 - .05 = 95\% \text{ chance}$$

1b. How many phone calls do you concert to get during the movie? E(X) =

Geometric Distribution

• A *geometric* variable is a random variable with the geometric mass function

$$f(k) = p(1-p)^{k-1}, k = 1, 2, ...$$

For some p in (0,1).

• Mean
$$= \frac{1}{p}$$

• Variance $= \frac{1-p}{p^2}$

Negative Binomial Distribution

•
$$P(W_r = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, k = r, r+1, ...$$

• The random variable W_r is the sum of rindependent geometric variables. To see this, let X_1 be the waiting time for the first success, X_2 the *further* waiting time for the second success, X_3 the *further* waiting time for the third success, and so on. Then X_1 , X_2 , ... are independent and geometric, and

$$W_r = X_1 + X_2 + \dots + X_r$$

1. De Moivre trials. Each trial may result in any of t given outcomes, the *i*th outcome having probability p_i . Let N_i be the number of occurrences of the *i*th outcome in n independent trials. Show that

$$\mathbb{P}(N_i = n_i \text{ for } 1 \le i \le t) = \frac{n!}{n_1! n_2! \cdots n_t!} p_1^{n_1} p_2^{n_2} \cdots p_t^{n_t}$$

for any collection $n_1, n_2, ..., n_t$ of non-negative integers with sum n. The vector N is said to have the *multinomial distribution*.

(2) Definition. The joint distribution function $F : \mathbb{R}^2 \to [0, 1]$ of X and Y, where X and Y are discrete variables, is given by

 $F(x, y) = \mathbb{P}(X \le x \text{ and } Y \le y).$

Their joint mass function $f : \mathbb{R}^2 \to [0, 1]$ is given by

 $f(x, y) = \mathbb{P}(X = x \text{ and } Y = y).$

(3) Lemma. The discrete random variables X and Y are independent if and only if

(4)
$$f_{X,Y}(x, y) = f_X(x) f_Y(y) \quad \text{for all } x, y \in \mathbb{R}.$$

More generally, X and Y are independent if and only if $f_{X,Y}(x, y)$ can be factorized as the product g(x)h(y) of a function of x alone and a function of y alone.

Read about Random Walks