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• We could design an optimal classifier if we knew the prior 
probabilities ௜ and the class conditional densities ௜ .

• Unfortunately, we rarely have this kind of complete 
knowledge about the probabilistic structure of the 
problem.

• One approach to this problem: Use the samples to 
estimate the unknown probabilities and probability 
densities, and then use the resulting estimates as if they 
were the true values. 
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• In supervised pattern classification problems, the estimation 
of the prior probabilities presents no serious difficulties. 

• However, estimation of class conditional densities is quite a 
difficult thing to do. Samples are often too small for class-
conditional estimation (and large dimension of feature 
space!)

• If we know the number of parameters of the distribution in 
advance and our general knowledge about the problem 
permits us to parameterize the conditional densities, then 
the severity of these problems can be reduced significantly.



Example

• Assume that ௜ is a normal density with mean 𝒊 and covariance 𝒊, although we do not know the 
exact values of these quantities. 

• This knowledge simplifies the problem from one of 
estimating an unknown function ௜ to one of 
estimating the parameters 𝒊 and 𝒊.



Problem of parameter estimation
• Two common ways of approaching this problem:
Maximum likelihood estimation
Bayesian estimation

MLE : Views the parameters as quantities whose values are 
fixed but unknown.

Bayesian Methods : View the parameters as random 
variables having some known prior distribution.

In either case, posterior densities are used for the 
classification rule.



Maximum likelihood estimation
• It has good convergence properties as the number of 

training samples increases.
• General Principle : 

• Assume we have c classes, so that we have c datasets, 𝐷ଵ, … , 𝐷௖ and the samples have been drawn independently 
according to the probability law 𝑝 𝐱 𝑤௜ .

• Such samples are i.i.d (independent and identically 
distributed) random variables.

• Assume that 𝑝 𝐱 𝑤௜ has a known parametric form, and is 
therefore determined uniquely by the value of a parameter 
vector 𝜃௝.

• For example, 𝑝(𝐱 |𝑗) ~ 𝑁( 𝑗,𝑗)
• In general 𝑝(𝐱 |𝑗)  𝑝(𝐱 |𝑗, 𝑗)
• Goal: to obtain good estimates for the unknown parameter 

vectors 𝜃ଵ, … , 𝜃௖.



• For simplicity, assume that the parameters for the 
different classes are functionally independent. 

• Use a set of training samples drawn independently 
from the probability density to estimate the 
unknown parameter vector .

• Suppose that contains n samples 𝟏 𝐧 we have

• The maximum likelihood estimate of is, by definition, 
the value that maximizes (which is the 
likelihood of w.r.t the set of samples) .





• For analytical purposes, it is easier to work with the 
logarithm of the likelihood than with the likelihood itself 
(as logarithm is monotonically increasing).

• If the number of parameters to be estimated is , then 
we let denote the -component vector ଵ ௣ ௧ and we let ఏ be the gradient operator 

• We define as the log-likelihood function 



• Thus, a set of necessary conditions for the MLE for can 
be obtained from the set of equations



The Gaussian Case: Unknown 
• Suppose that the samples are drawn from a multivariate 

normal population with mean and covariance matrix 

CASE 1: For simplicity, consider the case where only the 
mean is unknown. 
• Under this condition, we consider a sample point ௞ and 

find

• The MLE for must satisfy 



• Multiplying by and rearranging, we obtain,

• It says that the MLE for the unknown population mean 
is just the arithmetic average of the training samples –
the sample mean.



The Gaussian Case: Unknown and 
• In general multivariate normal case, neither the mean 

nor the covariance matrix is known.
• These unknown parameters constitute the components 

of the parameter vector .
• Consider first the univariate case with ଵ and ଶ ଶ.
• The log-likelihood of a single point is 

• And its derivative is 



• Where ଵand ଶ are the maximum likelihood estimates 
for ଵ and ଶ, respectively. By substituting ଵ and ଶ ଶ and doing a little rearranging, we obtain the 
following MLE for and ଶ



• For multivariate case,

• Thus once again we find that the MLE for the mean 
vector is the sample mean.

• The MLE for the covariance matrix is the arithmetic 
average of the n matrices ௞ ௞ ௧



Bias
• The MLE for the variance ଶ is biased; that is, the 

expected value over all data sets of size n of the sample 
variance is not equal to the true variance.

• The MLE of the covariance matrix is similarly biased.
• An unbiased estimate is given by:



Entropy

• The entropy is the average uncertainty of a single 
random variable.

• Let 
• 𝒙𝑿 𝟐
• In other words, entropy measures the amount of 

information in a random variable. It is normally 
measured in bits.

https://view.officeapps.live.com/op/view.aspx?src=http://www.site
.uottawa.ca/~nat/Courses/NLP-Course/NLP-Lecture-5.ppt
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Joint Entropy and Conditional 
Entropy

• The joint entropy of a pair of discrete random variables 
is the amount of information needed on 

average to specify both their values.
• 𝒙𝑿 𝒚𝒀 𝟐
• The conditional entropy of a discrete random variable 

given another , for expresses how 
much extra information you still need to supply on 
average to communicate given that the other party 
knows .

• 𝒙𝑿 𝒚𝒀 𝟐
• Chain Rule for Entropy:
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Relative Entropy or Kullback-
Leibler Divergence
• For 2 pmfs, and , their relative entropy

is:
𝒙𝑿

• The relative entropy (also known as the Kullback-
Leibler divergence) is a measure of how different 
two probability distributions (over the same event 
space) are.

• The KL divergence between and can also be 
seen as the average number of bits that are wasted 
by encoding events from a distribution with a 
code based on a not-quite-right distribution .




