Positive Definite Matrices

CS6015/LARP/2018

Ack: Linear Algebra and Its Applications, Gilbert Strang

- Up to now, we have hardly thought about the signs of the eigenvalues
- Every symmetric matrix has real eigenvalues.
- Now we will find a test that can be applied directly to A, without computing its eigenvalues, which will guarantee that **all those eigenvalues are positive**.
- The signs of the eigenvalues are often crucial.
- The highly important problem is to recognize a minimum point. This arises throughout science and engineering and every problem of optimization.
- Examples:

$$F(x,y) = 7 + 2(x+y)^2 - y\sin y - x^3 \qquad f(x,y) = 2x^2 + 4xy + y^2.$$

Does either F(x,y) *or* f(x,y) *have a minimum at the point* x = y = 0?

Remark 3. The zero-order terms F(0,0) = 7 and f(0,0) = 0 have no effect on the answer. They simply raise or lower the graphs of F and f.

Remark 4. The *linear terms* give a necessary condition: To have any chance of a minimum, the first derivatives must vanish at x = y = 0:

$$\frac{\partial F}{\partial x} = 4(x+y) - 3x^2 = 0 \quad \text{and} \quad \frac{\partial F}{\partial y} = 4(x+y) - y\cos y - \sin y = 0$$
$$\frac{\partial f}{\partial x} = 4x + 4y = 0 \quad \text{and} \quad \frac{\partial f}{\partial y} = 4x + 2y = 0. \quad All \text{ zero.}$$

Thus (x, y) = (0,0) is a stationary point for both functions. The surface z = F(x, y) is tangent to the horizontal plane z = 7, and the surface z = f(x, y) is tangent to the plane z = 0.

Remark 5. The second derivatives at (0,0) are decisive:

$$\frac{\partial^2 F}{\partial x^2} = 4 - 6x = 4 \qquad \qquad \frac{\partial^2 f}{\partial x^2} = 4$$
$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = 4 \qquad \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 4$$
$$\frac{\partial^2 F}{\partial y^2} = 4 + y \sin y - 2\cos y = 2 \qquad \qquad \frac{\partial^2 f}{\partial y^2} = 2.$$

- These second derivatives 4, 4, 2 contain the answer.
- Since they are the same for *F* and *f*, they must contain the same answer.
- The two functions behave in exactly the same way near the origin.
- F has a minimum if and only if f has a minimum.

Remark 6. The higher-degree terms in F have no effect on the question of a local minimum, but they can prevent it from being a global minimum. In our example the term $-x^3$ must sooner or later pull F toward $-\infty$. For f(x,y), with no higher terms, all the action is at (0,0).

Every quadratic form $f = ax^2 + 2bxy + cy^2$ has a stationary point at the origin, where $\partial f / \partial x = \partial f / \partial y = 0$.

A local minimum would also be a global minimum, The surface z = f(x, y) will then be shaped like a bowl, resting on the origin.

Figure 6.1: A bowl and a saddle: Definite $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and indefinite $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Figure 6.1: A bowl and a saddle: Definite $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and indefinite $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

If the stationary point of F is at $x = \alpha, y = \beta$, the only change would be to use the second derivatives at α, β :

Quadratic part of F $f(x,y) = \frac{x^2}{2} \frac{\partial^2 F}{\partial x^2}(\alpha,\beta) + xy \frac{\partial^2 F}{\partial x \partial y}(\alpha,\beta) + \frac{y^2}{2} \frac{\partial^2 F}{\partial y^2}(\alpha,\beta).$

Figure 6.1: A bowl and a saddle: Definite $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and indefinite $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- The third derivatives are drawn into the problem when the second derivatives fail to give a definite decision. That happens when the quadratic part is singular.
- For a true minimum, f is allowed to vanish only at x = y = 0.
- When f(x, y) is strictly positive at all other points (the bowl goes up), it is called **positive definite**.

• For a function of two variables x and y, what is the correct replacement for the condition $\frac{\partial^2 F}{\partial x^2} > 0$?

With only one variable, the sign of the second derivative decides between a minimum or a maximum.

Now we have three second derivatives: F_{xx} , $F_{xy} = F_{yx}$, and F_{yy} .

What conditions on *a*, *b*, and *c* ensure that the quadratic $f(x,y) = ax^2 + 2bxy + cy^2$ is positive definite? One necessary condition is easy:

(i) If $ax^2 + 2bxy + cy^2$ is positive definite, then necessarily a > 0.

We look at x = 1, y = 0, where $ax^2 + 2bxy + cy^2$ is equal to a. This must be positive. Translating back to F, that means that $\frac{\partial^2 F}{\partial x^2} > 0$. The graph must go up in the x direction. Similarly, fix x = 0 and look in the y direction where $f(0, y) = cy^2$:

(i) If $ax^2 + 2bxy + cy^2$ is positive definite, then necessarily a > 0.

We look at x = 1, y = 0, where $ax^2 + 2bxy + cy^2$ is equal to a. This must be positive. Translating back to F, that means that $\frac{\partial^2 F}{\partial x^2} > 0$. The graph must go up in the x direction. Similarly, fix x = 0 and look in the y direction where $f(0, y) = cy^2$:

(ii) If f(x, y) is positive definite, then necessarily c > 0.

Do these conditions a > 0 and c > 0 guarantee that f(x,y) is always positive? The answer is **no**. A large cross term 2bxy can pull the graph below zero.

Example 1. $f(x,y) = x^2 - 10xy + y^2$. Here a = 1 and c = 1 are both positive. But f is not positive definite, because f(1,1) = -8. The conditions a > 0 and c > 0 ensure that f(x,y) is positive on the x and y axes. But this function is negative on the line x = y, because b = -10 overwhelms a and c.

6A $ax^2 + 2bxy + cy^2$ is positive definite if and only if a > 0 and $ac > b^2$. Any f(x, y) has a minimum at a point where $\partial F / \partial x = \partial F / \partial y = 0$ with

$$\frac{\partial F^2}{\partial x^2} > 0$$
 and $\left[\frac{\partial F^2}{\partial x^2}\right] \left[\frac{\partial F^2}{\partial y^2}\right] > \left[\frac{\partial F^2}{\partial x \partial y}\right]^2$. (3)

Test for a maximum: Since *f* has a maximum whenever -f has a minimum, we just reverse the signs of *a*, *b*, and *c*. This actually leaves $ac > b^2$ unchanged: The quadratic form is *negative definite* if and only if a < 0 and $ac > b^2$. The same change applies for a maximum of F(x,y).

Singular case $ac = b^2$: The second term in equation (2) disappears to leave only the first square—which is either *positive semidefinite*, when a > 0, or *negative semidef-inite*, when a < 0. The prefix *semi* allows the possibility that f can equal zero, as it will at the point x = b, y = -a. The surface z = f(x, y) degenerates from a bowl into a valley. For $f = (x+y)^2$, the valley runs along the line x + y = 0.

A stationary point that is neither a maximum nor a minimum is called a saddle point.

Higher Dimensions: Linear Algebra

A quadratic f(x, y) comes directly from a symmetric 2 by 2 matrix!

$$x^{\mathrm{T}}Ax$$
 in \mathbb{R}^{2} $ax^{2} + 2bxy + cy^{2} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

For any symmetric matrix A, the product $x^T A x$ is a pure quadratic form $f(x_1, ..., x_n)$:

$$x^{\mathrm{T}}Ax \text{ in } \mathbb{R}^{n} \qquad \begin{bmatrix} x_{1} \ x_{2} \ \cdot \ x_{n} \end{bmatrix} \begin{bmatrix} a_{11} \ a_{12} \ \cdot \ a_{1n} \\ a_{21} \ a_{22} \ \cdot \ a_{2n} \\ \cdot \ \cdot \ \cdot \ \cdot \ \cdot \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \cdot \\ x_{n} \end{bmatrix} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j}.$$

Higher Dimensions: Linear Algebra

Example 3.
$$f = 2x^2 + 4xy + y^2$$
 and $A = \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix} \rightarrow saddle point.$
Example 4. $f = 2xy$ and $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow saddle point.$
Example 5. A is 3 by 3 for $2x_1^2 - 2x_1x_2 + 2x_2^2 - 2x_2x_3 + 2x_3^2$:
 $f = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow minimum at (0, 0, 0).$

A is the "**second derivative matrix**" with entries $a_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_j}$.

F has a minimum when the pure quadratic $x^T A x$ is **positive definite**.

Tests for Positive Definiteness

6B Each of the following tests is a necessary and sufficient condition for the real symmetric matrix *A* to be *positive definite*:

- (I) $x^{T}Ax > 0$ for all nonzero real vectors x.
- (II) All the eigenvalues of *A* satisfy $\lambda_i > 0$.
- (III) All the upper left submatrices A_k have positive determinants.
- (IV) All the pivots (without row exchanges) satisfy $d_k > 0$.
 - **6C** The symmetric matrix *A* is positive definite if and only if
 - (V) There is a matrix *R* with independent columns such that $A = R^{T}R$.

Tests for Positive Definiteness

Semi-definite matrices:

The tests for semi-definiteness will relax $x^T A x > 0, \lambda > 0, d > 0$ and det > 0, to allow zeros to appear.

6D Each of the following tests is a necessary and sufficient condition for a symmetric matrix *A* to be *positive semidefinite*:

- (I') $x^{T}Ax \ge 0$ for all vectors x (this defines positive semidefinite).
- (II') All the eigenvalues of *A* satisfy $\lambda_i \ge 0$.
- (III') No principal submatrices have negative determinants.
- (IV') No pivots are negative.
- (V') There is a matrix *R*, possibly with dependent columns, such that $A = R^{T}R$.

Tests for Positive Definiteness: Example

$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
 is positive *semi*definite, by all five tests:

(I')
$$x^{T}Ax = (x_1 - x_2)^2 + (x_1 - x_3)^2 + (x_2 - x_3)^2 \ge 0$$
 (zero if $x_1 = x_2 = x_3$).

(II') The eigenvalues are $\lambda_1 = 0$, $\lambda_2 = \lambda_3 = 3$ (a zero eigenvalue).

(III') detA = 0 and smaller determinants are positive.

$$(IV') A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & -\frac{3}{2} \\ 0 & -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(missing pivot).

(V') $A = R^{T}R$ with dependent columns in *R*:

$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
(1,1,1) in the nullspace.

An Ellipsoid – For a positive definite matrix A and its $x^T A x$ the curve obtained is an ellipse in 2 dimensions and ellipsoid in n dimensions.

$$A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \text{ and } x^T A x = 5u^2 + 8uv + 5v^2 = 1$$

The ellipse is centered at u = v = 0, but the axes no longer line up with the coordinate axes.

It can be shown that the *axes of the ellipse point toward the eigenvector of A*.

As $A = A^T$, those eigenvectors and axes are orthogonal. Fig: The ellipse $x^T A x = 5u^2 + 8uv + 5v^2 = 1$ and its principal axes.

The major axis of the ellipse corresponds to the smallest eigenvalue of A.

- $A = U\Sigma V^T$ is known as the "SVD" or the *singular value decomposition*.
- The SVD is closely associated with the eigenvalue-eigenvector factorization $Q\Lambda Q^T$ of a positive definite matrix.
- Any $m \times n$ matrix A can be factored into

 $A = U\Sigma V^{\mathrm{T}} = (\text{orthogonal})(\text{diagonal})(\text{orthogonal})$

- The columns of $U(m \times m)$ are **eigenvectors of** AA^T , and the columns of $V(n \times n)$ are **eigenvectors of** A^TA .
- The *r* singular values on the diagonal of Σ ($m \times n$) are the **square roots of the nonzero eigenvalues** of both AA^T and A^TA .
- While eigen-value decomposition can be applied only to square matrices, SVD can be applied to any matrix (including rectangular matrix).

Remark 1.

- For positive definite matrices, Σ is Λ and $U\Sigma V^T$ is identical to $Q\Lambda Q^T$.
- For other symmetric matrices, any negative eigenvalues in Λ become positive in $\Sigma.$
- For complex matrices, Σ remains real but U and V become *unitary* (the complex version of orthogonal). $A = U\Sigma V^H$

Remark 2.

U and V give orthonormal bases for all four fundamental subspaces:

first	r	columns of U :	column space of A
last	m-r	columns of U :	left nullspace of A
first	r	columns of V:	row space of A
last	n-r	columns of V:	nullspace of A

Remark 3. The SVD chooses those bases in an extremely special way. They are more than just orthonormal. When A multiplies a column v_j of V, it produces σ_j times a column of U. That comes directly from $AV = U\Sigma$, looked at a column at a time.

Remark 4.

Eigenvectors of AA^T and A^TA must go into the columns of U and V:

 $AA^{\mathrm{T}} = (U\Sigma V^{\mathrm{T}})(V\Sigma^{\mathrm{T}}U^{\mathrm{T}}) = U\Sigma\Sigma^{\mathrm{T}}U^{\mathrm{T}}$ and, similarly, $A^{\mathrm{T}}A = V\Sigma^{\mathrm{T}}\Sigma V^{\mathrm{T}}$.

- U must be the eigenvector matrix for AA^T .
- The eigenvalue matrix in the middle is $\Sigma\Sigma^T$ which is $m \times m$ with σ_1^2 , ..., σ_r^2 on the diagonal.
- From the $A^T A = V \Sigma^T \Sigma V^T$, the V matrix must be the eigenvector matrix for $A^T A$.

Example 1.

This A has only one column: rank r = 1. Then Σ has only $\sigma_1 = 3$:

SVD
$$A = \begin{bmatrix} -1\\ 2\\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3}\\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3}\\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} 3\\ 0\\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = U_{3\times 3} \Sigma_{3\times 1} V_{1\times 1}^{\mathrm{T}}$$

 $A^{T}A$ is 1 by 1, whereas AA^{T} is 3 by 3. They both have eigenvalue 9 (whose square root is the 3 in Σ). The two zero eigenvalues of AA^{T} leave some freedom for the eigenvectors in columns 2 and 3 of U. We kept that matrix orthogonal.

Example 2.

Now A has rank 2, and
$$AA^{T} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 with $\lambda = 3$ and 1:
$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = U\Sigma V^{T} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \frac{\sqrt{6}}{\sqrt{2}}$$

Notice $\sqrt{3}$ and $\sqrt{1}$. The columns of U are *left singular vectors* (unit eigenvectors of AA^T).

The columns of V are *right singular vectors* (unit eigenvectors of $A^T A$).

Applications of Singular Value Decomposition

Image Processing.

- Suppose a satellite takes a picture, and wants to send it to Earth.
- The picture may contain 1000×1000 "pixels"—a million little squares, each with a definite color.
- We can code the colors, and send back 1,000,000 numbers.
- It is better to find the essential information inside the 1000×1000 matrix, and send only that.

In SVD some σ 's are significant and others are extremely small.

If we keep 20 and throw away 980, then we send only the corresponding 20 columns of U and V.

The other 980 columns are multiplied in $U\Sigma V^T$ by the small σ 's that are being ignored. If only 20 terms are kept, we send 20 times 2000 numbers instead of a million (25 to 1 compression).

Applications of Singular Value Decomposition

Polar decomposition.

- Every nonzero complex number z is a positive number r times a number $e^{i\theta}$ on the unit circle: $z = re^{i\theta}$.
- That expresses z in "polar coordinates."
- If we think of z as a 1×1 matrix, r corresponds to a positive definite matrix and $e^{i\theta}$ corresponds to an orthogonal matrix.
- More exactly, since $e^{i\theta}$ is complex and satisfies $e^{-i\theta}e^{i\theta} = 1$, it forms a 1×1 unitary matrix: $U^H U = I$.
- The SVD extends this "polar factorization" to matrices of any size:

Every real square matrix can be factored into A = QS, where Q is *orthogonal* and S is *symmetric positive semidefinite*. If A is invertible then S is positive definite.

Pseudo-Inverse

Pseudo inverse is a generalization of the matrix inverse when the matrix may not be invertible.

If $A = U\Sigma V^{T}$ (the SVD), then its pseudoinverse is $A^{+} = V\Sigma^{+}U^{T}$.

Minimum Principles

Our goal is to find the minimum principle equivalent to Ax = b, and the minimization equivalent to $Ax = \lambda x$.

We want to find the "parabola" P(x) whose minimum occurs when Ax = b.

Figure 6.4: The graph of a positive quadratic P(x) is a parabolic bowl.

Minimum Principles

Figure 6.4: The graph of a positive quadratic P(x) is a parabolic bowl.

6H If *A* is symmetric positive definite, then $P(x) = \frac{1}{2}x^{T}Ax - x^{T}b$ reaches its minimum at the point where Ax = b. At that point $P_{\min} = -\frac{1}{2}b^{T}A^{-1}b$.

Proof. Suppose Ax = b. For any vector y, we show that $P(y) \ge P(x)$:

$$P(y) - P(x) = \frac{1}{2}y^{T}Ay - y^{T}b - \frac{1}{2}x^{T}Ax + x^{T}b$$

= $\frac{1}{2}y^{T}Ay - y^{T}Ax + \frac{1}{2}x^{T}Ax$ (set $b = Ax$)
= $\frac{1}{2}(y - x)^{T}A(y - x)$.

This can't be negative since A is positive definite—and it is zero only if y - x = 0. At all other points P(y) is larger than P(x), so the minimum occurs at x.

Minimum Principles

Example. Minimize
$$P(x) = x_1^2 - x_1x_2 + x_2^2 - b_1x_1 - b_2x_2$$
.

The usual approach, by calculus, is to set the partial derivatives to zero. This gives Ax = b:

$$\frac{\partial P}{\partial x_1} = 2x_1 - x_2 - b_1 = 0 \text{ means } \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Linear algebra recognizes this P(x) as $\frac{1}{2}x^TAx - x^Tb$, and knows immediately that Ax = b gives the minimum. Substitute $x = A^{-1}b$ into P(x):

Minimum value
$$P_{\min} = \frac{1}{2} (A^{-1}b)^{\mathrm{T}} A (A^{-1}b) - (A^{-1}b)^{\mathrm{T}} b = -\frac{1}{2} b^{\mathrm{T}} A^{-1} b.$$

- Many applications add extra equations Cx = d on top of the minimization problem.
- These equations are *constraints*. We minimize P(x) subject to the extra requirement Cx = d.
- Usually x can't satisfy n equations Ax = b and also l extra constraints Cx = d. We have too many equations and we need l more unknowns.

Those new unknowns $y_1, ..., y_l$ are called *Lagrange multipliers*.

$$L(x,y) = P(x) + y^{T}(Cx - d) = \frac{1}{2}x^{T}Ax - x^{T}b + x^{T}C^{T}y - y^{T}d.$$

L is chosen exactly so that $\partial L/\partial y = 0$ brings back Cx = d. When we set the derivatives of L to zero, we have n + l equations for n + lunknowns x and y:

> **Constrained** $\partial L/\partial x = 0$: $Ax + C^{T}y = b$ minimization $\partial L/\partial y = 0$: Cx = d

Example. Suppose $P(x1, x2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$. Its smallest value is certainly $P_{min} = 0$.

- This unconstrained problem has n = 2, A = I, and b = 0.
- So the minimizing equation Ax = b just gives $x_1 = 0$ and $x_2 = 0$.
- Now add one constraint $c_1x_1 + c_2x_2 = d$.
- This puts x on a line in the $x_1 x_2$ plane. The old minimizer $x_1 = x_2 = 0$ is not on the line.
- The Lagrangian $L(x, y) = \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 + y(c_1 x_1 + c_2 x_2 d)$ has n + l = 2 + 1 partial derivatives

Contd.

The Lagrangian $L(x, y) = \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 + y(c_1 x_1 + c_2 x_2 - d)$ has n + l = 2 + 1 partial derivatives:

$$\frac{\partial L}{\partial x_1} = 0 \qquad x_1 + c_1 y = 0$$

$$\frac{\partial L}{\partial x_2} = 0 \qquad x_2 + c_2 y = 0$$

$$\frac{\partial L}{\partial y} = 0 \qquad c_1 x_1 + c_2 x_2 = d.$$

Substituting $x_1 = -c_1 y$ and $x_2 = -c_2 y$ into the 3rd equation gives $-c_1^2 y - c_2^2 y = d$. Solution $y = \frac{-d}{c_1^2 + c_2^2}$ $x_1 = \frac{c_1 d}{c_1^2 + c_2^2}$ $x_2 = \frac{c_2 d}{c_1^2 + c_2^2}$.

The constrained minimum of $P = \frac{1}{2}x^{T}x$ is reached at that solution point:

$$P_{C/\min} = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 = \frac{1}{2}\frac{c_1^2d^2 + c_2^2d^2}{(c_1^2 + c_2^2)^2} = \frac{1}{2}\frac{d^2}{c_1^2 + c_2^2}.$$

This equals $-\frac{1}{2}yd$ as predicted in equation (5), since b = 0 and $P_{\min} = 0$.

The Rayleigh quotient

- Goal is to find a minimization problem equivalent to $Ax = \lambda x$.
- The function to minimize cannot be a quadratic, or its derivative would be linear, and the eigenvalue problem is nonlinear (λ times x).
- The trick that succeeds is to divide one quadratic by another one:

Rayleigh quotient Minimize
$$R(x) = \frac{x^{T}Ax}{x^{T}x}$$
.

61 Rayleigh's Principle: The minimum value of the Rayleigh quotient is the smallest eigenvalue λ_1 . R(x) reaches that minimum at the first eigenvector x_1 of A:

Minimum where
$$Ax_1 = \lambda x_1$$
 $R(x_1) = \frac{x_1^T A x_1}{x_1^T x_1} = \frac{x_1^T \lambda_1 x_1}{x_1^T x_1} = \lambda_1.$

The Rayleigh quotient

61 Rayleigh's Principle: The minimum value of the Rayleigh quotient is the smallest eigenvalue λ_1 . R(x) reaches that minimum at the first eigenvector x_1 of A:

Minimum where
$$Ax_1 = \lambda x_1$$
 $R(x_1) = \frac{x_1^T A x_1}{x_1^T x_1} = \frac{x_1^T \lambda_1 x_1}{x_1^T x_1} = \lambda_1.$

- If we keep $x^T A x = 1$, then R(x) is a minimum when $x^T x = ||x||^2$ is as large as possible.
- We are looking for the point on the ellipsoid $x^T A x = 1$ farthest from the origin—the vector x of greatest length. Its longest axis points along the first eigenvector. So R(x) is a minimum at x_1 .

Algebraically, we can diagonalize the symmetric A by an orthogonal matrix: $Q^{T}AQ = \Lambda$. Then set x = Qy and the quotient becomes simple:

$$R(x) = \frac{(Qy)^{\mathrm{T}}A(Qy)}{(Qy)^{\mathrm{T}}(Qy)} = \frac{y^{\mathrm{T}}\Lambda y}{y^{\mathrm{T}}y} = \frac{\lambda_1 y_1^2 + \dots + \lambda_n y_n^2}{y_1^2 + \dots + y_n^2}.$$
 (11)

The Rayleigh quotient

Algebraically, we can diagonalize the symmetric A by an orthogonal matrix: $Q^{T}AQ = \Lambda$. Then set x = Qy and the quotient becomes simple:

$$R(x) = \frac{(Qy)^{\mathrm{T}}A(Qy)}{(Qy)^{\mathrm{T}}(Qy)} = \frac{y^{\mathrm{T}}\Lambda y}{y^{\mathrm{T}}y} = \frac{\lambda_1 y_1^2 + \dots + \lambda_n y_n^2}{y_1^2 + \dots + y_n^2}.$$
 (11)

The minimum of *R* is λ_1 , at the point where $y_1 = 1$ and $y_2 = \cdots = y_n = 0$:

At all points
$$\lambda_1(y_1^2+y_2^2+\cdots+y_n^2) \leq (\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2).$$

The Rayleigh quotient in equation (11) is *never below* λ_1 and *never above* λ_n (the largest eigenvalue). Its minimum is at the eigenvector x_1 and its maximum is at x_n :

Maximum where
$$Ax_n = \lambda_n x_n$$
 $R(x_n) = \frac{x_n^T A x_n}{x_n^T x_n} = \frac{x_n^T \lambda_n x_n}{x_n^T x_n} = \lambda_n.$