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The Solution of Ax = Ax

« Ax = Ax is a nonlinear equation; A multiplies x. If we could
discover A, then the equation for x would be linear.

We could write Alx in place of Ax, and bring this term over to the
left side:
(A—ADx =0

The vector x is in the nullspace of A — A1

The number A is chosen so that A — Al has a nullspace.

We want a nonzero eigenvector x. The vector x = 0 always
satisfies Ax = Ax, butitis useless.

To be of any use, the nullspace of A — Al must contain vectors other
than zero.

In short, A — AI must be singular.



The Solution of Ax = Ax

S5A The number A is an eigenvalue of A if and only if A — A/ is singular:
det(A—AI) =0. (10)
This is the characteristic equation. Each A is associated with eigenvectors x:

(A—Alx=0 or Ax=Ax. (11)
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The Solution of Ax = Ax

* Example:

4 — 5_ we shift A by A7 to make it singular:

-5
—3—-A

Subtract A/ A—Al = [4 ; A

Determinant A—All=4—A)(—3—24)+ 10 or AZ—A =2

* This is the characteristic polynomial.

* |ts roots, where the determinant is zero, are the eigenvalues.

A2 A —2=A+1DA—2)



The Solution of Ax = Ax
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* There are two eigen values, because a quadratic has two roots.

* ThevaluesdA = —1and A = 2leadto asolutionof Ax = Ax or
(A—ADx = 0.

S =5 0
A =—1: (A—A1l)x = | =
2 2| |z 0

The solution (the first eigenvector) is any nonzero multiple of xi:

1
Eigenvector for A, x| = [1} .



The Solution of Ax = Ax

The solution (the first eigenvector) is any nonzero multiple of x:

|
Eigenvector for 1, x| = L} :

The computation for A is done separately:

L=2: (A—Xlx= Y =

The second eigenvector 1s any nonzero multiple of x;:

Eigenvector for A, Xy =




For example, suppose

acteristic equation is

In both matrices, the columns are multiples of each
other, so either column can be used; Eigenvectors ??

Thus, (1, -2) can be taken as an eigenvector associated
with the eigenvalue -2; and (3, -1) as an eigenvector
associated with the eigenvalue 3, as can be verified by
multiplying them by A. (read Cayley—Hamilton theorem).



The Solution of Ax = Ax

* The steps in solving Ax = Ax:

1. Compute the determinant of A — AI. With A

subtracted along the diagonal, this determinant is a
polynomial of degree n. It starts with (—2)™.

2. Find the roots of this polynomial. The n roots are
the eigenvalues of A.

3. For each eigenvalue solve the equation (4 -
ADx = 0. Since the determinant is zero, there are
solutions other than x = 0. Those are the
eigenvectors.



The Solution of Ax = Ax (Recap)

* The key equation was Ax = Ax.
* Most vectors x will not satisfy such an equation.

* They change direction when multiplied by A4, so that Ax is not a
multiple of x.

* This means that only certain special numbers are eigenvalues, and
only certain special vectors x are eigenvectors.



Example 1. Everything is clear when A is a diagonal matrix:
1
A= >0 has A; =3 with x; = , =2 with xn= 0 .
0 2 0 1

On each eigenvector A acts like a multiple of the identity: Ax; = 3x; and Axy = 2x;.
Other vectors like x = (1,5) are mixtures x| + 5x, of the two eigenvectors, and when A
multiplies x; and x; it produces the eigenvalues A; = 3 and A, = 2:

A times x;+5x 18 3x;+10x = [130] :

This 1s Ax for a typical vector x—not an eigenvector. But the action of A is determined
by its eigenvectors and eigenvalues.



Example 2. The eigenvalues of a projection matrix are 1 or O.

1 1
] has 2.1 =1 with x; = [1] . ;\,2:0 with x» = |: 1]

~

|
1
D] = 12—
1] — 1 —

* We have A = 1 when x projects to itself, and A = 0 when x
projects to the zero vector.

* The column space of P is filled with eigenvectors, and so is the
nullspace.

* If those spaces have dimensionrandn —r,thend = 1is
repeated r timesand A = 0 is repeated n — r times (always n A’s):

(1 0 0 0]
F i 1 0 00
our t.elgenva ues p_ 0 has A —1.1.0.0.
allowing repeats 0 00O

0 0 0 1

* A zero eigenvalue signifies that the matrix is singular.



Example 3. The eigenvalues are on the main diagonal when A is
triangular.
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* The determinant is just the product of the diagonal entries.

e ltiszeroifA = 1,1 =%,0r/1 =%

* The eigenvalues were already sitting along the main diagonal.



9B The sum of the n eigenvalues equals the sum of the n diagonal entries:
Traceof A=A+ -+ A, =an+--+am. (15)

Furthermore, the product of the n eigenvalues equals the determinant of A.

For a 2 by 2 matrix, the trace and determinant tell us everything:
a b
c d

has trace a + d, and determinant ad — bc
a—A b

c d—A
The eigenvalues are A = -

det(A — AI) = det




Diagonalization of a Matrix

* The eigenvectors diagonalize a matrix

5C Suppose the n by n matrix A has n linearly independent eigenvectors.
If these eigenvectors are the columns of a matrix S, then S~'AS is a diagonal

matrix A. The eigenvalues of A are on the diagonal of A:

Diagonalization

STIAS=A=

o

A2

An

(1)

* We call S the “eigenvector matrix” and A the “eigenvalue matrix”.



Diagonalization of a Matrix

5C Suppose the n by n matrix A has n linearly independent eigenvectors.
If these eigenvectors are the columns of a matrix S, then S~!AS is a diagonal

matrix A. The eigenvalues of A are on the diagonal of A:

Diagonalization

STIAS = A =

w

Ao

=

(1)

Proof. Put the eigenvectors x; in the columns of S, and compute AS by columns:

AS=A

Then the trick 1s to split this last matrix into a quite different product SA:

Ax

A2x7

A2

A‘?Ixﬂ

Xn

X1

X2

Xn

2

22




Diagonalization of a Matrix

Proof. Put the eigenvectors x; in the columns of S, and compute AS by columns:

AS=A

X1

X2

Xn

Aix

=

A2

X2

An

Xn

=

Then the trick 1s to split this last matrix into a quite different product SA:

Aixy A

* Itis crucial to keep these matrices in the right order.
* If A came before S (instead of after), then A; would multiply the entries in

the first row. Therefore,

AS = SA,

e Sisinvertible, because its columns (the eigenvectors) were

2'nffﬁ

X2

Xn

or ST'AS=A,

assumed to be independent.

w

A

or A=SAS"!




Diagonalization of a Matrix (REMARKS)

Remark 1. If the matrix A has no repeated eigenvalues—the numbers
A, ..., A, are distinct—then its n eigenvectors are automatically
independent. So, any matrix with distinct eigenvalues can be
diagonalized.

Remark 2. The diagonalizing matrix S is not unique. We can multiply
the columns of S by any nonzero constants, and produce a new
diagonalizing S.

Remark 3. Other matrices S will not produce a diagonal A.

Remark 4. Not all matrices possess n linearly independent
eigenvectors, so not all matrices are diagonalizable.



Diagonalization of a Matrix (REMARKS)

The standard example of a “defective matrix” is - -
A=

Its eigenvalues are 4; = A, = 0, since it is triangular with zeros on

the diagonal: - P
det(A — AI) =det | =12

All eigenvectors of this A are multiples of the vector (1,0):

0 1 0 c A = 0isadouble eigenvalue—its
X = 5 or X = algebraic multiplicity is 2. But the
0 0 0 0 geometric multiplicity is 1—there is

only one independent eigenvector.
We can’t construct S.



Diagonalization of a Matrix (REMARKS)

Diagonalizability of A depends on enough eigenvectors.
Invertibility of A depends on nonzero eigenvalues.

* Diagonalization can fail only if there are repeated eigenvalues.
* Even then, it does not always fail.
* A = I hasrepeated eigenvalues 1,1, ..., 1 but it is already diagonal!

There is no shortage of eigenvectors in that case.



Diagonalization of a Matrix (REMARKS)

5D If eigenvectors xi,...,x; correspond to different eigenvalues Ay, ..., A,
then those eigenvectors are linearly independent.

* Eigenvectors that come from distinct eigenvalues are automatically
independent.

* A matrix with n distinct eigenvalues can be diagonalized. This is the
typical case.



Examples of Diagonalization

3] — 2 —

Example 1. The projection A = [

vectors go into the columns of S:

-

- = D] —

] has eigenvalue matrix A = | ¢|. The eigen-

[0
d AS=SA= |
4 1 0}

That last equation can be verified at a glance. Therefore S!AS = A.

?7?



Example 2. The eigenvalues themselves are not so clear for a rotation:

90° rotation

0
1

K =

‘01] has det(K —AI) =A% +1.

How can a vector be rotated and still have its direction unchanged?

* |t can’t—except for the zero vector, which is useless.

* The eigenvalues of K are imaginary numbers, A4

= fand A, = —I.

* |n turning through 90°, they are multiplied by i or —i:

(K—ﬂ.ll)xl =

(K — }LQI)JCQ =

s

AHEE e el



came [ e[
(K—)IQI)IZZ i :1] [Z}] = [8] and Xy = [1] .

* The eigenvalues are distinct, even if imaginary, and the eigenvectors
are independent. They go into the columns of S:

0
S = o and STIKS = I _

 Complex numbers are needed even for real matrices.

* |f there are too few real eigenvalues, there are always n complex
eigenvalues. (Complex includes real, when the imaginary part is
zero.)



Powers and Products: A* and AB

* The eigenvalue of A? are exactly A5 , ..., A%, and every eigenvector
of A is also an eigenvector of A?

A%x = Alx = AAx = A%x.

* Thus A% is an eigenvalue of A% , with the same eigenvector x.

* The same result comes from diagonalization, by squaring S™14S =
A:

Eigenvalues of A* (STTAS)(STTAS) =A% or STTAZS =A%

* The matrix A% is diagonalized by the same S, so the eigenvectors are
unchanged. The eigenvalues are squared.

* This continues to hold for any power of A.



Powers and Products: A* and AB

5E The eigenvalues of A* are A, ..., AX, and each eigenvector of A is still an
eigenvector of A¥. When S diagonalizes A, it also diagonalizes A*:

A= (57148)(S71AS) - (571AS) = ST 1Aks, @)

Each S~! cancels an S, except for the first S~! and the last S.

* If A is invertible this rule also applies to its inverse (the power k =
—1).

: _ 1
* The eigenvalues of A™1 are T
{

1
if Ax=Ax then x=AA"'x and Ix:A_lx.



Powers and Products: A* and AB

Example 3. If K is rotation through 90°, then K? is rotation through 180° (which means
—1) and K~! is rotation through —90°:
0 1
, and K 1= :
-1 0

0 —1 K2 -1 0
1 0 10 -1
The eigenvalues of K are i and —i; their squares are —1 and —1; their reciprocals are
1/i=—iand 1/(—i) = i. Then K* is a complete rotation through 360°:

‘0 | (1O
0 (=i)*| [0 1|

K =

1 0

K* = 0 1] and also A% =




Powers and Products: A* and AB

5F Diagonalizable matrices share the same eigenvector matrix S if and only
if AB = BA.

Proof. If the same S diagonalizes both A = SA1S~! and B = SA2S~!, we can multiply
in either order:

AB =SA1S'SAS T = SA1AST! and BA = SAST'SAIST = SAAST!
Since Aj A = ArA; (diagonal matrices always commute) we have AB = BA.
In the opposite direction, suppose AB = BA. Starting from Ax = Ax, we have
ABx = BAx = BAx = ABx.

Thus x and Bx are both eigenvectors of A, sharing the same A (or else
Bx = 0).



Complex Matrices

* We now introduce the space C" of vectors with n complex
components.

* Addition and matrix multiplication follow the same rules
as before.

* Length is computed differently

* The old way, the vector in C*with components
(1, 1) would have zero length: 12 + i* = 0 which is not
good.

* The correct length squared is 1% + |i|? = 2

* The inner product, the transpose, the definitions of
symmetric and orthogonal matrices, all need to be
modified for complex numbers.



Complex Matrices

We particularly want to find out about symmetric matrices and
Hermitian matrices: Where are their eigenvalues, and what is special
about their eigenvectors?

1. Every symmetric matrix (and Hermitian matrix) has real eigenvalues.

2. Its eigenvectors can be chosen to be orthonormal.




Complex Numbers and Their Conjugates

The real numbers a and the imaginary numbers ib are special cases of
complex numbers; they lie on the axes

Imaginary axis

bt a + b = ret?
|
: |
r=|a+ b :
|
| |
r? = a? + b? r :
|
|
0 - real axis
—0 a
|
ro
|
|
I
I .
: complex conjugate
—bt a—ib=a+ib=re "

Fig: The complex plane, with a + ib = re'? and its conjugate a — ib = re™'°



Complex Numbers and Their Conjugates

Complex addition (a+ib)+ (c+id) =(a+c)+i(b+4d)

Multiplication  (a+ib)(c +id) = ac + ibc + iad + i*bd
= (ac—bd)+i(bc+ad)

* The complex conjugate of a + ib is the number a — ib. The sign
of the imaginary part is reversed.

* It is the mirror image across the real axis

* Any real number is its own conjugate, since b = 0.



Complex Numbers and Their Conjugates

The conjugate is denoted by a bar or astar: (a + ib)* = (a +ib) =
a—ib.

Important properties:

1. The conjugate of a product equals the product of the conjugates:
(a+ib)(c+id) = (ac—bd) —i(bc+ad) = (a+ib)(c+id)

2. The conjugate of a sum equals the sum of the conjugates:
(a+c)+i(b+d)=(a+c)—i(b+d)=(a+ib)+(c+id)

3. Multiplying any a + ib by its conjugate a — ib produces a real
number a? + b? :

Absolute value (a+ib)(a—ib) = a*+b* =1

This distance r is the absolute value |a + ib| = vV a* + b?



Complex Numbers and Their Conjugates

* Trigonometry connects the sides a and b to the hypotenuse r by
a = rcosfand b = r sind.

* Combining these two equations moves us into polar coordinates:

Polar form a+ib=r(cosO+isinf) = re'®

imaginary axis

Most important special case is whenr = 1: | Eb" o=
r=la+ib |
a—+ibis e =cos +isin6 c_2a| /r
— éa real axis
* It falls on the unit circle in the complex plane ”
* As 0 varies from 0 to 27, this number e circles | _HEIXT]bgtH

around zero at the constant radial distance:
€| = /cos? 0 +sin? 6 = 1




Complex Numbers and Their Conjugates

Example 1. x = 3 4 4i times its conjugate X = 3 —4i is the absolute value squared:
X=3+4)(3-4)=25=|x/> so r=|x=5.

To divide by 3 4 4i, multiply numerator and denominator by its conjugate 3 — 4i:

2+i  2+i3—-4i 10-5i
34 334i3—4F 25

In polar coordinates, multiplication and division are easy:

re' times Re'® has absolute value R and angle 6 + o.

re'® divided by Re'® has absolute value /R and angle 6 — a.



Lengths and Transposes in the Complex Case

The complex vector space C™ contains all vectors x with n complex

components: et
1

X2 . :
Complex vector xX=| . with components x; =a;+ib;

In the new definition of length, each sz is replaced by its modulus
2
ETE
Length squared x||F = [en|* + - A+ ||



Hermitian Matrices 5
A=| = ° | =aH

34+ 3 J
The matrix A" = A*is called a “Hermitian”: )

_T . -
A" =A" hasentries (AM);=A};

i

. ~H
N
Conjugate 4“, 51 {2;: 4+i 0
—1 —
transpose —3i 5 0
P 0 0 :

* This symbol A" gives official recognition to the fact that, with
complex entries, it is seldom that we want only the transpose of A.

* It is the conjugate transpose A" that becomes appropriate.

* A real symmetric matrix is certainly Hermitian. The eigenvalues are
real



Hermitian Matrices

Property 1 If A =AY, then for all complex vectors x, the number x™Ax is real.

Every entry of A contributes to x'Ax. Try the 2 by 2 case with x = (u,v):
2 3-3i| |u

3+3i 5 v

= 2uu+ 5w+ (3 —3i)uv+ (3+3i)uv

= real + real + (sum of complex conjugates).

XAx = [u v}

Property 2 If A =AM, every eigenvalue is real.

Proof. Suppose Ax = Ax. The trick is to multiply by x*': x'Ax = Axx. The left-hand
side is real by Property 1, and the right-hand side x".x = ||x||? is real and positive, because
x # 0. Therefore 2 = x"Ax/x"x must be real. Our example has A =8 and A = —1:

2—A 3-3i
3431 5—-A4

= A7 —TA—-8=(A—-8)(A+1).

A—Al| = — A% —TA+10—|3=3i|°




Hermitian Matrices

Property 3 Two eigenvectors of a real symmetric matrix or a Hermitian ma-
trix, if they come from different eigenvalues, are orthogonal to one another.

The proof starts with Ax = Ajx, Ay =2y, and A = AH-
(Ax)"y = (Ax)"y = x"Ay = x" (Ap).

e The outside numbers are A, xy = A,x"y, since the A’s are real.
* Now use the assumption A; # 4,, which forces the conclusion that
H
x"y = 0.

* |n our example,

2 3-3i
3+3i 5

A —




2 3-3i
3+3i 5

(A—8I)x =

(A+1)y=

3+3i

3+3i -3

6 3—i

3 3-3i

0
= o]

0
U 3

* These two eigenvectors are orthogonal:

_rHyz [1 | —f}

1l —1

—1




50 A real symmetric matrix can be factored into A = OAQ!. Tts orthonormal
eigenvectors are in the orthogonal matrix Q and its eigenvalues are in A.

* In geometry or mechanics, this is the principal axis
theorem. It gives the right choice of axes for an ellipse.

* Those axes are perpendicular, and they point along the
eigenvectors of the corresponding matrix.

* In mathematics the formula A = QAQ? is known as the
spectral theorem.




Hermitian Matrices

In mathematics the formula A = QAQT is known as the spectral
theorem.

| ] [ 1 [— o —
A=0AQ " = |x; - «x, :
‘ | /ln - XE -

T T T
= Aix1x; + Aoxpxy; + -+ Apxnx,, .



* The spectral theorem A = QAQT has been proved only
when the eigenvalues of A are distinct. Then there are
certainly n independent eigenvectors, and A can be
safely diagonalized.

* Nevertheless it is true that even with repeated
eigenvalues, a symmetric matrix still has a complete set
of orthonormal eigenvectors.

* The extreme case is the identity matrix, which has
A = 1 repeated n times—and no shortage of
eigenvectors.



Unitary Matrices

A complex matrix with orthonormal columns is called a unitary
matrix.

Two analogies:

1. A Hermitian (or symmetric) matrix can be compared to a real
number.

2. A unitary (or orthogonal) matrix can be compared to a number on
the unit circle.

Unitary matrix Uvtu =1, vut =1, and UH=U""



Unitary Matrices

Property 1 (Ux)Y(Uy) = x2URUy = xMly and lengths are preserved by U:

Length unchanged |Ux||* = x"U Ux = ||x|)°. (11)

Property 2’ Every eigenvalue of U has absolute value |A| = 1.

This follows directly from Ux = Ax, by comparing the lengths of the two sides:
|Ux|| = ||x|| by Property 1/, and always [[Ax|| = |A|||x||. Therefore |A| = 1.

Property 3’ Eigenvectors corresponding to different eigenvalues are orthonor-
mal.



* Example:

cost —sinf it

U=1| .
sinf  cost

} has eigenvalues ¢” and e

The orthogonal eigenvectors are x = (1, —i) and y = (1,i). (Remember to take conjugates
in x'ly = 1 4> = 0.) After division by y/2 they are orthonormal.

» Skew-symmetric matrix: K = —K
 Skew-Hermitian matrix: K = —K

If A is Hermitian then K = iA is skew-Hermitian.

* The eigenvalues of K are purely imaginary instead of
purely real; we multiply i. The eigenvectors are not
changed.




2i
—34+3i

3+ 3i

Si




Real versus Complex

R" (n real components) © C" (n complex components)

length: |[x||* =x] + - +x; — length: [[x]|* =[xy [P+ -+ 4 |x,|?
transpose: A}} =Ajj = Hermitian transpose: AE- = A_ﬁ
(AB)' = B'A" - (AB)" = BHAH
inner product: xTy = x;y; +---+x,y, ¢ inner product: Xy =%y, +- - +X,),
(Ax)'y =x"(Aly) . (Ax)y = M (AMy)
orthogonality: x'y =0 = orthogonality: x'ly = 0
symmetric matrices: A' = A = Hermitian matrices: A" = A
A=0AQ ' = QAQ" (real A) “ A=UAU""=UAU" (real A)
skew-symmetric K' = —K = skew-Hermitian K = —K
orthogonal 0"0=IorQ"'=0"! - unitary U iy =1orUi=U""
(@9)'(Qy) =x"yand ||Qx]| = ||| < (Ux)"(Uy) ="y and |Ux] = |}x]|

The columns, rows, and eigenvectors of Q and U are orthonormal, and every |A| = 1




Virtually every step in this chapter has involved the combination S~'AS. The eigenvec-
tors of A went into the columns of S, and that made S~'AS a diagonal matrix (called
A). When A was symmetric, we wrote Q instead of S, choosing the eigenvectors to be
orthonormal. In the complex case, when A 1s Hermitian we write U—it 1s still the matrix
of eigenvectors. Now we look at all combinations M~'AM—formed with any invertible
M on the right and its inverse on the left. The invertible eigenvector matrix S may fail to
exist (the defective case), or we may not know it, or we may not want to use it.



Similarity Transformations

* The matrices A and M~1AM are “similar”.
* Going from one to the other is a similarity transformation.

* A whole family of matrices M~1AM is similar to 4, and there are
two questions:

1. What do these similar matrices M~ !AM have in common?

2. With a special choice of M, what special form can be achieved by M~ 1AM?



Similarity Transformations

e The matrices A and M~1AM are “similar”.

* The family of matrices M1 AM includes A itself, by choosing
M = 1.

» Similar matrices share the same eigenvalues.

5P Suppose that B= M ~"'AM. Then A and B have the same eigenvalues.
Every eigenvector x of A corresponds to an eigenvector M~ 'x of B.

Start from Ax = Ax and substitute A = MBM !
Same eigenvaluc ~ MBM 'x=Ax whichis B(M 'x)=AM'x). (1)

The eigenvalue of B is still A. The eigenvector has changed from x to M~ 'x.



Similarity Transformations

We can also check that A — Al and B — A have the same determinant:

Product of matrices B—AI=M'"AM —-AI=M'Y(A-AIM
Product rule det(B— AI) = detM 'det(A — AI)detM = det(A — AI).

* The polynomials det(A — Al) and det(B — Al) are equal.

* Their roots—the eigenvalues of A and B—are the same. Here are
matrices B similar to A.



Example 1. A

|
1
o
=

: has eigenvalues 1 and 0. Each B is M~ 'AM:

It M= . then B =

:} f;] : triangular with A =0 and 0.

If M = : i] , then B = [ ] . projection with A = 0 and 0.

[ | bt [ | =t
] o ] P

If M = ] , then B = an arbitrary matrix with A = 0 and 0.



Diagonalizing Symmetric and Hermitian Matrices

* The triangular form will show that any symmetric or Hermitian
matrix—whether its eigenvalues are distinct or not—has a complete
set of orthonormal eigenvectors.

* We need a unitary matrix such that U~1AU is diagonal.

* This triangular T must be diagonal, because it is also Hermitian when
A = AH:

* The diagonal matrix U1 AU represents a key theorem in linear
algebra.

r=1" (wlan=viAM v "HY=v""au



Diagonalizing Symmetric and Hermitian Matrices

The diagonal matrix U™YAU represents a key theorem in linear algebra.

r=1" (wlav)!=v"AfvHY=v""au

5S (Spectral Theorem) Every real symmetric A can be diagonalized by an
orthogonal matrix Q. Every Hermitian matrix can be diagonalized by a unitary
U:
(real) 0 'AO=A or A=0QAQ'
(complex) U 'AU=A or A=UAU"

The columns of Q (or U) contain orthonormal eigenvectors of A.



Diagonalizing Symmetric and Hermitian Matrices

Remark 1. In the real symmetric case, the eigenvalues and eigenvectors are real at every
step. That produces a real unitary U—an orthogonal matrix.

Remark 2. A is the limit of symmetric matrices with distinct eigenvalues. As the limit
approaches, the eigenvectors stay perpendicular. This can fail if A £ AT:

A(O) = 0 C?S 0 has eigenvectors : and C?S 0 :
0 sin6 0 sin 0

As 6 — 0, the only eigenvector of the nondiagonalizable matrix |9 ] is [}].



Normal Matrices

* The matrix N is normal if it commutes with
N7. NNH = NHN.

* Normal matrices are exactly those that have a
complete set of orthonormal eigenvectors.

Read about Jordan form



Remark 2. A is the limit of symmetric matrices with distinct eigenvalues. As the limit
approaches. the eigenvectors stay perpendicular. This can fail if A £ AT:

A(B) = - C?Se has eigenvectors ; and c‘_)se ’
0O sin® 0 sin 6

As 68 — 0, the only eigenvector of the nondiagonalizable matrix [8 6] is [(',] .
Example 3. The spectral theorem says that this A = AT can be diagonalized:

o010

A=1|1 0 0 with repeated eigenvalues A;j=A2=1and A3 = —1.
0O 0 1

A = 1 has a plane of eigenvectors, and we pick an orthonormal pair x; and x3:

I I 0 I |
x1=—11 and x> = |0 and x3=—|-—1 for Az = —1.
V2 V2
0 | 0
These are the columns of Q. Splitting A = QAQT into 3 columns times 3 rows gives
010 1 1lo 000 i -3 0
A=|1 0 0| =41 |3 5 O|+42]|0 0 O| +A3|—5 5 O
0O 0 1 0O 0 0 0O 0 1 0 0O O

Since A1 = A2, those first two projections x;x}' and xzx; (each of rank 1) combine to give
a projection P; of rank 2 (onto the plane of eigenvectors). Then A is

010 3 5 0 5 —5 0
1 0 Ol =P+ A3Ps=(+1)|3 5 O] +(=1)|—% 5 O (5)
00 1 0 0 1 0 0 0






