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Probability Density Functions

A random variable X is continuous if its distribution
function
F(x) = P(X < x) can be written as

F(x) :f f(u)du

for some integrable f: R — [0, o0)

* The function f is called the (probability) density function
of the continuous random variable X.



Px < X <x+dx)=F(x+dx)— F(x)~ f(x)dx.
The probability that X takes a value in the interval |a, b] is

b
Pla <X <b) = f(x)dx.

a

P(X € B)—/ f(x)dx,
B
Where B is a subset of R.

Suppose that f:R — [0,00) isintegrable and

j f(x)dx =1,

P(B) :/ f(x)dx.
B



(5) Lemma. If X has density function f then

(a) [2o, f(x)dx =1,
(b) P(X =x) =0forall x € R,

(¢) Pla <X <b)= [’ f(x)dx.

Independence :

* We cannot continue to define the independence of X and Y in terms
of events such as {X = x} and {Y = y}, since these events have zero
probability and are trivially independent.

Definition. Random variables X and ¥ are called independent if

{X <x} and {Y <y} areindependenteventsforallx,y € R.



g,h: R — R. Then g(X) and h(Y) are functions which map €2 into R by

§(X)(@) =g(X(®),  h(Y)w)=h(Y(w)

where g, h: R - R

where, g(X) and h(Y) are functions;i.e., g,h: R - R

Theorem. /f X and Y are independent, then so are g(X) and h(Y).



Expectation

* The expectation of a discrete variable X is

EX = Zx xP(X = x)
* This is an average of the possible values of X, each value
being weighted by its probability.

* For continuous variables, expectations are defined as
integrals.

(1) Definition, The expectation of a continuous random variable X with density function f
s given by

o0
IEXz[ xf(x)dx

~00

whenever this integral exists.



Theorem. [If X and g(X) are continuous random variables then

Be(0) = [ g0 fxtx)dx.
(4) Lemma. [f X has density function f with f (x) = Owhenx < 0, and distribution function
F, then
00
EX f [1 — F(x)]dx.
0
Proof: .

[ [1—F(x)]dx_[ P(X :;»x)dx_fx N f(y)dydx.
0 0

0 y=x

w

* Now change the order of integration in the last term.

Proof of Theorem by Lemma, when g >= 0

E(g(X))—f P(g(X) :}X)dﬂr:—f (f fx(y)dy) dx
0 0 B



E(g(X))f P(g(X) :}Jr:)dxf (/ fx(y)dy)dx
0 0 B

* where B = {y : g (y) > x}. We interchange the order of
integration here to obtain

| oo rg(y) 00
E(g(X))zﬁ [] dex(y)dyzﬁ g(y)fx(y)dy.

* The k'™ moment of a continuous variable X is given by:

my = E(X");

E(Xk) — kaf(x)dx



Continuous RV distributions

e Uniform distribution : The random variable X is uniform
on |a, b] function if it has distribution function

0 ifx <a,
F)={ =—2 ifa <x <b,

b —a

] if x > b.

* Exponential distribution : The random variable X is

exponential with parameter) A( > 0) if it has distribution
function

Fix)=1—e M, x > 0.

el s 1
* The exponential distribution has mean -

1



* Normal (Gaussian) distribution : has two parameters u (mean), and
a? (variance) and density function

1 (x — )
f(x)= N exp (— 52 ) , —00 < X < 00,

It is denoted by N(u,02).If u = 0 and 62 = 1 then the density of the
standard normal distribution is:

1 12

f(x) = e 2%, —00 < X < 09,
V21
X —u
For the distribution of Y, Y= o
P(Y <y) =P((X —p)/o <y) =P(X <yo + )

B 1 yo+p , ( (x — H)Z )
= exp| — 5 dx
g 27 —00 20

e 2 du by substituting x = vo + p.

1 f‘*
- _\f 23’7_' —00



o T
o T
o T

nus Y is N(0,1). ] 1,2

— —=v
he density function of Y : p(v) = m‘-’ ?

he distribution function of Y :

O(y) =P <y)= f o (v)dv.

e Gamma distribution : The random variable X has the
gamma distribution with parameters A,t > 0, denoted

I'(4,t), if it has density

1
fx) = 0 Mxt—le™x, x> 0.

* Here, I'(t) is the gamma function

o0
I'(¢) =/ x'le™ dx.
0
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e Ift = 1 then X is exponentially distributed with parameter A. If
A== t = 14d, for some integer d, then X is said to have the chi-
squared distribution y*(d) with d degrees of freedom.

e Cauchy distribution : The random variable X has the Cauchy
distribution t if it has density function

f(l):H(1+x2), —00 < X < OQ.

e Beta distribution : The random variable X is beta, parameters
a,b > 0, if it has density function

' _ I a—1 b— I
f(x)_B(a,b)x (I —x) 0<x<l.

We denote this distribution by B(a, b). The ‘beta function’

1
B(a,b) = f x4 11 —x)P 1 dx
0
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Notation B(n_p)
Binomial Parameters |n € Ny — number of trials

. - - p € [0,1] — success probability in each
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Dependence

(1) Definition, The joint distribution function of X and Y is the function F ; R* — [0, 1]

ofven by
Fx,y)=PX <x, ¥ ).

(2) Definition, The random variables X and Y are (jointly) continuous with joint (proba-
bility) density function [ : R — [0, o0) if

y X
F(x,y)= f / flu,vydudv foreachx, y € R.
=00 o =00

* If F is sufficiently differentiable at the point (x, y), then we usually
specify 52
flx,y) = F(x,y).

0xdy

Pla<X<b,c<Y<d)y=F0b,d) — F(a,d) — F(b,c)+ F(a,c)

d b
:f f(x,y)dxdy.
)

y=c Jx=a



* Think of f(x,y)dxdy as the element of probability
Px<X<x+dx,y<Y <y+dy) sothatif Bisa
sufficiently nice subset of R? then

P((X,Y) € B) / Flx.y)dxdy.

e We can think of (X, Y) as a point chosen randomly from
the plane; then P( (X,Y) € B) is the probability that the
outcome of this random choice lies in the subset B.

* Marginal distributions: The marginal distribution
functions of X and Y are

Fx(x) =DP(X =x) = F(x, 00), Fy(y) =P(Y <y) = F(00, ),



* where F(x, ) is shorthand for lim F(x,y) now,

y—)OO

Fx(x) = / (/ f(u,y)d}!)du

and it follows that the marginal density function of X is

%
fx(x) —f f(x,v)dy.

Similarly, the marginal density function of Y is

fyr(y) :f f(x,y)dx.



* Expectation :
If g: R* > Ris a function

E(g (X, Y))—f f gx,y)f(x,y)dxdy;

* In particular, setting g(x,y) = ax + by,
E(aX +bY) =alEX 4+ bEY.

* Independence : The random variables X and Y are
independent if and only if

F(x,y)= Fx(x)Fy(y) forall x,y e R,

which, for continuous random variables, is equivalent to

requining that —— £(x, y) = fx (x) fr(y)



Example of independence

- Bivariate normal distribution. Let f: R* — R be given
by

f(x,y) . exp( (2~ 2pxy + "))
JWA, V) = . — X~ — 2pXYy y
24/ 1 — p? 2(1 = p?)

* The covariance

cov(X, Y) = E(XY) — E(X)E(Y)

o0 o0
cov(X,Y) = f f xyf(x,y)dxdy = p;



* Remember that independent variables are uncorrelated,
but the converse is not true in general.

* In this case, however, if p = 0 then

f(x,y) =

and so X and Y are independent.

* We reach the following important conclusion. Bivariate
normal variables are independent if and only if they are
uncorrelated.



* The general bivariate normal distribution is more

complicated. We say that the pair X, Y has the bivariate

normal distribution with means u; and u, , variances o;

and 0%, and correlation p if their joint density function is

1 !
(x,y) = —— exp|—50(x,y)
Jx.) 2noyjooy/ 1 — p? p[ 22 ]

* where g, ,0, > 0 and Q is the following quadratic form

> N s o >
0(x.y) — 1 : (I—m) _zp(x—m)(:t ME)T(J Mz) |
(I —p=) o o o) op)

Routine integrations (exercise ) show that:
(@) X is N(u1,07) and Y is N(u2, 03),
(b) the correlation between X and Y 1s p,
(c) X andY are independent if and only if p = 0.




1 RS DRNCEI )

X) =
P Jdet(E)(27)’ Pl 2
l 1
- Jdet(x)27)" ! 2;(% Iy =)

where, s; is the i-jth component of > (the inverse of covariance matrix X).

Special case, d = 2; where X = (x y)T; Then: 'L[ — [‘ux)

and 2 2 /ly

z _ GX ny _ Gx p xy GX Gy

o 2 | 2
O-xy O-y P Xy O, O-y O-y

Can you now obtain this,
as given earlier:

| [()C—,Ux )2_2pxy (x_/ux )(y_/uy)_l_

y_luy

6_2(1—p§y) . 0.0, 5

p(x,y)=

27100, \/ (1-p5)



f e~ 2% dx = N2

o0
and hence that
| _ 1,2
— — =
f(x) N

is indeed a density function.

Similarly, a change of variables in the integral shows that
the more general function

flx) = 1 ox _1 (J:_‘LL)E
| o027 P 2 o

is itself a density function.




let X and Y have joint density function given by:

B 1 R ) )
f(x,y)—zn\/l_pzeXp( 2(1_102)(16 2pxy y))

By completing the square in the exponent of the integrand:

cov(X,Y) = ff xyf(x,y)dxdy

_ f y é?e‘%yz ( f xg(x,y>dx) dy

l
V2r(1 - p?)

Is the density function of the N(py, 1- p™2) distribution.

g(x’ y) —




cov(X,Y) = f f xyf(x,y)dxdy
1 1,2
y «/278 ( f xg(x,y)dx) dy

_ 1 l(x_,,,,)z)
g(x,y) = T = eXP( 2 (=0

Therefore, fxg(x, )’) dXx is the mean, pY, of this distribution,

giving:

= p, Why ??




(12) Theorem. Cauchy-Schwarz inequality. For any pair X, Y of jointly continuous vari-

ables, we have that
(E(XY))? < E(XHE(Y?),

with equality if and only if P(aX = bY) = 1 for some real a and b, at least one of which is
non-zero,



Conditional distributions and

conditional expectation
* Suppose that X and Y have joint density function f.

* We wish to discuss the conditional distribution of Y
given that X takes the value x .

* However, the probability P(Y < y|X = x)is undefined
since we may only condition on events which have
strictly positive probability.

* If fx(x) > 0 then,

[P(YE}’|IEXEI+dI):[P(YE}}‘IEXEI_]'dI)

Plx < X <x+dx)
f]f:_m .f(-xa U} d.]: dU
B fx(x)dx

Y )
— duv.
ﬁz—m f}f (x) '




* As dx | 0 the left-hand side of this equation approaches
our intuitive notion of the probability that Y < y given that
X = x. Hence, the following can be stated:

(1) Definition, The conditional distribution funection of ¥ given X = x is the function
Fyix(- | x) given by

dv

Y f(x,v)
Prix(y | x) =
k0 %) [—m fx ()

for any x such that fy(x) > 0. It is sometimes denoted P(Y <y | X = x).

(2) Definition. The conditional density function of Fy|x, written fy |y, is given by

fx,y)
fx(x)

frix(y [ x) =

for any x such that fx(x) > 0.



Of course, fx(x) = {j; f(x,y)dy, and therefore

fx,y)

Trx(r1x) = [ fx,y)dy

fyvix = fxy/fx

Conditional expectation of Y given X

O

V@ =BV | X=0= | ynx(y| Ddy

—0C



(5) Theorem. The conditional expectation r(X) = E(Y | X) satisfies

E@ (X)) = EX).

* Itis normally writtenas E(E(Y | X)) = E(Y), and it
provides a useful method for calculating E(Y) since it
asserts that

E(Y) = fm E(Y | X = x) fx(x)dx.

—00

 Example : Let X and Y have the standard bivariate normal
distribution. Then

frix(y | x) = fx.y(x,y)/ fx(x)




B - 1 (y = px)*\
frix(y | x) = fx,y(x, y)/fx(x) = V2l =) Exp( 2(1—p% )

is the density function of the N(px, 1 — p#) distribution.
Thus E(Y|X = x) = px, givingthat E(Y|X) = pX

(10) Theorem. The conditional expectation ¥ (X) = E(Y | X) satisfies

(11) E(v(X)g(X)) = E(Yg(X))

for any function g for which both expectations exist.



Functions of random variables

* Let X be a random variable with density function f, and
let g : R = R be another function.

* Then y = g(X) is a random variable also. In order to
calculate the distribution of Y, we proceed as:

P(Y <y) =P(g(X) <y) =P(s(X) € (-0, y])

= ]P’(X = g_](—c:ﬂ, }*I) = / f(x)dx.
g 1 (—o0,y]



* More generally, if X; and X, have joint density function f
and g and h are functions mapping R to R, then what is
the joint density function of the pair

Yl — g(Xl)XZ)i YZ — h(X1;X2)
(use change of variables within an integral.)

* Let y; = y1(x1,%2),y2 = y2(x1,X;) be a one-one
mapping T: (x{, x,) = (y1,y,) taking some domain
D € R? onto some range R € R?.

* The transformation can be converted as
xl — xl(yl)yZ)) xZ — xZ(yl)yZ)'

 The Jacobian of this inverse is defined to be the
determinant ax;  9x»

; 3}’| 3}’1 o 3.1:1 3.133 3,1!'] 313
‘ dx; 9x» dy1 dy2  dy2 9y

dy dwm



(3) Theorem. If g : R* — R, and T maps the set A C D onto the set B C R then

/:[ g(Il.xz)dlldxz=ff g(x1001, y2), 20y, Y (1, y2) | dy1 dys.
A B

(4) Corollary. If Xy, X; have jointdensity function f, then thepair Yy, Y, givenby (1), 13) =
T'(X1, X2) has joint density function

Fr1On y2), 220G NI Lyl if (1, 32) is in the range of T
0 otherwise.

v 1,01, 32) = [



* Example : Let X; and X, be independent exponential
variables, parameter A. Find the joint density function of

Y1 = X + Xa, Yo = X1/ Xo,
and show that they are independent.
Solution : Let T map (x4, x,) to (y1,y>) by
Y1 = x1 + X2, y2 = x1/x2,  X1,x2, 1,2 = 0.
The inverse T~ maps (v4, y,) to (x4, x3) by
x1 = ny2/(1 +y2), x2 = y1/(1 + y)

and the Jacobian is

T(y1, y2) = —y1/(1 + y2)*,

Iy1l
(1+y2)?*

giving  fr,, v, (V1. ¥2) = fx, x. (1y2/(1 4 y2), y1/(1 + y2))



* However, X; and X, are independent and exponential,
so that

fxo 1, 061, %2) = fi, (¥1) fi, (k) = W20 i x) xy >0,

Whence
}HEE_““}II_}!]
(1 + y2)?

factorizes as the product of a function of y; and a function
of y,

f}’l,}’g(}’la}’l): if y|,y22[]

v (y1) = A? E-}*}Jl, M) = —-.



Sums of random variables

(1) Theorem. If X and Y have joint density function f then X + Y has density function

O

fxsy(z) = / | f(x,z—x)dx.

o — 00

Proof. Let A = {(x,y): x + y < z}. Then

B0 27—l
P{X+Yiiz}=ff f(u,u}dudvzf f dvdu
A H=—00 Ju=—00

o0 <
=f / fx,y—x)dydx
x=—00J y=—00

by the substitutionx = u,y = v + wu.



e If X and Y are independent, the result becomes

fx4v(z) = f fxxX) fr(z —x)dx = fx(z—v)fr(y)dy.

— 0

* The function fy.y is called the convolution of fy and fy,

and is written
fx+y = fx * fy.

* If X is N(uq, 0f) and Y is N(u,,04), and X and Y are
independent,

thenZ =X+Y is N(uj + Uy, 0f + g3).



Multivariate normal distribution

(4) Definition. The vector X = (X1, X7, ..., X,) has the multivariate normal distribution
(or multinormal distribution), written N(u, V), if its joint density function is

I
VZr)" V]

where V is a positive definite symmetric matrix.

f(x) = exp[—1(x— )V '(x—p)], xeR",

(5) Theorem. IfX is N(i, V) then
(a) E(X) = m, which is to say that E(X;) = w; forall i,
(b) V = (v;j) is called the covariance matrix, because vj; = cov(X;, X ).

(6) Theorem. [f X = (X1,Xy,..., X)) is N0, V)and Y = (Y1, Y,..., Yy) is given by
Y = XD for some matrix D of rankm < n, then Y is N(0, D'VD).



Distributions arising from the normal
distribution

* Statisticians are frequently faced with a collection X4, X, , ... , X,, of
random variables arising from a sequence of experiments.

* They might be prepared to make a general assumption about the
unknown distribution of these variables without specifying the
numerical values of certain parameters.

* Commonly they might suppose that X; ,X,, ... , X,, is a collection
of independent N (u, o%) variables for some fixed but unknown
values of u and o°.

e This assumption is sometimes a very close approximation to
reality.

* They might then proceed to estimate the values of u and g by
using functions of X1, X, , ... , X,,.

* They will commonly use the sample mean.



 Sample mean: |
=2
"
as a guess at the value of u and Sample variance :

Z(X -X)?

as a guess at the value of *.

n—l

* These at least have the property of being 'unbiased' in that
E(X) =puand E(§%) = ¢*

(1) Theorem. If X;, Xy, ... are independent Ny, o) variables then X and §* are inde-

pendent. We have that X is N(u, 0% /n) and (n = 1)S%/a? is y*(n - 1).

where, y?(d) denotes the chi-squared distribution with d degrees
of freedom.



Student’s t distribution :

* In probability and statistics, Student's t-distribution (or
simply the t-distribution) is any member of a family of
continuous probability distributions that arises when
estimating the mean of a normally distributed
population in situations where the sample size is small
and population standard deviation is unknown.

X = U
:.'J.""u"iﬁb

P =

* where u — population mean

X - sample mean, s — estimator for population standard
deviation

"l.- l ZEJL, — ,1]2 https://en.wikipedia.org/wiki/Student%27s t-distribution

http://mathworld.wolfram.com/Studentst-Distribution.html




Sampling from a distribution

* A basic way of generating a random variable with given
distribution function is to use the following theorem.

(1) Theorem. Inverse transform technique. Let F be a distribution function, and let U be
uniformly distributed on the interval [0, 1].
(a) If F is a continuous function, the random variable X = F~'(U) has distribution
function F.

(b) Let F be the distribution function of a random variable taking non-negative integer
values. The random variable X given by

X =k ifandonlyif F(k—1) < U < F(k)

has distribution function F .






