Eigenvalues and Eigenvectors
 CS6015/LARP

Ack: Linear Algebra and Its Applications, Gilbert Strang

The Solution of $A x=\lambda x$

- $A x=\lambda x$ is a nonlinear equation; λ multiplies x. If we could discover λ, then the equation for x would be linear.
- We could write $\lambda I x$ in place of λx, and bring this term over to the left side:

$$
(A-\lambda I) x=0
$$

The vector x is in the nullspace of $A-\lambda I$. The number λ is chosen so that $A-\lambda I$ has a nullspace.

- We want a nonzero eigenvector x. The vector $x=0$ always satisfies $A x=\lambda x$, but it is useless.
- To be of any use, the nullspace of $A-\lambda I$ must contain vectors other than zero.
- In short, $\boldsymbol{A}-\lambda I$ must be singular.

The Solution of $A x=\lambda x$

5A The number λ is an eigenvalue of A if and only if $A-\lambda I$ is singular:

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{10}
\end{equation*}
$$

This is the characteristic equation. Each λ is associated with eigenvectors x :

$$
\begin{equation*}
(A-\lambda I) x=0 \quad \text { or } \quad A x=\lambda x . \tag{11}
\end{equation*}
$$

The Solution of $A x=\lambda x$

- Example:

$$
A=\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right] \quad \text { we shift } A \text { by } \lambda I \text { to make it singular: } \quad \text { Subtract } \lambda I \quad A-\lambda I=\left[\begin{array}{cc}
4-\lambda & -5 \\
2 & -3-\lambda
\end{array}\right]
$$

Determinant $\quad|A-\lambda I|=(4-\lambda)(-3-\lambda)+10 \quad$ or $\quad \lambda^{2}-\lambda-2$

- This is the characteristic polynomial.
- Its roots, where the determinant is zero, are the eigenvalues.

$$
\lambda^{2}-\lambda-2=(\lambda+1)(\lambda-2)
$$

The Solution of $A x=\lambda x$

Eigenvalues
 $$
\lambda=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{1 \pm \sqrt{9}}{2}=-1 \text { and } 2 .
$$

- There are two eigen values, because a quadratic has two roots.
- The values $\lambda=-1$ and $\lambda=2$ lead to a solution of $A x=\lambda x$ or $(A-\lambda I) x=0$.

$$
\lambda_{1}=-1: \quad\left(A-\lambda_{1} I\right) x=\left[\begin{array}{ll}
5 & -5 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The solution (the first eigenvector) is any nonzero multiple of x_{1} :
Eigenvector for $\lambda_{1} \quad x_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

The Solution of $A x=\lambda x$

The solution (the first eigenvector) is any nonzero multiple of x_{1} :

$$
\text { Eigenvector for } \lambda_{1} \quad x_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The computation for λ_{2} is done separately:

$$
\lambda_{2}=2: \quad\left(A-\lambda_{2} I\right) x=\left[\begin{array}{ll}
2 & -5 \\
2 & -5
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The second eigenvector is any nonzero multiple of x_{2} :

$$
\text { Eigenvector for } \lambda_{2} \quad x_{2}=\left[\begin{array}{l}
5 \\
2
\end{array}\right] .
$$

For example, suppose

$$
A=\left[\begin{array}{cc}
4 & 3 \\
-2 & -3
\end{array}\right]
$$

acteristic equation is

In both matrices, the columns are multiples of each other, so either column can be used; Eigenvectors ??

Thus, $(1,-2)$ can be taken as an eigenvector associated with the eigenvalue -2 ; and $(3,-1)$ as an eigenvector associated with the eigenvalue 3, as can be verified by multiplying them by A. (read Cayley-Hamilton theorem).

The Solution of $A x=\lambda x$

- The steps in solving $A x=\lambda x$:

1. Compute the determinant of $A-\lambda I$. With λ subtracted along the diagonal, this determinant is a polynomial of degree n. It starts with $(-\lambda)^{n}$.
2. Find the roots of this polynomial. The n roots are the eigenvalues of A.
3. For each eigenvalue solve the equation ($A-$ $\lambda I) \boldsymbol{x}=\mathbf{0}$. Since the determinant is zero, there are solutions other than $x=0$. Those are the eigenvectors.

The Solution of $A x=\lambda x$ (Recap)

- The key equation was $A x=\lambda x$.
- Most vectors x will not satisfy such an equation.
- They change direction when multiplied by A, so that $A x$ is not a multiple of x.
- This means that only certain special numbers are eigenvalues, and only certain special vectors \boldsymbol{x} are eigenvectors.

Example 1. Everything is clear when A is a diagonal matrix:

$$
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] \quad \text { has } \quad \lambda_{1}=3 \quad \text { with } \quad x_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \lambda_{2}=2 \quad \text { with } \quad x_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

On each eigenvector A acts like a multiple of the identity: $A x_{1}=3 x_{1}$ and $A x_{2}=2 x_{2}$. Other vectors like $x=(1,5)$ are mixtures $x_{1}+5 x_{2}$ of the two eigenvectors, and when A multiplies x_{1} and x_{2} it produces the eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=2$:
A times $x_{1}+5 x_{2}$ is $3 x_{1}+10 x_{2}=\left[\begin{array}{c}3 \\ 10\end{array}\right]$.
This is $A x$ for a typical vector x-not an eigenvector. But the action of A is determined by its eigenvectors and eigenvalues.

Example 2. The eigenvalues of a projection matrix are 1 or 0.
$P=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right] \quad$ has $\quad \lambda_{1}=1 \quad$ with $\quad x_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{2}=0 \quad$ with $\quad x_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

- We have $\lambda=1$ when x projects to itself, and $\lambda=0$ when x projects to the zero vector.
- The column space of P is filled with eigenvectors, and so is the nullspace.
- If those spaces have dimension r and $n-r$, then $\lambda=1$ is repeated r times and $\lambda=0$ is repeated $n-r$ times (always $n \lambda^{\prime}$ s):

Four eigenvalues allowing repeats

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { has } \lambda=1,1,0,0
$$

- A zero eigenvalue signifies that the matrix is singular.

Example 3. The eigenvalues are on the main diagonal when A is triangular.

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 4 & 5 \\
0 & \frac{3}{4}-\lambda & 6 \\
0 & 0 & \frac{1}{2}-\lambda
\end{array}\right|=(1-\lambda)\left(\frac{3}{4}-\lambda\right)\left(\frac{1}{2}-\lambda\right)
$$

- The determinant is just the product of the diagonal entries.
- It is zero if $\lambda=1, \lambda=\frac{3}{4}$, or $\lambda=\frac{1}{2}$
- The eigenvalues were already sitting along the main diagonal.

5B The sum of the n eigenvalues equals the sum of the n diagonal entries:

$$
\begin{equation*}
\text { Trace of } \quad A=\lambda_{1}+\cdots+\lambda_{n}=a_{11}+\cdots+a_{n n} . \tag{15}
\end{equation*}
$$

Furthermore, the product of the n eigenvalues equals the determinant of A.

For a 2 by 2 matrix, the trace and determinant tell us everything:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

has trace $a+d$, and determinant $a d-b c$
$\operatorname{det}(A-\lambda I)=\operatorname{det}\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|=\lambda^{2}$
The eigenvalues are $\lambda=$

Diagonalization of a Matrix

- The eigenvectors diagonalize a matrix

5C Suppose the n by n matrix A has n linearly independent eigenvectors. If these eigenvectors are the columns of a matrix S, then $S^{-1} A S$ is a diagonal matrix Λ. The eigenvalues of A are on the diagonal of Λ :

- We call S the "eigenvector matrix" and Λ the "eigenvalue matrix".

Diagonalization of a Matrix

5C Suppose the n by n matrix A has n linearly independent eigenvectors. If these eigenvectors are the columns of a matrix S, then $S^{-1} A S$ is a diagonal matrix Λ. The eigenvalues of A are on the diagonal of Λ :

$$
\text { Diagonalization } \quad S^{-1} A S=\Lambda=\left[\begin{array}{llll}
\lambda_{1} & & & \tag{1}\\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right] \text {. }
$$

Proof. Put the eigenvectors x_{i} in the columns of S, and compute $A S$ by columns:

$$
A S=A\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \cdots & x_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \cdots & \lambda_{n} x_{n} \\
\mid & \mid & & \mid
\end{array}\right] .
$$

Then the trick is to split this last matrix into a quite different product $S \Lambda$:

$$
\left[\begin{array}{llll}
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \cdots & \lambda_{n} x_{n} \\
& & &
\end{array}\right]=\left[\begin{array}{llll}
& & & \\
x_{1} & x_{2} & \cdots & x_{n} \\
& & &
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right] .
$$

Diagonalization of a Matrix

Proof. Put the eigenvectors x_{i} in the columns of S, and compute $A S$ by columns:

$$
A S=A\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \cdots & x_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \cdots & \lambda_{n} x_{n} \\
\mid & \mid & & \mid
\end{array}\right] .
$$

Then the trick is to split this last matrix into a quite different product $S \Lambda$:

$$
\left[\begin{array}{llll}
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \cdots & \lambda_{n} x_{n}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
& & &
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right] .
$$

- It is crucial to keep these matrices in the right order.
- If Λ came before S (instead of after), then λ_{1} would multiply the entries in the first row. Therefore,

$$
A S=S \Lambda, \quad \text { or } \quad S^{-1} A S=\Lambda, \quad \text { or } \quad A=S \Lambda S^{-1}
$$

- S is invertible, because its columns (the eigenvectors) were assumed to be independent.

Diagonalization of a Matrix (REMARKS)

Remark 1. If the matrix A has no repeated eigenvalues-the numbers $\lambda_{1}, \ldots, \lambda_{n}$ are distinct-then its n eigenvectors are automatically independent. So, any matrix with distinct eigenvalues can be diagonalized.

Remark 2. The diagonalizing matrix S is not unique. We can multiply the columns of S by any nonzero constants, and produce a new diagonalizing S.

Remark 3. Other matrices S will not produce a diagonal Λ.

Remark 4. Not all matrices possess n linearly independent eigenvectors, so not all matrices are diagonalizable.

Diagonalization of a Matrix (REMARKS)

The standard example of a "defective matrix" is

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Its eigenvalues are $\lambda_{1}=\lambda_{2}=0$, since it is triangular with zeros on the diagonal:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
-\lambda & 1 \\
0 & -\lambda
\end{array}\right]=\lambda^{2}
$$

All eigenvectors of this A are multiples of the vector $(1,0)$:
$\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] x=\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad$ or $\quad x=\left[\begin{array}{l}c \\ 0\end{array}\right]$
$\lambda=0$ is a double eigenvalue-its algebraic multiplicity is 2 . But the geometric multiplicity is 1 -there is only one independent eigenvector. We can't construct S.

Diagonalization of a Matrix (REMARKS)

Diagonalizability of A depends on enough eigenvectors.
Invertibility of A depends on nonzero eigenvalues.

- Diagonalization can fail only if there are repeated eigenvalues.
- Even then, it does not always fail.
- $A=I$ has repeated eigenvalues $1,1, \ldots, 1$ but it is already diagonal!

There is no shortage of eigenvectors in that case.

Diagonalization of a Matrix (REMARKS)

5D If eigenvectors x_{1}, \ldots, x_{k} correspond to different eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then those eigenvectors are linearly independent.

- Eigenvectors that come from distinct eigenvalues are automatically independent.
- A matrix with n distinct eigenvalues can be diagonalized. This is the typical case.

Examples of Diagonalization

Example 1. The projection $A=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$ has eigenvalue matrix $\Lambda=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. The eigenvectors go into the columns of S :

$$
S=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad \text { and } \quad A S=S \Lambda=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

That last equation can be verified at a glance. Therefore $S^{-1} A S=\Lambda$.
= ??

Example 2. The eigenvalues themselves are not so clear for a rotation:
$\mathbf{9 0}^{\circ}$ rotation $\quad K=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ has $\operatorname{det}(K-\lambda I)=\lambda^{2}+1$.
How can a vector be rotated and still have its direction unchanged?

- It can't-except for the zero vector, which is useless.
- The eigenvalues of K are imaginary numbers, $\lambda_{1}=i$ and $\lambda_{2}=-i$.
- In turning through 90°, they are multiplied by i or $-i$:

$$
\begin{aligned}
& \left(K-\lambda_{1} I\right) x_{1}=\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad x_{1}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \\
& \left(K-\lambda_{2} I\right) x_{2}=\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad x_{2}=\left[\begin{array}{c}
1 \\
i
\end{array}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \left(K-\lambda_{1} I\right) x_{1}=\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad x_{1}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \\
& \left(K-\lambda_{2} I\right) x_{2}=\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad x_{2}=\left[\begin{array}{l}
1 \\
i
\end{array}\right] .
\end{aligned}
$$

- The eigenvalues are distinct, even if imaginary, and the eigenvectors are independent. They go into the columns of S:

$$
S=\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right] \quad \text { and } \quad S^{-1} K S=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

- Complex numbers are needed even for real matrices.
- If there are too few real eigenvalues, there are always n complex eigenvalues. (Complex includes real, when the imaginary part is zero.)

Powers and Products: A^{k} and $A B$

- The eigenvalue of A^{2} are exactly $\lambda_{1}^{2}, \ldots, \lambda_{n}^{2}$, and every eigenvector of A is also an eigenvector of A^{2}

$$
A^{2} x=A \lambda x=\lambda A x=\lambda^{2} x .
$$

- Thus λ^{2} is an eigenvalue of A^{2}, with the same eigenvector x.
- The same result comes from diagonalization, by squaring $S^{-1} A S=$ Λ :

$$
\text { Eigenvalues of } A^{2} \quad\left(S^{-1} A S\right)\left(S^{-1} A S\right)=\Lambda^{2} \quad \text { or } \quad S^{-1} A^{2} S=\Lambda^{2} .
$$

- The matrix A^{2} is diagonalized by the same S, so the eigenvectors are unchanged. The eigenvalues are squared.
- This continues to hold for any power of A.

Powers and Products: A^{k} and $A B$

5E The eigenvalues of A^{k} are $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$, and each eigenvector of A is still an eigenvector of A^{k}. When S diagonalizes A, it also diagonalizes A^{k} :

$$
\begin{equation*}
\Lambda^{k}=\left(S^{-1} A S\right)\left(S^{-1} A S\right) \cdots\left(S^{-1} A S\right)=S^{-1} A^{k} S . \tag{4}
\end{equation*}
$$

Each S^{-1} cancels an S, except for the first S^{-1} and the last S.

- If A is invertible this rule also applies to its inverse (the power $k=$ -1).
- The eigenvalues of A^{-1} are $\frac{1}{\lambda_{i}}$.

$$
\text { if } A x=\lambda x \quad \text { then } \quad x=\lambda A^{-1} x \quad \text { and } \quad \frac{1}{\lambda} x=A^{-1} x .
$$

Powers and Products: A^{k} and $A B$

Example 3. If K is rotation through 90°, then K^{2} is rotation through 180° (which means $-I)$ and K^{-1} is rotation through -90° :

$$
K=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad K^{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad \text { and } \quad K^{-1}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

The eigenvalues of K are i and $-i$; their squares are -1 and -1 ; their reciprocals are $1 / i=-i$ and $1 /(-i)=i$. Then K^{4} is a complete rotation through 360° :

$$
K^{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and also } \quad \Lambda^{4}=\left[\begin{array}{cc}
i^{4} & 0 \\
0 & (-i)^{4}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Powers and Products: A^{k} and $A B$

5F Diagonalizable matrices share the same eigenvector matrix S if and only if $A B=B A$.

Proof. If the same S diagonalizes both $A=S \Lambda_{1} S^{-1}$ and $B=S \Lambda_{2} S^{-1}$, we can multiply in either order:

$$
A B=S \Lambda_{1} S^{-1} S \Lambda_{2} S^{-1}=S \Lambda_{1} \Lambda_{2} S^{-1} \quad \text { and } \quad B A=S \Lambda_{2} S^{-1} S \Lambda_{1} S^{-1}=S \Lambda_{2} \Lambda_{1} S^{-1}
$$

Since $\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}$ (diagonal matrices always commute) we have $A B=B A$.
In the opposite direction, suppose $A B=B A$. Starting from $A x=\lambda x$, we have

$$
A B x=B A x=B \lambda x=\lambda B x .
$$

Thus x and $B x$ are both eigenvectors of A, sharing the same λ (or else $B x=0$).

Complex Matrices

- We now introduce the space \mathbf{C}^{n} of vectors with n complex components.
- Addition and matrix multiplication follow the same rules as before.
- Length is computed differently
- The old way, the vector in \mathbf{C}^{2} with components ($1, i$) would have zero length: $1^{2}+i^{2}=0$ which is not good.
- The correct length squared is $1^{2}+|i|^{2}=2$
- The inner product, the transpose, the definitions of symmetric and orthogonal matrices, all need to be modified for complex numbers.

Complex Matrices

We particularly want to find out about symmetric matrices and Hermitian matrices: Where are their eigenvalues, and what is special about their eigenvectors?

1. Every symmetric matrix (and Hermitian matrix) has real eigenvalues.
2. Its eigenvectors can be chosen to be orthonormal.

Complex Numbers and Their Conjugates

The real numbers a and the imaginary numbers $i b$ are special cases of complex numbers; they lie on the axes

Fig: The complex plane, with $a+i b=r e^{i \theta}$ and its conjugate $a-i b=r e^{-i \theta}$

Complex Numbers and Their Conjugates

Complex addition

$$
(a+i b)+(c+i d)=(a+c)+i(b+d)
$$

Multiplication

$$
\begin{aligned}
(a+i b)(c+i d) & =a c+i b c+i a d+i^{2} b d \\
& =(a c-b d)+i(b c+a d)
\end{aligned}
$$

- The complex conjugate of $a+i b$ is the number $a-i b$. The sign of the imaginary part is reversed.
- It is the mirror image across the real axis
- Any real number is its own conjugate, since $b=0$.

Complex Numbers and Their Conjugates

The conjugate is denoted by a bar or a star: $(a+i b)^{*}=\overline{(a+i b)}=$ $a-i b$.

Important properties:

1. The conjugate of a product equals the product of the conjugates:

$$
\overline{(a+i b)(c+i d)}=(a c-b d)-i(b c+a d)=\overline{(a+i b)} \overline{(c+i d)} .
$$

2. The conjugate of a sum equals the sum of the conjugates:

$$
\overline{(a+c)+i(b+d)}=(a+c)-i(b+d)=\overline{(a+i b)}+\overline{(c+i d)}
$$

3. Multiplying any $a+i b$ by its conjugate $a-i b$ produces a real number $a^{2}+b^{2}$:

Absolute value $\quad(a+i b)(a-i b)=a^{2}+b^{2}=r^{2}$
This distance r is the absolute value $|a+i b|=\sqrt{a^{2}+b^{2}}$

Complex Numbers and Their Conjugates

- Trigonometry connects the sides a and b to the hypotenuse r by $a=r \cos \theta$ and $b=r \sin \theta$.
- Combining these two equations moves us into polar coordinates:

Polar form

$$
a+i b=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

Most important special case is when $r=1$:

$$
a+i b \text { is } e^{i \theta}=\cos \theta+i \sin \theta
$$

- It falls on the unit circle in the complex plane
- As θ varies from 0 to 2π, this number $e^{i \theta}$ circles
 around zero at the constant radial distance:

$$
\left|e^{i \theta}\right|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1
$$

Complex Numbers and Their Conjugates

Example 1. $x=3+4 i$ times its conjugate $\bar{x}=3-4 i$ is the absolute value squared:

$$
x \bar{x}=(3+4 i)(3-4 i)=25=|x|^{2} \quad \text { so } \quad r=|x|=5 .
$$

To divide by $3+4 i$, multiply numerator and denominator by its conjugate $3-4 i$:

$$
\frac{2+i}{3+4 i}=\frac{2+i}{3+4 i} \frac{3-4 i}{3-4 i}=\frac{10-5 i}{25} .
$$

In polar coordinates, multiplication and division are easy:
$r e^{i \theta}$ times $R e^{i \alpha}$ has absolute value $r R$ and angle $\theta+\alpha$.
$r e^{i \theta}$ divided by $R e^{i \alpha}$ has absolute value r / R and angle $\theta-\alpha$.

Lengths and Transposes in the Complex Case

The complex vector space \mathbf{C}^{n} contains all vectors x with n complex components:

$$
\text { Complex vector } \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { with components } \quad x_{j}=a_{j}+i b_{j} .
$$

In the new definition of length, each x_{j}^{2} is replaced by its modulus $\left|x_{j}\right|^{2}$:

Length squared $\quad\|x\|^{2}=\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}$

Hermitian Matrices

$$
A=\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 5
\end{array}\right]=A^{\mathrm{H}}
$$

The matrix $\overparen{A^{T}}=A^{H}=A^{*}$ is called a "Hermitian":

$$
A^{\mathrm{H}}=\bar{A}^{\mathrm{T}} \quad \text { has entries } \quad\left(A^{\mathrm{H}}\right)_{i j}=\overline{A_{j i}} .
$$

Conjugate transpose

$$
\left[\begin{array}{cc}
2+i & 3 i \\
4-i & 5 \\
0 & 0
\end{array}\right]^{\mathrm{H}}=\left[\begin{array}{ccc}
2-i & 4+i & 0 \\
-3 i & 5 & 0
\end{array}\right]
$$

- This symbol A^{H} gives official recognition to the fact that, with complex entries, it is seldom that we want only the transpose of A.
- It is the conjugate transpose A^{H} that becomes appropriate.
- A real symmetric matrix is certainly Hermitian. The eigenvalues are real

Hermitian Matrices

Property 1 If $A=A^{\mathrm{H}}$, then for all complex vectors x, the number $x^{\mathrm{H}} A x$ is real. Every entry of A contributes to $x^{\mathrm{H}} A x$. Try the 2 by 2 case with $x=(u, v)$:

$$
\begin{aligned}
x^{\mathrm{H}} A x & =\left[\begin{array}{ll}
\bar{u} & \bar{v}
\end{array}\right]\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 5
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& =2 \bar{u} u+5 \bar{v} v+(3-3 i) \bar{u} v+(3+3 i) u \bar{v} \\
& =\text { real }+ \text { real }+(\text { sum of complex conjugates }) .
\end{aligned}
$$

Property 2 If $A=A^{\mathrm{H}}$, every eigenvalue is real.
Proof. Suppose $A x=\lambda x$. The trick is to multiply by $x^{\mathrm{H}}: x^{\mathrm{H}} A x=\lambda x^{\mathrm{H}} x$. The left-hand side is real by Property 1 , and the right-hand side $x^{\mathrm{H}} x=\|x\|^{2}$ is real and positive, because $x \neq 0$. Therefore $\lambda=x^{\mathrm{H}} A x / x^{\mathrm{H}} x$ must be real. Our example has $\lambda=8$ and $\lambda=-1$:

$$
\begin{align*}
|A-\lambda I| & =\left|\begin{array}{ll}
2-\lambda & 3-3 i \\
3+3 i & 5-\lambda
\end{array}\right|=\lambda^{2}-7 \lambda+10-|3-3 i|^{2} \\
& =\lambda^{2}-7 \lambda-8=(\lambda-8)(\lambda+1) .
\end{align*}
$$

Hermitian Matrices

Property 3 Two eigenvectors of a real symmetric matrix or a Hermitian matrix, if they come from different eigenvalues, are orthogonal to one another.

The proof starts with $A x=\lambda_{1} x, A y=\lambda_{2} y$, and $A=A^{\mathrm{H}}$:

$$
\left(\lambda_{1} x\right)^{\mathrm{H}} y=(A x)^{\mathrm{H}} y=x^{\mathrm{H}} A y=x^{\mathrm{H}}\left(\lambda_{2} y\right)
$$

- The outside numbers are $\lambda_{1} x^{H} y=\lambda_{2} x^{H} y$, since the λ^{\prime} 's are real.
- Now use the assumption $\lambda_{1} \neq \lambda_{2}$, which forces the conclusion that $x^{H} y=0$.
- In our example,

$$
A=\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 5
\end{array}\right]
$$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 5
\end{array}\right] \\
& (A-8 I) x=\left[\begin{array}{cc}
-6 & 3-i \\
3+3 i & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad x=\left[\begin{array}{c}
1 \\
1+i
\end{array}\right] \\
& (A+I) y=\left[\begin{array}{cc}
3 & 3-3 i \\
3+3 i & 6
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad y=\left[\begin{array}{c}
1-i \\
-1
\end{array}\right] .
\end{aligned}
$$

- These two eigenvectors are orthogonal:

$$
x^{\mathrm{H}} y=\left[\begin{array}{ll}
1 & 1-i
\end{array}\right]\left[\begin{array}{c}
1-i \\
-1
\end{array}\right]=0
$$

50 A real symmetric matrix can be factored into $A=Q \Lambda Q^{T}$. Its orthonormal eigenvectors are in the orthogonal matrix Q and its eigenvalues are in Λ.

- In geometry or mechanics, this is the principal axis theorem. It gives the right choice of axes for an ellipse.
- Those axes are perpendicular, and they point along the eigenvectors of the corresponding matrix.
- In mathematics the formula $A=Q \Lambda Q^{T}$ is known as the spectral theorem.

Hermitian Matrices

In mathematics the formula $A=Q \Lambda Q^{T}$ is known as the spectral theorem.

$$
\begin{aligned}
A=Q \Lambda Q^{\mathrm{T}} & =\left[\begin{array}{ccc}
\mid & & \mid \\
x_{1} & \cdots & x_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]\left[\begin{array}{ccc}
-x_{1}^{\mathrm{T}} & - \\
& \vdots & \\
- & x_{n}^{\mathrm{T}} & -
\end{array}\right] \\
& =\lambda_{1} x_{1} x_{1}^{\mathrm{T}}+\lambda_{2} x_{2} x_{2}^{\mathrm{T}}+\cdots+\lambda_{n} x_{n} x_{n}^{\mathrm{T}} .
\end{aligned}
$$

- The spectral theorem $A=Q \Lambda Q^{T}$ has been proved only when the eigenvalues of A are distinct. Then there are certainly n independent eigenvectors, and A can be safely diagonalized.
- Nevertheless it is true that even with repeated eigenvalues, a symmetric matrix still has a complete set of orthonormal eigenvectors.
- The extreme case is the identity matrix, which has $\lambda=1$ repeated n times-and no shortage of eigenvectors.

Unitary Matrices

A complex matrix with orthonormal columns is called a unitary matrix.

Two analogies:

1. A Hermitian (or symmetric) matrix can be compared to a real number.
2. A unitary (or orthogonal) matrix can be compared to a number on the unit circle.

Unitary matrix $\quad U^{\mathrm{H}} U=I, \quad U U^{\mathrm{H}}=I, \quad$ and $\quad U^{\mathrm{H}}=U^{-1}$

Unitary Matrices

Property $1^{\prime}(U x)^{\mathrm{H}}(U y)=x^{\mathrm{H}} U^{\mathrm{H}} U y=x^{\mathrm{H}} y$ and lengths are preserved by U :

$$
\begin{equation*}
\text { Length unchanged } \quad\|U x\|^{2}=x^{\mathrm{H}} U^{\mathrm{H}} U x=\|x\|^{2} \text {. } \tag{11}
\end{equation*}
$$

Property 2^{\prime} Every eigenvalue of U has absolute value $|\lambda|=1$.
This follows directly from $U x=\lambda x$, by comparing the lengths of the two sides: $\|U x\|=\|x\|$ by Property 1^{\prime}, and always $\|\lambda x\|=|\lambda|\|x\|$. Therefore $|\lambda|=1$.

Property 3^{\prime} Eigenvectors corresponding to different eigenvalues are orthonormal.

- Example:

$$
U=\left[\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right] \text { has eigenvalues } e^{i t} \text { and } e^{-i t}
$$

 in $x^{\mathrm{H}} y=1+i^{2}=0$.) After division by $\sqrt{2}$ they are orthonormal.

- Skew-symmetric matrix: $\boldsymbol{K}^{\boldsymbol{T}}=-\boldsymbol{K}$
- Skew-Hermitian matrix: $\boldsymbol{K}^{\boldsymbol{H}}=-\boldsymbol{K}$

$$
\text { If } A \text { is Hermitian then } K=i A \text { is skew-Hermitian. }
$$

- The eigenvalues of K are purely imaginary instead of purely real; we multiply i. The eigenvectors are not changed.

Example:

$$
A=\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 5
\end{array}\right]
$$

$$
K=i A=\left[\begin{array}{cc}
2 i & 3+3 i \\
-3+3 i & 5 i
\end{array}\right]=-K^{\mathrm{H}}
$$

Real versus Complex

\mathbf{R}^{n} (n real components)

length: $\|x\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$ transpose: $A_{i j}^{\mathrm{T}}=A_{j i}$
$(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$ inner product: $x^{\mathrm{T}} y=x_{1} y_{1}+\cdots+x_{n} y_{n} \leftrightarrow$ inner product: $x^{\mathrm{H}} y=\bar{x}_{1} y_{1}+\cdots+\bar{x}_{n} y_{n}$ $(A x)^{\mathrm{T}} y=x^{\mathrm{T}}\left(A^{\mathrm{T}} y\right)$
\leftrightarrow
orthogonality: $x^{\mathrm{T}} y=0$
symmetric matrices: $A^{\mathrm{T}}=A$
$A=Q \Lambda Q^{-1}=Q \Lambda Q^{T}($ real $\Lambda)$
skew-symmetric $K^{\mathrm{T}}=-K$
orthogonal $Q^{\mathrm{T}} Q=I$ or $Q^{\mathrm{T}}=Q^{-1}$
$(Q x)^{\mathrm{T}}(Q y)=x^{\mathrm{T}} y$ and $\|Q x\|=\|x\|$
The columns, rows, and eigenvectors of Q and U are orthonormal, and every $|\lambda|=1$

Virtually every step in this chapter has involved the combination $S^{-1} A S$. The eigenvectors of A went into the columns of S, and that made $S^{-1} A S$ a diagonal matrix (called $\Lambda)$. When A was symmetric, we wrote Q instead of S, choosing the eigenvectors to be orthonormal. In the complex case, when A is Hermitian we write U-it is still the matrix of eigenvectors. Now we look at all combinations $M^{-1} A M$-formed with any invertible M on the right and its inverse on the left. The invertible eigenvector matrix S may fail to exist (the defective case), or we may not know it, or we may not want to use it.

Similarity Transformations

- The matrices A and $M^{-1} A M$ are "similar".
- Going from one to the other is a similarity transformation.
- A whole family of matrices $M^{-1} A M$ is similar to A, and there are two questions:

1. What do these similar matrices $M^{-1} A M$ have in common?
2. With a special choice of M, what special form can be achieved by $M^{-1} A M$?

Similarity Transformations

- The matrices A and $M^{-1} A M$ are "similar".
- The family of matrices $M^{-1} A M$ includes A itself, by choosing $M=I$.
- Similar matrices share the same eigenvalues.

5P Suppose that $B=M^{-1} A M$. Then A and B have the same eigenvalues. Every eigenvector x of A corresponds to an eigenvector $M^{-1} x$ of B.

Start from $A x=\lambda x$ and substitute $A=M B M^{-1}$:

Same eigenvalue $\quad M B M^{-1} x=\lambda x$ which is $\quad B\left(M^{-1} x\right)=\lambda\left(M^{-1} x\right)$.
The eigenvalue of B is still λ. The eigenvector has changed from x to $M^{-1} x$.

Similarity Transformations

We can also check that $A-\lambda I$ and $B-\lambda I$ have the same determinant:
Product of matrices $\quad B-\lambda I=M^{-1} A M-\lambda I=M^{-1}(A-\lambda I) M$
Product rule $\quad \operatorname{det}(B-\lambda I)=\operatorname{det} M^{-1} \operatorname{det}(A-\lambda I) \operatorname{det} M=\operatorname{det}(A-\lambda I)$.

- The polynomials $\operatorname{det}(A-\lambda I)$ and $\operatorname{det}(B-\lambda I)$ are equal.
- Their roots-the eigenvalues of A and B-are the same. Here are matrices B similar to A.

Example 1. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ has eigenvalues 1 and 0 . Each B is $M^{-1} A M$:
If $M=\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]$, then $B=\left[\begin{array}{ll}1 & b \\ 0 & 0\end{array}\right]: \quad$ triangular with $\lambda=0$ and 0.
If $M=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$, then $B=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]: \quad$ projection with $\lambda=0$ and 0 .
If $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $B=$ an arbitrary matrix with $\lambda=0$ and 0 .

Diagonalizing Symmetric and Hermitian Matrices

- The triangular form will show that any symmetric or Hermitian matrix-whether its eigenvalues are distinct or not-has a complete set of orthonormal eigenvectors.
- We need a unitary matrix such that $U^{-1} A U$ is diagonal.
- This triangular T must be diagonal, because it is also Hermitian when $A=A^{H}$:
- The diagonal matrix $U^{-1} A U$ represents a key theorem in linear algebra.

$$
T=T^{\mathrm{H}} \quad\left(U^{-1} A U\right)^{\mathrm{H}}=U^{\mathrm{H}} A^{\mathrm{H}}\left(U^{-1}\right)^{\mathrm{H}}=U^{-1} A U
$$

Diagonalizing Symmetric and Hermitian Matrices

The diagonal matrix $U^{-1} A U$ represents a key theorem in linear algebra.

$$
T=T^{\mathrm{H}} \quad\left(U^{-1} A U\right)^{\mathrm{H}}=U^{\mathrm{H}} A^{\mathrm{H}}\left(U^{-1}\right)^{\mathrm{H}}=U^{-1} A U
$$

5S (Spectral Theorem) Every real symmetric A can be diagonalized by an orthogonal matrix Q. Every Hermitian matrix can be diagonalized by a unitary U :

$$
\begin{array}{rlll}
(\text { real }) & Q^{-1} A Q=\Lambda \quad \text { or } & A=Q \Lambda Q^{\mathrm{T}} \\
(\text { complex }) & U^{-1} A U=\Lambda \quad \text { or } & A=U \Lambda U^{\mathrm{H}}
\end{array}
$$

The columns of Q (or U) contain orthonormal eigenvectors of A.

Diagonalizing Symmetric and Hermitian Matrices

Remark 1. In the real symmetric case, the eigenvalues and eigenvectors are real at every step. That produces a real unitary U-an orthogonal matrix.

Remark 2. A is the limit of symmetric matrices with distinct eigenvalues. As the limit approaches, the eigenvectors stay perpendicular. This can fail if $A \neq A^{\mathrm{T}}$:

$$
A(\theta)=\left[\begin{array}{cc}
0 & \cos \theta \\
0 & \sin \theta
\end{array}\right] \text { has eigenvectors }\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] .
$$

As $\theta \rightarrow 0$, the only eigenvector of the nondiagonalizable matrix $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Normal Matrices

- The matrix N is normal if it commutes with $N^{H}: N N^{H}=N^{H} N$.
- Normal matrices are exactly those that have a complete set of orthonormal eigenvectors.

Read about Jordan form

Remark 2. A is the limit of symmetric matrices with distinct eigenvalues. As the limit approaches, the eigenvectors stay perpendicular. This can fail if $A \neq A^{\mathrm{T}}$:

$$
A(\theta)=\left[\begin{array}{cc}
0 & \cos \theta \\
0 & \sin \theta
\end{array}\right] \text { has eigenvectors }\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] .
$$

As $\boldsymbol{\theta} \rightarrow \mathbf{0}$, the only eigenvector of the nondiagonalizable matrix $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Example 3. The spectral theorem says that this $A=A^{\mathrm{T}}$ can be diagonalized:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { with repeated eigenvalues } \quad \lambda_{1}=\lambda_{2}=1 \text { and } \lambda_{3}=-1 .
$$

$\lambda=1$ has a plane of eigenvectors, and we pick an orthonormal pair x_{1} and x_{2} :

$$
x_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad x_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad x_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \quad \text { for } \lambda_{3}=-1 .
$$

These are the columns of Q. Splitting $A=Q \Lambda Q^{\mathrm{T}}$ into 3 columns times 3 rows gives

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\lambda_{1}\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right]+\lambda_{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+\lambda_{3}\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Since $\lambda_{1}=\lambda_{2}$, those first two projections $x_{1} x_{1}^{\mathrm{T}}$ and $x_{2} x_{2}^{\mathrm{T}}$ (each of rank 1) combine to give a projection P_{1} of rank 2 (onto the plane of eigenvectors). Then A is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \tag{5}\\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\lambda_{1} P_{1}+\lambda_{3} P_{3}=(+1)\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]+(-1)\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

