Eigenvalues and Eigenvectors

CS6015/LARP

Ack: Linear Algebra and Its Applications, Gilbert Strang

- $Ax = \lambda x$ is a nonlinear equation; λ multiplies x. If we could discover λ , then the equation for x would be **linear**.
- We could write λIx in place of λx , and bring this term over to the left side:

$$(A-\lambda I)x = 0$$

The vector x is in the nullspace of $A - \lambda I$. The number λ is chosen so that $A - \lambda I$ has a nullspace.

- We want a **nonzero** eigenvector x. The vector x = 0 always satisfies $Ax = \lambda x$, but it is useless.
- To be of any use, the nullspace of $A \lambda I$ must contain vectors other than zero.
- In short, $A \lambda I$ must be singular.

5A The number λ is an eigenvalue of A if and only if $A - \lambda I$ is singular:

$$\det(A - \lambda I) = 0. \tag{10}$$

This is the characteristic equation. Each λ is associated with eigenvectors x:

$$(A - \lambda I)x = 0$$
 or $Ax = \lambda x.$ (11)

- The Solution of $Ax = \lambda x$
- Example:

$$A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}$$
 we shift *A* by λI to make it singular:
Subtract λI $A - \lambda I = \begin{bmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{bmatrix}$

Determinant
$$|A - \lambda I| = (4 - \lambda)(-3 - \lambda) + 10$$
 or $\lambda^2 - \lambda - 2$

- This is the characteristic polynomial.
- Its roots, where the determinant is zero, are the eigenvalues.

$$\lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2)$$

Eigenvalues
$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{9}}{2} = -1$$
 and 2

- There are two eigen values, because a quadratic has two roots.
- The values $\lambda = -1$ and $\lambda = 2$ lead to a solution of $Ax = \lambda x$ or $(A \lambda I)x = 0$.

$$\lambda_1 = -1: \qquad (A - \lambda_1 I)x = \begin{bmatrix} 5 & -5 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The solution (the first eigenvector) is any nonzero multiple of x_1 :

Eigenvector for
$$\lambda_1$$
 $x_1 = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$.

The solution (the first eigenvector) is any nonzero multiple of x_1 :

Eigenvector for
$$\lambda_1$$
 $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

The computation for λ_2 is done separately:

$$\lambda_2 = 2: \qquad (A - \lambda_2 I)x = \begin{bmatrix} 2 & -5 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The second eigenvector is any nonzero multiple of x_2 :

Eigenvector for
$$\lambda_2$$
 $x_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$

For example, suppose

$$A = \begin{bmatrix} 4 & 3 \\ -2 & -3 \end{bmatrix},$$

In both matrices, the columns are multiples of each other, so either column can be used; Eigenvectors ??

Thus, (1, -2) can be taken as an eigenvector associated with the eigenvalue -2; and (3, -1) as an eigenvector associated with the eigenvalue 3, as can be verified by multiplying them by *A*. (read **Cayley–Hamilton** theorem).

- The steps in solving $Ax = \lambda x$:
- **1. Compute the determinant of** $A \lambda I$. With λ subtracted along the diagonal, this determinant is a polynomial of degree n. It starts with $(-\lambda)^n$.
- **2. Find the roots of this polynomial.** The *n* roots are the eigenvalues of *A*.
- **3.** For each eigenvalue solve the equation $(A \lambda I)x = 0$. Since the determinant is zero, there are solutions other than x = 0. Those are the eigenvectors.

The Solution of $Ax = \lambda x$ (Recap)

- The key equation was $Ax = \lambda x$.
- Most vectors x will not satisfy such an equation.
- They **change direction** when multiplied by *A*, so that *Ax* is not a multiple of *x*.
- This means that only certain special numbers are eigenvalues, and only certain special vectors x are eigenvectors.

Example 1. Everything is clear when *A* is a *diagonal matrix*:

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \text{ has } \lambda_1 = 3 \text{ with } x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \lambda_2 = 2 \text{ with } x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

On each eigenvector A acts like a multiple of the identity: $Ax_1 = 3x_1$ and $Ax_2 = 2x_2$. Other vectors like x = (1,5) are mixtures $x_1 + 5x_2$ of the two eigenvectors, and when A multiplies x_1 and x_2 it produces the eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$:

A times
$$x_1 + 5x_2$$
 is $3x_1 + 10x_2 = \begin{bmatrix} 3\\10 \end{bmatrix}$

This is Ax for a typical vector x—not an eigenvector. But the action of A is determined by its eigenvectors and eigenvalues.

Example 2. The eigenvalues of a projection matrix are 1 or 0.

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \text{ has } \lambda_1 = 1 \text{ with } x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \lambda_2 = 0 \text{ with } x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

- We have $\lambda = 1$ when x projects to itself, and $\lambda = 0$ when x projects to the zero vector.
- The column space of *P* is filled with eigenvectors, and so is the nullspace.
- If those spaces have dimension r and n r, then $\lambda = 1$ is repeated r times and $\lambda = 0$ is repeated n r times (always $n \lambda$'s):

• A zero eigenvalue signifies that the matrix is singular.

Example 3. The eigenvalues are on the main diagonal when A is triangular.

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 & 5 \\ 0 & \frac{3}{4} - \lambda & 6 \\ 0 & 0 & \frac{1}{2} - \lambda \end{vmatrix} = (1 - \lambda)(\frac{3}{4} - \lambda)(\frac{1}{2} - \lambda)$$

• The determinant is just the product of the diagonal entries.

• It is zero if
$$\lambda = 1, \lambda = \frac{3}{4}$$
, or $\lambda = \frac{1}{2}$

• The eigenvalues were already sitting along the main diagonal.

5B The *sum* of the *n* eigenvalues equals the sum of the *n* diagonal entries:

Trace of
$$A = \lambda_1 + \dots + \lambda_n = a_{11} + \dots + a_{nn}.$$
 (15)

Furthermore, the *product* of the *n* eigenvalues equals the *determinant* of *A*.

For a 2 by 2 matrix, the trace and determinant tell us everything:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 has trace $a + d$, and determinant $ad - bc$

$$det(A - \lambda I) = det \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = \lambda^2$$

The eigenvalues are $\lambda = \begin{bmatrix} 1/2 \\ - . \end{bmatrix}$

Diagonalization of a Matrix

• The eigenvectors diagonalize a matrix

5C Suppose the *n* by *n* matrix *A* has *n* linearly independent eigenvectors. If these eigenvectors are the columns of a matrix *S*, then $S^{-1}AS$ is a diagonal matrix Λ . The eigenvalues of *A* are on the diagonal of Λ :

Diagonalization
$$S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
. (1)

• We call S the "eigenvector matrix" and Λ the "eigenvalue matrix".

Diagonalization of a Matrix

5C Suppose the *n* by *n* matrix *A* has *n* linearly independent eigenvectors. If these eigenvectors are the columns of a matrix *S*, then $S^{-1}AS$ is a diagonal matrix Λ . The eigenvalues of *A* are on the diagonal of Λ :

Diagonalization
$$S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
. (1)

Proof. Put the eigenvectors x_i in the columns of S, and compute AS by columns:

$$AS = A \begin{bmatrix} | & | & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \\ | & | & | & | \end{bmatrix}.$$

Then the trick is to split this last matrix into a quite different product $S\Lambda$:

$$\begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$$

Diagonalization of a Matrix

Proof. Put the eigenvectors x_i in the columns of S, and compute AS by columns:

$$AS = A \begin{bmatrix} | & | & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \\ | & | & | & | \end{bmatrix}.$$

Then the trick is to split this last matrix into a quite different product $S\Lambda$:

$$\begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$$

- It is crucial to keep these matrices in the right order.
- If Λ came before S (instead of after), then λ_1 would multiply the entries in the first row. Therefore,

$$AS = S\Lambda$$
, or $S^{-1}AS = \Lambda$, or $A = S\Lambda S^{-1}$

• S is invertible, because its columns (the eigenvectors) were assumed to be independent.

Remark 1. If the matrix A has no repeated eigenvalues—the numbers $\lambda_1, \ldots, \lambda_n$ are distinct—then its n eigenvectors are automatically independent. So, **any matrix with distinct eigenvalues can be diagonalized.**

Remark 2. The diagonalizing matrix S is not unique. We can multiply the columns of S by any nonzero constants, and produce a new diagonalizing S.

Remark 3. Other matrices S will not produce a diagonal Λ .

Remark 4. Not all matrices possess *n* linearly independent eigenvectors, so *not all matrices are diagonalizable*.

The standard example of a "defective matrix" is $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

Its eigenvalues are $\lambda_1 = \lambda_2 = 0$, since it is triangular with zeros on the diagonal: $det(A - \lambda I) = det \begin{bmatrix} -\lambda & 1 \\ 0 & -\lambda \end{bmatrix} = \lambda^2$

All eigenvectors of this A are multiples of the vector (1,0):

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \text{or} \quad x = \begin{bmatrix} c \\ 0 \end{bmatrix}$$

 $\lambda = 0$ is a double eigenvalue—its algebraic multiplicity is 2. But the geometric multiplicity is 1—there is only one independent eigenvector. We can't construct *S*.

Diagonalizability of A depends on enough eigenvectors. Invertibility of A depends on nonzero eigenvalues.

- Diagonalization can fail only if there are repeated eigenvalues.
- Even then, it does not always fail.
- A = I has repeated eigenvalues 1,1, ..., 1 but it is already diagonal! There is no shortage of eigenvectors in that case.

5D If eigenvectors x_1, \ldots, x_k correspond to *different eigenvalues* $\lambda_1, \ldots, \lambda_k$, then those eigenvectors are linearly independent.

- Eigenvectors that come from distinct eigenvalues are automatically independent.
- A matrix with *n* distinct eigenvalues can be diagonalized. This is the typical case.

Examples of Diagonalization

Example 1. The projection $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ has eigenvalue matrix $\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. The eigenvectors go into the columns of *S*:

$$S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{and} \quad AS = S\Lambda = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

That last equation can be verified at a glance. Therefore $S^{-1}AS = \Lambda$.

= ??

Example 2. The eigenvalues themselves are not so clear for a *rotation*:

90° rotation
$$K = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 has $det(K - \lambda I) = \lambda^2 + 1.$

How can a vector be rotated and still have its direction unchanged?

- It can't—except for the zero vector, which is useless.
- The eigenvalues of K are imaginary numbers, $\lambda_1 = i$ and $\lambda_2 = -i$.
- In turning through 90°, they are multiplied by i or -i:

$$(K - \lambda_1 I)x_1 = \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{and} \quad x_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
$$(K - \lambda_2 I)x_2 = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{and} \quad x_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}.$$

$$(K - \lambda_1 I)x_1 = \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{and} \quad x_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
$$(K - \lambda_2 I)x_2 = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{and} \quad x_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}.$$

• The eigenvalues are distinct, even if imaginary, and the eigenvectors are independent. They go into the columns of S:

$$S = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \quad \text{and} \quad S^{-1}KS = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

- Complex numbers are needed even for real matrices.
- If there are too few real eigenvalues, there are always *n* complex eigenvalues. (Complex includes real, when the imaginary part is zero.)

• The eigenvalue of A^2 are exactly λ_1^2 , ..., λ_n^2 , and every eigenvector of A is also an eigenvector of A^2

$$A^2 x = A\lambda x = \lambda A x = \lambda^2 x.$$

- Thus λ^2 is an eigenvalue of A^2 , with the same eigenvector x.
- The same result comes from diagonalization, by squaring $S^{-1}AS = \Lambda$:

Eigenvalues of A^2 $(S^{-1}AS)(S^{-1}AS) = \Lambda^2$ or $S^{-1}A^2S = \Lambda^2$.

- The matrix A^2 is diagonalized by the same *S*, so the eigenvectors are unchanged. The eigenvalues are squared.
- This continues to hold for any power of A.

5E The eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_n^k$, and each eigenvector of A is still an eigenvector of A^k . When S diagonalizes A, it also diagonalizes A^k :

$$\Lambda^{k} = (S^{-1}AS)(S^{-1}AS) \cdots (S^{-1}AS) = S^{-1}A^{k}S.$$
(4)

Each S^{-1} cancels an *S*, except for the first S^{-1} and the last *S*.

- If A is invertible this rule also applies to its inverse (the power k = -1).
- The eigenvalues of A^{-1} are $\frac{1}{\lambda_i}$.

if
$$Ax = \lambda x$$
 then $x = \lambda A^{-1}x$ and $\frac{1}{\lambda}x = A^{-1}x$.

Example 3. If *K* is rotation through 90°, then K^2 is rotation through 180° (which means -I) and K^{-1} is rotation through -90° :

$$K = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad K^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \text{ and } K^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

The eigenvalues of *K* are *i* and -i; their squares are -1 and -1; their reciprocals are 1/i = -i and 1/(-i) = i. Then K^4 is a complete rotation through 360°:

$$K^{4} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and also } \Lambda^{4} = \begin{bmatrix} i^{4} & 0 \\ 0 & (-i)^{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

5F Diagonalizable matrices share the same eigenvector matrix *S* if and only if AB = BA.

Proof. If the same S diagonalizes both $A = S\Lambda_1 S^{-1}$ and $B = S\Lambda_2 S^{-1}$, we can multiply in either order:

$$AB = S\Lambda_1 S^{-1} S\Lambda_2 S^{-1} = S\Lambda_1 \Lambda_2 S^{-1} \quad \text{and} \quad BA = S\Lambda_2 S^{-1} S\Lambda_1 S^{-1} = S\Lambda_2 \Lambda_1 S^{-1}.$$

Since $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$ (diagonal matrices always commute) we have AB = BA.

In the opposite direction, suppose AB = BA. Starting from $Ax = \lambda x$, we have

$$ABx = BAx = B\lambda x = \lambda Bx.$$

Thus x and Bx are both eigenvectors of A, sharing the same λ (or else Bx = 0).

Complex Matrices

- We now introduce the space **C**ⁿ of vectors with n complex components.
- Addition and matrix multiplication follow the same rules as before.
- Length is computed differently
- The old way, the vector in \mathbb{C}^2 with components (1, i) would have zero length: $1^2 + i^2 = 0$ which is not good.
- The correct length squared is $1^2 + |i|^2 = 2$
- The inner product, the transpose, the definitions of symmetric and orthogonal matrices, all need to be modified for complex numbers.

Complex Matrices

We particularly want to find out about *symmetric matrices* and *Hermitian matrices*: *Where are their eigenvalues, and what is special about their eigenvectors*?

1. Every symmetric matrix (and Hermitian matrix) has real eigenvalues.

2. Its eigenvectors can be chosen to be orthonormal.

The real numbers *a* and the imaginary numbers *ib* are special cases of complex numbers; they lie on the axes

Fig: The complex plane, with $a + ib = re^{i\theta}$ and its conjugate $a - ib = re^{-i\theta}$

Complex addition (a+ib) + (c+id) = (a+c) + i(b+d)

Multiplication
$$(a+ib)(c+id) = ac+ibc+iad+i^2bd$$

= $(ac-bd)+i(bc+ad)$

- The complex conjugate of a + ib is the number a ib. The sign of the *imaginary part is reversed*.
- It is the mirror image across the real axis
- Any real number is its own conjugate, since b = 0.

The conjugate is denoted by a bar or a star: $(a + ib)^* = \overline{(a + ib)} = a - ib$.

Important properties:

- 1. The conjugate of a product equals the product of the conjugates: $\overline{(a+ib)(c+id)} = (ac-bd) - i(bc+ad) = \overline{(a+ib)(c+id)}.$
- 2. The conjugate of a sum equals the sum of the conjugates: $\overline{(a+c)+i(b+d)} = (a+c)-i(b+d) = \overline{(a+ib)} + \overline{(c+id)}$
- 3. Multiplying any a + ib by its conjugate a ib produces a real number $a^2 + b^2$:

Absolute value $(a+ib)(a-ib) = a^2 + b^2 = r^2$

This distance *r* is the *absolute value* $|a+ib| = \sqrt{a^2 + b^2}$

- Trigonometry connects the sides a and b to the hypotenuse r by $a = r \cos\theta$ and $b = r \sin\theta$.
- Combining these two equations moves us into polar coordinates:

Polar form $a+ib=r(\cos\theta+i\sin\theta)=re^{i\theta}$

Example 1. x = 3 + 4i times its conjugate $\overline{x} = 3 - 4i$ is the absolute value squared:

$$x\overline{x} = (3+4i)(3-4i) = 25 = |x|^2$$
 so $r = |x| = 5$.

To divide by 3 + 4i, multiply numerator and denominator by its conjugate 3 - 4i:

$$\frac{2+i}{3+4i} = \frac{2+i}{3+4i}\frac{3-4i}{3-4i} = \frac{10-5i}{25}$$

In polar coordinates, multiplication and division are easy:

 $re^{i\theta}$ times $Re^{i\alpha}$ has absolute value rR and angle $\theta + \alpha$. $re^{i\theta}$ divided by $Re^{i\alpha}$ has absolute value r/R and angle $\theta - \alpha$.

Lengths and Transposes in the Complex Case

The complex vector space \mathbb{C}^n contains all vectors x with n complex components:

Complex vector $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ with components $x_j = a_j + ib_j$

In the new definition of length, each x_j^2 is replaced by its modulus $|x_j|^2$:

Length squared $||x||^2 = |x_1|^2 + \dots + |x_n|^2$

The matrix
$$\overline{A^{T}} = A^{H} = A^{*}$$
 is called a "*Hermitian*":
 $A^{H} = \overline{A}^{T}$ has entries $(A^{H})_{ij} = \overline{A_{ji}}$.
 $A^{H} = \overline{A}^{T}$ has entries $(A^{H})_{ij} = \overline{A_{ji}}$.
Conjugate
transpose
 $\begin{bmatrix} 2+i & 3i\\ 4-i & 5\\ 0 & 0 \end{bmatrix}^{H} = \begin{bmatrix} 2-i & 4+i & 0\\ -3i & 5 & 0 \end{bmatrix}$

г

- This symbol A^H gives official recognition to the fact that, with complex entries, it is seldom that we want only the transpose of A.
- It is the *conjugate transpose* A^H that becomes appropriate.
- A real symmetric matrix is certainly Hermitian. The eigenvalues are real

Hermitian Matrices

Property 1 If $A = A^{H}$, then for all complex vectors *x*, the number $x^{H}Ax$ is real. Every entry of *A* contributes to $x^{H}Ax$. Try the 2 by 2 case with x = (u, v):

$$x^{\mathrm{H}}Ax = \begin{bmatrix} \overline{u} & \overline{v} \end{bmatrix} \begin{bmatrix} 2 & 3-3i \\ 3+3i & 5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
$$= 2\overline{u}u + 5\overline{v}v + (3-3i)\overline{u}v + (3+3i)u\overline{v}$$

= real + real + (sum of complex conjugates).

Property 2 If $A = A^{H}$, every eigenvalue is real.

Proof. Suppose $Ax = \lambda x$. The trick is to multiply by x^{H} : $x^{H}Ax = \lambda x^{H}x$. The left-hand side is real by Property 1, and the right-hand side $x^{H}x = ||x||^{2}$ is real and positive, because $x \neq 0$. Therefore $\lambda = x^{H}Ax/x^{H}x$ must be real. Our example has $\lambda = 8$ and $\lambda = -1$:

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 3 - 3i \\ 3 + 3i & 5 - \lambda \end{vmatrix} = \lambda^2 - 7\lambda + 10 - |3 - 3i|^2$$

= $\lambda^2 - 7\lambda - 8 = (\lambda - 8)(\lambda + 1).$

Hermitian Matrices

Property 3 Two eigenvectors of a real symmetric matrix or a Hermitian matrix, if they come from different eigenvalues, are orthogonal to one another.

The proof starts with $Ax = \lambda_1 x$, $Ay = \lambda_2 y$, and $A = A^H$: $(\lambda_1 x)^H y = (Ax)^H y = x^H A y = x^H (\lambda_2 y).$

- The outside numbers are $\lambda_1 x^H y = \lambda_2 x^H y$, since the λ 's are real.
- Now use the assumption $\lambda_1 \neq \lambda_2$, which forces the conclusion that $x^H y = 0$.
- In our example,

$$A = \begin{bmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{bmatrix}$$

$$(A-8I)x = \begin{bmatrix} -6 & 3-i \\ 3+3i & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 \\ 1+i \end{bmatrix}$$
$$(A+I)y = \begin{bmatrix} 3 & 3-3i \\ 3+3i & 6 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \qquad y = \begin{bmatrix} 1-i \\ -1 \end{bmatrix}.$$

• These two eigenvectors are orthogonal:

$$x^{\mathrm{H}}y = \begin{bmatrix} 1 & 1-i \end{bmatrix} \begin{bmatrix} 1-i \\ -1 \end{bmatrix} = 0.$$

50 A real symmetric matrix can be factored into $A = Q\Lambda Q^{T}$. Its orthonormal eigenvectors are in the orthogonal matrix Q and its eigenvalues are in Λ .

- In geometry or mechanics, this is the *principal axis* theorem. It gives the right choice of *axes for an ellipse*.
- Those axes are perpendicular, and they *point along the eigenvectors of the corresponding matrix*.
- In mathematics the formula $A = Q\Lambda Q^T$ is known as the **spectral theorem**.

Hermitian Matrices

In mathematics the formula $A = Q\Lambda Q^T$ is known as the **spectral theorem**.

$$A = Q\Lambda Q^{\mathrm{T}} = \begin{bmatrix} | & | \\ x_1 & \cdots & x_n \\ | & | \end{bmatrix} \begin{bmatrix} \lambda_1 & \\ & \ddots & \\ & \lambda_n \end{bmatrix} \begin{bmatrix} - & x_1^{\mathrm{T}} & - \\ & \vdots & \\ - & x_n^{\mathrm{T}} & - \end{bmatrix}$$
$$= \lambda_1 x_1 x_1^{\mathrm{T}} + \lambda_2 x_2 x_2^{\mathrm{T}} + \dots + \lambda_n x_n x_n^{\mathrm{T}}.$$

- The spectral theorem $A = Q\Lambda Q^T$ has been proved only when the eigenvalues of A are distinct. Then there are certainly n independent eigenvectors, and A can be safely diagonalized.
- Nevertheless it is true that even with repeated eigenvalues, a symmetric matrix still has a complete set of orthonormal eigenvectors.
- The extreme case is the identity matrix, which has $\lambda = 1$ repeated n times—and no shortage of eigenvectors.

Unitary Matrices

A complex matrix with **orthonormal columns** is called a *unitary matrix.*

Two analogies:

- 1. A Hermitian (or symmetric) matrix can be compared to a real number.
- 2. A unitary (or orthogonal) matrix can be compared to a number on the unit circle.

Unitary matrix $U^{H}U = I$, $UU^{H} = I$, and $U^{H} = U^{-1}$

Unitary Matrices

Property 1' $(Ux)^{H}(Uy) = x^{H}U^{H}Uy = x^{H}y$ and lengths are preserved by *U*:

Length unchanged $||Ux||^2 = x^H U^H Ux = ||x||^2.$ (11)

Property 2' Every eigenvalue of *U* has absolute value $|\lambda| = 1$.

This follows directly from $Ux = \lambda x$, by comparing the lengths of the two sides: ||Ux|| = ||x|| by Property 1', and always $||\lambda x|| = |\lambda|||x||$. Therefore $|\lambda| = 1$.

Property 3' Eigenvectors corresponding to different eigenvalues are orthonormal.

• Example:

$$U = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \text{ has eigenvalues } e^{it} \text{ and } e^{-it}.$$

The orthogonal eigenvectors are x = (1, -i) and y = (1, i). (Remember to take conjugates in $x^{H}y = 1 + i^{2} = 0$.) After division by $\sqrt{2}$ they are orthonormal.

- Skew-symmetric matrix: $K^T = -K$
- Skew-Hermitian matrix: $K^H = -K$

If A is Hermitian then K = iA is skew-Hermitian.

• The eigenvalues of *K* are purely imaginary instead of purely real; we multiply i. The eigenvectors are not changed.

$$A = \begin{bmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{bmatrix}$$

Example:

 $K = iA = \begin{bmatrix} 2i & 3+3i \\ -3+3i & 5i \end{bmatrix} = -K^{\mathrm{H}}.$

Real versus Complex

		A
\mathbf{R}^n (<i>n</i> real components)	\leftrightarrow	\mathbf{C}^n (<i>n</i> complex components)
length: $ x ^2 = x_1^2 + \dots + x_n^2$	\leftrightarrow	length: $ x ^2 = x_1 ^2 + \dots + x_n ^2$
transpose: $A_{ij}^{\rm T} = A_{ji}$	\leftrightarrow	Hermitian transpose: $A_{ij}^{\rm H} = \overline{A_{ji}}$
$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$	\leftrightarrow	$(AB)^{\mathrm{H}} = B^{\mathrm{H}}A^{\mathrm{H}}$
inner product: $x^{\mathrm{T}}y = x_1y_1 + \cdots + x_ny_n$	\leftrightarrow	inner product: $x^{H}y = \overline{x}_{1}y_{1} + \dots + \overline{x}_{n}y_{n}$
$(Ax)^{\mathrm{T}}y = x^{\mathrm{T}}(A^{\mathrm{T}}y)$	\leftrightarrow	$(Ax)^{\mathbf{H}}y = x^{\mathbf{H}}(A^{\mathbf{H}}y)$
orthogonality: $x^{\mathrm{T}}y = 0$	\leftrightarrow	orthogonality: $x^{H}y = 0$
symmetric matrices: $A^{T} = A$	\leftrightarrow	Hermitian matrices: $A^{\rm H} = A$
$A = Q\Lambda Q^{-1} = Q\Lambda Q^{\mathrm{T}} \text{ (real } \Lambda\text{)}$	\leftrightarrow	$A = U\Lambda U^{-1} = U\Lambda U^{\rm H} \text{ (real } \Lambda\text{)}$
skew-symmetric $K^{\mathrm{T}} = -K$	\leftrightarrow	skew-Hermitian $K^{\rm H} = -K$
orthogonal $Q^{\mathrm{T}}Q = I$ or $Q^{\mathrm{T}} = Q^{-1}$	\leftrightarrow	unitary $U^{\rm H}U = I$ or $U^{\rm H} = U^{-1}$
$(Qx)^{\mathrm{T}}(Qy) = x^{\mathrm{T}}y$ and $ Qx = x $	\leftrightarrow	$(Ux)^{\mathrm{H}}(Uy) = x^{\mathrm{H}}y \text{ and } Ux = x $
The columns, rows, and eigenvectors of	Q ar	nd U are orthonormal, and every $ \lambda = 1$

Virtually every step in this chapter has involved the combination $S^{-1}AS$. The eigenvectors of A went into the columns of S, and that made $S^{-1}AS$ a diagonal matrix (called Λ). When A was symmetric, we wrote Q instead of S, choosing the eigenvectors to be orthonormal. In the complex case, when A is Hermitian we write U—it is still the matrix of eigenvectors. Now we look at all combinations $M^{-1}AM$ —formed with any invertible M on the right and its inverse on the left. The invertible eigenvector matrix S may fail to exist (the defective case), or we may not know it, or we may not want to use it.

Similarity Transformations

- The matrices A and $M^{-1}AM$ are "similar".
- Going from one to the other is a *similarity transformation*.
- A whole family of matrices $M^{-1}AM$ is similar to A, and there are two questions:
 - 1. What do these similar matrices $M^{-1}AM$ have in common?
 - 2. With a special choice of *M*, what special form can be achieved by $M^{-1}AM$?

Similarity Transformations

- The matrices A and $M^{-1}AM$ are "similar".
- The family of matrices $M^{-1}AM$ includes A itself, by choosing M = I.
- Similar matrices share the same eigenvalues.

5P Suppose that $B = M^{-1}AM$. Then A and B have the same eigenvalues. Every eigenvector x of A corresponds to an eigenvector $M^{-1}x$ of B.

Start from $Ax = \lambda x$ and substitute $A = MBM^{-1}$:

Same eigenvalue $MBM^{-1}x = \lambda x$ which is $B(M^{-1}x) = \lambda (M^{-1}x)$. (1)

The eigenvalue of *B* is still λ . The eigenvector has changed from *x* to $M^{-1}x$.

Similarity Transformations

We can also check that $A - \lambda I$ and $B - \lambda I$ have the same determinant:

Product of matrices $B - \lambda I = M^{-1}AM - \lambda I = M^{-1}(A - \lambda I)M$ **Product rule** $\det(B - \lambda I) = \det M^{-1} \det(A - \lambda I) \det M = \det(A - \lambda I).$

- The polynomials $det(A \lambda I)$ and $det(B \lambda I)$ are equal.
- Their roots—the eigenvalues of A and B—are the same. *Here are matrices B similar to A.*

Example 1. $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ has eigenvalues 1 and 0. Each *B* is $M^{-1}AM$: If $M = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}$: triangular with $\lambda = 0$ and 0. If $M = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$: projection with $\lambda = 0$ and 0. If $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then B = an arbitrary matrix with $\lambda = 0$ and 0.

Diagonalizing Symmetric and Hermitian Matrices

- The triangular form will show that any symmetric or Hermitian matrix—whether its eigenvalues are distinct or not—has a complete set of orthonormal eigenvectors.
- We need a unitary matrix such that $U^{-1}AU$ is diagonal.
- This triangular T must be diagonal, because it is also Hermitian when $A = A^{H}$:
- The diagonal matrix $U^{-1}AU$ represents a key theorem in linear algebra.

$$T = T^{H}$$
 $(U^{-1}AU)^{H} = U^{H}A^{H}(U^{-1})^{H} = U^{-1}AU$

Diagonalizing Symmetric and Hermitian Matrices

The diagonal matrix $U^{-1}AU$ represents a key theorem in linear algebra.

$$T = T^{H}$$
 $(U^{-1}AU)^{H} = U^{H}A^{H}(U^{-1})^{H} = U^{-1}AU$

5S (Spectral Theorem) Every real symmetric A can be diagonalized by an orthogonal matrix Q. Every Hermitian matrix can be diagonalized by a unitary U:

(real)
$$Q^{-1}AQ = \Lambda$$
 or $A = Q\Lambda Q^{\mathrm{T}}$
(complex) $U^{-1}AU = \Lambda$ or $A = U\Lambda U^{\mathrm{H}}$

The columns of Q (or U) contain orthonormal eigenvectors of A.

Diagonalizing Symmetric and Hermitian Matrices

Remark 1. In the real symmetric case, the eigenvalues and eigenvectors are real at every step. That produces a *real* unitary U—an orthogonal matrix.

Remark 2. A is the limit of symmetric matrices with *distinct* eigenvalues. As the limit approaches, the eigenvectors stay perpendicular. This can fail if $A \neq A^{T}$:

$$A(\theta) = \begin{bmatrix} 0 & \cos \theta \\ 0 & \sin \theta \end{bmatrix} \text{ has eigenvectors } \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}.$$

As $\theta \to 0$, the *only* eigenvector of the nondiagonalizable matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Normal Matrices

- The matrix N is normal if it commutes with N^H : $NN^H = N^H N$.
- Normal matrices are exactly those that have a complete set of orthonormal eigenvectors.

Remark 2. A is the limit of symmetric matrices with *distinct* eigenvalues. As the limit approaches, the eigenvectors stay perpendicular. This can fail if $A \neq A^{T}$:

$$A(\theta) = \begin{bmatrix} 0 & \cos \theta \\ 0 & \sin \theta \end{bmatrix} \text{ has eigenvectors } \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}.$$

As $\theta \to 0$, the *only* eigenvector of the nondiagonalizable matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Example 3. The spectral theorem says that this $A = A^{T}$ can be diagonalized:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ with repeated eigenvalues } \lambda_1 = \lambda_2 = 1 \text{ and } \lambda_3 = -1.$$

 $\lambda = 1$ has a plane of eigenvectors, and we pick an orthonormal pair x_1 and x_2 :

$$x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 and $x_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $x_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ for $\lambda_3 = -1$.

These are the columns of Q. Splitting $A = Q \Lambda Q^{T}$ into 3 columns times 3 rows gives

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Since $\lambda_1 = \lambda_2$, those first two projections $x_1x_1^T$ and $x_2x_2^T$ (each of rank 1) combine to give a projection P_1 of rank 2 (onto the plane of eigenvectors). Then A is

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \lambda_1 P_1 + \lambda_3 P_3 = (+1) \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} + (-1) \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
 (5)