Positive Definite Matrices
 CS6015/LARP/2018

Ack: Linear Algebra and Its Applications, Gilbert Strang

Minima, Maxima, and Saddle Points

- Up to now, we have hardly thought about the signs of the eigenvalues
- Every symmetric matrix has real eigenvalues.
- Now we will find a test that can be applied directly to A, without computing its eigenvalues, which will guarantee that all those eigenvalues are positive.
- The signs of the eigenvalues are often crucial.
- The highly important problem is to recognize a minimum point. This arises throughout science and engineering and every problem of optimization.
- Examples:

$$
F(x, y)=7+2(x+y)^{2}-y \sin y-x^{3} \quad f(x, y)=2 x^{2}+4 x y+y^{2} .
$$

Does either $F(x, y)$ or $f(x, y)$ have a minimum at the point $x=y=0$?

Minima, Maxima, and Saddle Points

Remark 3. The zero-order terms $F(0,0)=7$ and $f(0,0)=0$ have no effect on the answer. They simply raise or lower the graphs of F and f.

Remark 4. The linear terms give a necessary condition: To have any chance of a minimum, the first derivatives must vanish at $x=y=0$:

$$
\begin{gathered}
\frac{\partial F}{\partial x}=4(x+y)-3 x^{2}=0 \quad \text { and } \quad \frac{\partial F}{\partial y}=4(x+y)-y \cos y-\sin y=0 \\
\frac{\partial f}{\partial x}=4 x+4 y=0 \quad \text { and } \quad \frac{\partial f}{\partial y}=4 x+2 y=0 . \quad \text { All zero. }
\end{gathered}
$$

Thus $(x, y)=(0,0)$ is a stationary point for both functions. The surface $z=F(x, y)$ is tangent to the horizontal plane $z=7$, and the surface $z=f(x, y)$ is tangent to the plane $z=0$.

Minima, Maxima, and Saddle Points

Remark 5. The second derivatives at $(0,0)$ are decisive:

$$
\begin{aligned}
\frac{\partial^{2} F}{\partial x^{2}} & =4-6 x=4 \\
\frac{\partial^{2} F}{\partial x \partial y} & =\frac{\partial^{2} F}{\partial y \partial x}=4 \\
\frac{\partial^{2} F}{\partial y^{2}} & =4+y \sin y-2 \cos y=2
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =4 \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial^{2} f}{\partial y \partial x}=4 \\
\frac{\partial^{2} f}{\partial y^{2}} & =2
\end{aligned}
$$

- These second derivatives 4, 4, 2 contain the answer.
- Since they are the same for F and f, they must contain the same answer.
- The two functions behave in exactly the same way near the origin.
- F has a minimum if and only if f has a minimum.

Minima, Maxima, and Saddle Points

Remark 6. The higher-degree terms in F have no effect on the question of a local minimum, but they can prevent it from being a global minimum. In our example the term $-x^{3}$ must sooner or later pull F toward $-\infty$. For $f(x, y)$, with no higher terms, all the action is at $(0,0)$.

Every quadratic form $f=a x^{2}+2 b x y+c y^{2}$ has a stationary point at the origin, where $\partial f / \partial x=\partial f / \partial y=0$.
A local minimum would also be a global minimum, The surface $z=f(x, y)$ will then be shaped like a bowl, resting on the origin.

Figure 6.1: A bowl and a saddle: Definite $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and indefinite $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Minima, Maxima, and Saddle Points

Figure 6.1: A bowl and a saddle: Definite $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and indefinite $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
If the stationary point of F is at $x=\alpha, y=\beta$, the only change would be to use the second derivatives at α, β :
$\underset{\text { part of } F}{\text { Quadratic }} \quad f(x, y)=\frac{x^{2}}{2} \frac{\partial^{2} F}{\partial x^{2}}(\alpha, \beta)+x y \frac{\partial^{2} F}{\partial x \partial y}(\alpha, \beta)+\frac{y^{2}}{2} \frac{\partial^{2} F}{\partial y^{2}}(\alpha, \beta)$.

Minima, Maxima, and Saddle Points

Figure 6.1: A bowl and a saddle: Definite $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and indefinite $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

- The third derivatives are drawn into the problem when the second derivatives fail to give a definite decision. That happens when the quadratic part is singular.
- For a true minimum, f is allowed to vanish only at $x=y=0$.
- When $f(x, y)$ is strictly positive at all other points (the bowl goes up), it is called positive definite.

Definite versus Indefinite: Bowl versus Saddle

- For a function of two variables x and y, what is the correct replacement for the condition $\frac{\partial^{2} F}{\partial x^{2}}>0$?
With only one variable, the sign of the second derivative decides between a minimum or a maximum.

Now we have three second derivatives: $F_{x x}, F_{x y}=F_{y x}$, and $F_{y y}$.

What conditions on a, b, and c ensure that the quadratic $f(x, y)=a x^{2}+2 b x y+c y^{2}$ is positive definite? One necessary condition is easy:
(i) If $a x^{2}+2 b x y+c y^{2}$ is positive definite, then necessarily $a>0$.

We look at $x=1, y=0$, where $a x^{2}+2 b x y+c y^{2}$ is equal to a. This must be positive. Translating back to F, that means that $\partial^{2} F / \partial x^{2}>0$. The graph must go up in the x direction. Similarly, fix $x=0$ and look in the y direction where $f(0, y)=c y^{2}$:

Definite versus Indefinite: Bowl versus Saddle

(i) If $a x^{2}+2 b x y+c y^{2}$ is positive definite, then necessarily $a>0$.

We look at $x=1, y=0$, where $a x^{2}+2 b x y+c y^{2}$ is equal to a. This must be positive. Translating back to F, that means that $\partial^{2} F / \partial x^{2}>0$. The graph must go up in the x direction. Similarly, fix $x=0$ and look in the y direction where $f(0, y)=c y^{2}$:
(ii) If $f(x, y)$ is positive definite, then necessarily $c>0$.

Do these conditions $a>0$ and $c>0$ guarantee that $f(x, y)$ is always positive? The answer is no. A large cross term $2 b x y$ can pull the graph below zero.

Definite versus Indefinite: Bowl versus Saddle

Example 1. $f(x, y)=x^{2}-10 x y+y^{2}$. Here $a=1$ and $c=1$ are both positive. But f is not positive definite, because $f(1,1)=-8$. The conditions $a>0$ and $c>0$ ensure that $f(x, y)$ is positive on the x and y axes. But this function is negative on the line $x=y$, because $b=-10$ overwhelms a and c.

6A $a x^{2}+2 b x y+c y^{2}$ is positive definite if and only if $a>0$ and $a c>b^{2}$. Any $f(x, y)$ has a minimum at a point where $\partial F / \partial x=\partial F / \partial y=0$ with

$$
\begin{equation*}
\frac{\partial F^{2}}{\partial x^{2}}>0 \quad \text { and } \quad\left[\frac{\partial F^{2}}{\partial x^{2}}\right]\left[\frac{\partial F^{2}}{\partial y^{2}}\right]>\left[\frac{\partial F^{2}}{\partial x \partial y}\right]^{2} \tag{3}
\end{equation*}
$$

Definite versus Indefinite: Bowl versus Saddle

Test for a maximum: Since f has a maximum whenever $-f$ has a minimum, we just reverse the signs of a, b, and c. This actually leaves $a c>b^{2}$ unchanged: The quadratic form is negative definite if and only if $a<0$ and $a c>b^{2}$. The same change applies for a maximum of $F(x, y)$.
Singular case $a c=b^{2}$: The second term in equation (2) disappears to leave only the first square-which is either positive semidefinite, when $a>0$, or negative semidefinite, when $a<0$. The prefix semi allows the possibility that f can equal zero, as it will at the point $x=b, y=-a$. The surface $z=f(x, y)$ degenerates from a bowl into a valley. For $f=(x+y)^{2}$, the valley runs along the line $x+y=0$.

A stationary point that is neither a maximum nor a minimum is called a saddle point.

Higher Dimensions: Linear Algebra

A quadratic $f(x, y)$ comes directly from a symmetric 2 by 2 matrix!

$$
x^{\mathrm{T}} A x \text { in } \mathbf{R}^{2} \quad a x^{2}+2 b x y+c y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

For any symmetric matrix A, the product $x^{T} A x$ is a pure quadratic form $f\left(x_{1}, \ldots, x_{n}\right)$:
$x^{\mathrm{T}} A x$ in $\mathbf{R}^{n} \quad\left[\begin{array}{lll}x_{1} & x_{2} & \cdot \\ x_{n}\end{array}\right]\left[\begin{array}{cccc}a_{11} & a_{12} & \cdot & a_{1 n} \\ a_{21} & a_{22} & \cdot & a_{2 n} \\ \cdot & \cdot & \cdot & \cdot \\ a_{n 1} & a_{n 2} & \cdot & a_{n n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ x_{n}\end{array}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$.

Higher Dimensions: Linear Algebra

Example 3. $f=2 x^{2}+4 x y+y^{2}$ and $A=\left[\begin{array}{ll}2 & 2 \\ 2 & 1\end{array}\right] \rightarrow$ saddle point.
Example 4. $f=2 x y$ and $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \rightarrow$ saddle point.
Example 5. A is 3 by 3 for $2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}-2 x_{2} x_{3}+2 x_{3}^{2}$:

$$
f=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \rightarrow \text { minimum at }(0,0,0)
$$

A is the "second derivative matrix" with entries $a_{i j}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}$.
F has a minimum when the pure quadratic $x^{T} A x$ is positive definite.

Tests for Positive Definiteness

6B Each of the following tests is a necessary and sufficient condition for the real symmetric matrix A to be positive definite:
(I) $x^{\mathrm{T}} A x>0$ for all nonzero real vectors x.
(II) All the eigenvalues of A satisfy $\lambda_{i}>0$.
(III) All the upper left submatrices A_{k} have positive determinants.
(IV) All the pivots (without row exchanges) satisfy $d_{k}>0$.

6C The symmetric matrix A is positive definite if and only if
(V) There is a matrix R with independent columns such that $A=R^{\mathrm{T}} R$.

Tests for Positive Definiteness

Semi-definite matrices:
The tests for semi-definiteness will relax $x^{T} A x>0, \lambda>0, d>0$ and det >0, to allow zeros to appear.

6D Each of the following tests is a necessary and sufficient condition for a symmetric matrix A to be positive semidefinite:
(I') $x^{\mathrm{T}} A x \geq 0$ for all vectors x (this defines positive semidefinite).
(II') All the eigenvalues of A satisfy $\lambda_{i} \geq 0$.
(III') No principal submatrices have negative determinants.
(IV') No pivots are negative.
$\left(\mathrm{V}^{\prime}\right)$ There is a matrix R, possibly with dependent columns, such that $A=R^{\mathrm{T}} R$.

Tests for Positive Definiteness: Example

$A=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]$
is positive semidefinite, by all five tests:
(I') $x^{\mathrm{T}} A x=\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{2}-x_{3}\right)^{2} \geq 0$ (zero if $x_{1}=x_{2}=x_{3}$).
(II') The eigenvalues are $\lambda_{1}=0, \lambda_{2}=\lambda_{3}=3$ (a zero eigenvalue).
(III') $\operatorname{det} A=0$ and smaller determinants are positive.
(IV') $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right] \rightarrow\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & \frac{3}{2} & -\frac{3}{2} \\ 0 & -\frac{3}{2} & \frac{3}{2}\end{array}\right] \rightarrow\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 0\end{array}\right] \quad$ (missing pivot).
$\left(\mathrm{V}^{\prime}\right) A=R^{\mathrm{T}} R$ with dependent columns in R :

$$
\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

$(1,1,1)$ in the nullspace.

An Ellipsoid - For a positive definite matrix A and its $x^{T} A x$ the curve obtained is an ellipse in $\mathbf{2}$ dimensions and ellipsoid in \mathbf{n} dimensions.
$\mathrm{A}=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]$ and $x^{T} A x=5 u^{2}+8 u v+5 v^{2}=1$
The ellipse is centered at $u=v=0$, but the axes no longer line up with the coordinate axes.

It can be shown that the axes of the ellipse point toward the eigenvector of A.

Fig: The ellipse $x^{T} A x=5 u^{2}+8 u v+5 v^{2}=$ 1 and its principal axes. and axes are orthogonal.

The major axis of the ellipse corresponds to the smallest eigenvalue of A.

Singular Value Decomposition

- $A=U \Sigma V^{T}$ is known as the "SVD" or the singular value decomposition.
- The SVD is closely associated with the eigenvalue-eigenvector factorization $Q \Lambda Q^{T}$ of a positive definite matrix.
- Any $m \times n$ matrix A can be factored into

$$
A=U \Sigma V^{\mathrm{T}}=(\text { orthogonal })(\text { diagonal })(\text { orthogonal })
$$

- The columns of $U(m \times m)$ are eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$, and the columns of $V(n \times n)$ are eigenvectors of $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$.
- The r singular values on the diagonal of $\Sigma(m \times n)$ are the square roots of the nonzero eigenvalues of both $A A^{T}$ and $A^{T} A$.
- While eigen-value decomposition can be applied only to square matrices, SVD can be applied to any matrix (including rectangular matrix).

Singular Value Decomposition

Remark 1.

- For positive definite matrices, Σ is Λ and $U \Sigma V^{T}$ is identical to $Q \Lambda Q^{T}$.
- For other symmetric matrices, any negative eigenvalues in Λ become positive in Σ.
- For complex matrices, Σ remains real but U and V become unitary (the complex version of orthogonal). $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{H}}$

Remark 2.

U and V give orthonormal bases for all four fundamental subspaces:
first $\quad r \quad$ columns of U : column space of A last $m-r$ columns of U : left nullspace of A first $\quad r \quad$ columns of V : row space of A last $n-r$ columns of V : nullspace of A

Singular Value Decomposition

Remark 3. The SVD chooses those bases in an extremely special way. They are more than just orthonormal. When A multiplies a column v_{j} of V, it produces σ_{j} times a column of U. That comes directly from $A V=U \Sigma$, looked at a column at a time.

Remark 4.

Eigenvectors of $A A^{T}$ and $A^{T} A$ must go into the columns of U and V :

$$
A A^{\mathrm{T}}=\left(U \Sigma V^{\mathrm{T}}\right)\left(V \Sigma^{\mathrm{T}} U^{\mathrm{T}}\right)=U \Sigma \Sigma^{\mathrm{T}} U^{\mathrm{T}} \quad \text { and, similarly, } \quad A^{\mathrm{T}} A=V \Sigma^{\mathrm{T}} \Sigma V^{\mathrm{T}} .
$$

- U must be the eigenvector matrix for $A A^{T}$.
- The eigenvalue matrix in the middle is $\Sigma \Sigma^{T}$ - which is $m \times m$ with $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$ on the diagonal.
- From the $A^{T} A=V \Sigma^{T} \Sigma V^{T}$, the V matrix must be the eigenvector matrix for $A^{T} A$.

Singular Value Decomposition

Example 1.

This A has only one column: rank $r=1$. Then Σ has only $\sigma_{1}=3$:

$$
\text { SVD } \quad A=\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} & -\frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right][1]=U_{3 \times 3} \Sigma_{3 \times 1} V_{1 \times 1}^{\mathrm{T}}
$$

$A^{\mathrm{T}} A$ is 1 by 1 , whereas $A A^{\mathrm{T}}$ is 3 by 3 . They both have eigenvalue 9 (whose square root is the 3 in Σ). The two zero eigenvalues of $A A^{\mathrm{T}}$ leave some freedom for the eigenvectors in columns 2 and 3 of U. We kept that matrix orthogonal.

Singular Value Decomposition

Example 2.

Now A has rank 2, and $A A^{T}=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$ with $\lambda=3$ and 1 :

$$
\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]=U \Sigma V^{\mathrm{T}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] \begin{aligned}
& / \sqrt{6} \\
& / \sqrt{2} \\
& / \sqrt{3}
\end{aligned}
$$

Notice $\sqrt{3}$ and $\sqrt{1}$. The columns of U are left singular vectors (unit eigenvectors of $A A^{T}$).
The columns of V are right singular vectors (unit eigenvectors of $A^{T} A$).

Applications of Singular Value Decomposition

Image Processing.

- Suppose a satellite takes a picture, and wants to send it to Earth.
- The picture may contain 1000×1000 "pixels" -a million little squares, each with a definite color.
- We can code the colors, and send back 1,000,000 numbers.
- It is better to find the essential information inside the $1000 \times$ 1000 matrix, and send only that.

In SVD some σ^{\prime} s are significant and others are extremely small.
If we keep 20 and throw away 980, then we send only the corresponding 20 columns of U and V.
The other 980 columns are multiplied in $U \Sigma V^{T}$ by the small σ^{\prime} s that are being ignored. If only 20 terms are kept, we send 20 times 2000 numbers instead of a million (25 to 1 compression).

Applications of Singular Value Decomposition

Polar decomposition.

- Every nonzero complex number z is a positive number r times a number $e^{i \theta}$ on the unit circle: $z=r e^{i \theta}$.
- That expresses z in "polar coordinates."
- If we think of z as a 1×1 matrix, r corresponds to a positive definite matrix and $e^{i \theta}$ corresponds to an orthogonal matrix.
- More exactly, since $e^{i \theta}$ is complex and satisfies $e^{-i \theta} e^{i \theta}=1$, it forms a 1×1 unitary matrix: $U^{H} U=I$.
- The SVD extends this "polar factorization" to matrices of any size:

Every real square matrix can be factored into $A=Q S$, where Q is orthogonal and S is symmetric positive semidefinite. If A is invertible then S is positive definite.

- Pseudo-Inverse

Pseudo inverse is a generalization of the matrix inverse when the matrix may not be invertible.

If $A=U \Sigma V^{\mathrm{T}}$ (the SVD), then its pseudoinverse is $A^{+}=V \Sigma^{+} U^{\mathrm{T}}$.

Minimum Principles

Our goal is to find the minimum principle equivalent to $A x=b$, and the minimization equivalent to $A x=\lambda x$.

We want to find the "parabola" $P(x)$ whose minimum occurs when $A x=b$.

Figure 6.4: The graph of a positive quadratic $P(x)$ is a parabolic bowl.

Minimum Principles

$$
\begin{gathered}
\text { Minimum } \\
\text { at } x=A^{-1} b
\end{gathered}
$$

Figure 6.4: The graph of a positive quadratic $P(x)$ is a parabolic bowl.
6H If A is symmetric positive definite, then $P(x)=\frac{1}{2} x^{\mathrm{T}} A x-x^{\mathrm{T}} b$ reaches its minimum at the point where $A x=b$. At that point $P_{\min }=-\frac{1}{2} b^{\mathrm{T}} A^{-1} b$.

Proof. Suppose $A x=b$. For any vector y, we show that $P(y) \geq P(x)$:

$$
\begin{aligned}
P(y)-P(x) & =\frac{1}{2} y^{\mathrm{T}} A y-y^{\mathrm{T}} b-\frac{1}{2} x^{\mathrm{T}} A x+x^{\mathrm{T}} b \\
& =\frac{1}{2} y^{\mathrm{T}} A y-y^{\mathrm{T}} A x+\frac{1}{2} x^{\mathrm{T}} A x \quad(\text { set } b=A x) \\
& =\frac{1}{2}(y-x)^{\mathrm{T}} A(y-x) .
\end{aligned}
$$

This can't be negative since A is positive definite-and it is zero only if $y-x=0$. At all other points $P(y)$ is larger than $P(x)$, so the minimum occurs at x.

Minimum Principles

Example. Minimize $P(x)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}-b_{1} x_{1}-b_{2} x_{2}$.

The usual approach, by calculus, is to set the partial derivatives to zero. This gives $A x=b$:

$$
\begin{aligned}
& \partial P / \partial x_{1}=2 x_{1}-x_{2}-b_{1}=0 \\
& \partial P / \partial x_{2}=-x_{1}+2 x_{2}-b_{2}=0
\end{aligned} \quad \text { means } \quad\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Linear algebra recognizes this $P(x)$ as $\frac{1}{2} x^{T} A x-x^{T} b$, and knows immediately that $A x=b$ gives the minimum.
Substitute $x=A^{-1} b$ into $P(x)$:

Minimum value

$$
P_{\min }=\frac{1}{2}\left(A^{-1} b\right)^{\mathrm{T}} A\left(A^{-1} b\right)-\left(A^{-1} b\right)^{\mathrm{T}} b=-\frac{1}{2} b^{\mathrm{T}} A^{-1} b .
$$

Minimizing with Constraints

- Many applications add extra equations $C x=d$ on top of the minimization problem.
- These equations are constraints. We minimize $P(x)$ subject to the extra requirement $C x=d$.
- Usually x can't satisfy n equations $A x=b$ and also l extra constraints $C x=d$. We have too many equations and we need l more unknowns.

Minimizing with Constraints

Those new unknowns y_{1}, \ldots, y_{l} are called Lagrange multipliers.

$$
L(x, y)=P(x)+y^{\mathrm{T}}(C x-d)=\frac{1}{2} x^{\mathrm{T}} A x-x^{\mathrm{T}} b+x^{\mathrm{T}} C^{\mathrm{T}} y-y^{\mathrm{T}} d
$$

L is chosen exactly so that $\partial L / \partial y=0$ brings back $C x=d$. When we set the derivatives of L to zero, we have $n+l$ equations for $n+l$ unknowns x and y :

$$
\begin{array}{lll}
\text { Constrained } & \partial L / \partial x=0: \quad A x+C^{\mathrm{T}} y=b \\
\text { minimization } & \partial L / \partial y=0: \quad C x & =d
\end{array}
$$

Minimizing with Constraints

Example. Suppose $P(x 1, x 2)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}$. Its smallest value is certainly $P_{\text {min }}=0$.

- This unconstrained problem has $n=2, A=I$, and $b=0$.
- So the minimizing equation $A x=b$ just gives $x_{1}=0$ and $x_{2}=0$.
- Now add one constraint $c_{1} x_{1}+c_{2} x_{2}=d$.
- This puts x on a line in the $x_{1}-x_{2}$ plane. The old minimizer $x_{1}=x_{2}=0$ is not on the line.
- The Lagrangian $L(x, y)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}+y\left(c_{1} x_{1}+c_{2} x_{2}-d\right)$ has $n+l=2+1$ partial derivatives

Contd.

Minimizing with Constraints

The Lagrangian $L(x, y)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}+y\left(c_{1} x_{1}+c_{2} x_{2}-d\right)$ has $n+l=2+1$ partial derivatives:

$$
\begin{aligned}
\partial L / \partial x_{1} & =0 & x_{1}+c_{1} y & =0 \\
\partial L / \partial x_{2} & =0 & x_{2}+c_{2} y & =0 \\
\partial L / \partial y & =0 & c_{1} x_{1}+c_{2} x_{2} & =d .
\end{aligned}
$$

Substituting $x_{1}=-c_{1} y$ and $x_{2}=-c_{2} y$ into the $3^{\text {rd }}$ equation gives $-c_{1}^{2} y-c_{2}^{2} y=d$.

$$
\text { Solution } \quad y=\frac{-d}{c_{1}^{2}+c_{2}^{2}} \quad x_{1}=\frac{c_{1} d}{c_{1}^{2}+c_{2}^{2}} \quad x_{2}=\frac{c_{2} d}{c_{1}^{2}+c_{2}^{2}} .
$$

The constrained minimum of $P=\frac{1}{2} x^{\mathrm{T}} x$ is reached at that solution point:

$$
P_{C / \min }=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}=\frac{1}{2} \frac{c_{1}^{2} d^{2}+c_{2}^{2} d^{2}}{\left(c_{1}^{2}+c_{2}^{2}\right)^{2}}=\frac{1}{2} \frac{d^{2}}{c_{1}^{2}+c_{2}^{2}}
$$

This equals $-\frac{1}{2} y d$ as predicted in equation (5), since $b=0$ and $P_{\min }=0$.

The Rayleigh quotient

- Goal is to find a minimization problem equivalent to $A x=\lambda x$.
- The function to minimize cannot be a quadratic, or its derivative would be linear, and the eigenvalue problem is nonlinear (λ times $x)$.
- The trick that succeeds is to divide one quadratic by another one:

$$
\text { Rayleigh quotient } \quad \text { Minimize } \quad R(x)=\frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x}
$$

6I Rayleigh's Principle: The minimum value of the Rayleigh quotient is the smallest eigenvalue $\lambda_{1} . R(x)$ reaches that minimum at the first eigenvector x_{1} of A :

Minimum where $A x_{1}=\lambda x_{1} \quad R\left(x_{1}\right)=\frac{x_{1}^{\mathrm{T}} A x_{1}}{x_{1}^{\mathrm{T}} x_{1}}=\frac{x_{1}^{\mathrm{T}} \lambda_{1} x_{1}}{x_{1}^{\mathrm{T}} x_{1}}=\lambda_{1}$.

The Rayleigh quotient

6I Rayleigh's Principle: The minimum value of the Rayleigh quotient is the smallest eigenvalue $\lambda_{1} . R(x)$ reaches that minimum at the first eigenvector x_{1} of A :

$$
\text { Minimum where } A x_{1}=\lambda x_{1} \quad R\left(x_{1}\right)=\frac{x_{1}^{\mathrm{T}} A x_{1}}{x_{1}^{\mathrm{T}} x_{1}}=\frac{x_{1}^{\mathrm{T}} \lambda_{1} x_{1}}{x_{1}^{\mathrm{T}} x_{1}}=\lambda_{1} .
$$

- If we keep $x^{T} A x=1$, then $R(x)$ is a minimum when $x^{T} x=\|x\|^{2}$ is as large as possible.
- We are looking for the point on the ellipsoid $x^{T} A x=1$ farthest from the origin-the vector x of greatest length. Its longest axis points along the first eigenvector. So $R(x)$ is a minimum at x_{1}.
Algebraically, we can diagonalize the symmetric A by an orthogonal matrix: $Q^{\mathrm{T}} A Q=$ Λ. Then set $x=Q y$ and the quotient becomes simple:

$$
\begin{equation*}
R(x)=\frac{(Q y)^{\mathrm{T}} A(Q y)}{(Q y)^{\mathrm{T}}(Q y)}=\frac{y^{\mathrm{T}} \Lambda y}{y^{\mathrm{T}} y}=\frac{\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}}{y_{1}^{2}+\cdots+y_{n}^{2}} . \tag{11}
\end{equation*}
$$

The Rayleigh quotient

Algebraically, we can diagonalize the symmetric A by an orthogonal matrix: $Q^{\mathrm{T}} A Q=$ Λ. Then set $x=Q y$ and the quotient becomes simple:

$$
\begin{equation*}
R(x)=\frac{(Q y)^{\mathrm{T}} A(Q y)}{(Q y)^{\mathrm{T}}(Q y)}=\frac{y^{\mathrm{T}} \Lambda y}{y^{\mathrm{T}} y}=\frac{\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}}{y_{1}^{2}+\cdots+y_{n}^{2}} \tag{11}
\end{equation*}
$$

The minimum of R is λ_{1}, at the point where $y_{1}=1$ and $y_{2}=\cdots=y_{n}=0$:

$$
\text { At all points } \quad \lambda_{1}\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}\right) \leq\left(\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}\right) .
$$

The Rayleigh quotient in equation (11) is never below λ_{1} and never above λ_{n} (the largest eigenvalue). Its minimum is at the eigenvector x_{1} and its maximum is at x_{n} :

Maximum where $A x_{n}=\lambda_{n} x_{n} \quad R\left(x_{n}\right)=\frac{x_{n}^{\mathrm{T}} A x_{n}}{x_{n}^{\mathrm{T}} x_{n}}=\frac{x_{n}^{\mathrm{T}} \lambda_{n} x_{n}}{x_{n}^{\mathrm{T}} x_{n}}=\lambda_{n}$.

