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Minima, Maxima, and Saddle Points

• Up to now, we have hardly thought about the signs of the 
eigenvalues

• Every symmetric matrix has real eigenvalues.

• Now we will find a test that can be applied directly to 𝐴, without 
computing its eigenvalues, which will guarantee that all those 
eigenvalues are positive.

• The signs of the eigenvalues are often crucial.

• The highly important problem is to recognize a minimum point. This 
arises throughout science and engineering and every problem of 
optimization. 

• Examples:



Minima, Maxima, and Saddle Points

Thus (𝑥, 𝑦) = (0,0) is a stationary point for both functions. The 
surface 𝑧 = 𝐹(𝑥, 𝑦) is tangent to the horizontal plane 𝑧 = 7, and 
the surface 𝑧 = 𝑓(𝑥, 𝑦) is tangent to the plane 𝑧 = 0. 



Minima, Maxima, and Saddle Points

• These second derivatives 4, 4, 2 contain the answer. 

• Since they are the same for 𝐹 and 𝑓 , they must contain the same 
answer. 

• The two functions behave in exactly the same way near the origin. 

• F has a minimum if and only if f has a minimum.



Minima, Maxima, and Saddle Points

Every quadratic form 𝑓 = 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2 has a stationary point 
at the origin, where 𝜕𝑓 /𝜕𝑥 = 𝜕𝑓 /𝜕𝑦 = 0. 

A local minimum would also be a global minimum, The surface 
𝑧 = 𝑓(𝑥, 𝑦) will then be shaped like a bowl, resting on the origin.



Minima, Maxima, and Saddle Points

If the stationary point of 𝐹 is at 𝑥 = 𝛼, 𝑦 = 𝛽, the only change 
would be to use the second derivatives at 𝛼, 𝛽:



Minima, Maxima, and Saddle Points

• The third derivatives are drawn into the problem when the second 
derivatives fail to give a definite decision. That happens when the 
quadratic part is singular.

• For a true minimum, 𝑓 is allowed to vanish only at 𝑥 = 𝑦 = 0.

• When 𝑓(𝑥, 𝑦) is strictly positive at all other points (the bowl goes 
up), it is called positive definite.



Definite versus Indefinite: Bowl versus Saddle 

• For a function of two variables 𝑥 and 𝑦, what is the correct 

replacement for the condition 
𝜕2𝐹

𝜕𝑥2
> 0?

With only one variable, the sign of the second derivative decides 
between a minimum or a maximum.

Now we have three second derivatives: 𝐹𝑥𝑥 , 𝐹𝑥𝑦 = 𝐹𝑦𝑥, and 𝐹𝑦𝑦 .



Definite versus Indefinite: Bowl versus Saddle 



Definite versus Indefinite: Bowl versus Saddle 



Definite versus Indefinite: Bowl versus Saddle 

A stationary point that is neither a maximum nor a 
minimum is called a saddle point.



Higher Dimensions: Linear Algebra

A quadratic 𝑓(𝑥, 𝑦) comes directly from a symmetric 2 𝑏𝑦 2 matrix!

For any symmetric matrix 𝐴, the product 𝑥𝑇𝐴𝑥 is a pure quadratic 
form 𝑓(𝑥1, … , 𝑥𝑛): 



Higher Dimensions: Linear Algebra

𝐴 is the “second derivative matrix” with entries 𝑎𝑖𝑗 =
𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑗
.

𝐹 has a minimum when the pure quadratic 𝑥𝑇𝐴𝑥 is positive definite.



Tests for Positive Definiteness



Tests for Positive Definiteness

Semi-definite matrices:

The tests for semi-definiteness will relax 𝑥𝑇𝐴𝑥 > 0, 𝜆 > 0, 𝑑 > 0
and det > 0, to allow zeros to appear.



Tests for Positive Definiteness: Example



An Ellipsoid – For a positive definite matrix 𝑨 and its 𝒙𝑻𝑨𝒙 the curve 
obtained is an ellipse in 2 dimensions and ellipsoid in n dimensions.

A = 
5 4
4 5

and 𝑥𝑇𝐴𝑥 = 5𝑢2 + 8𝑢𝑣 + 5𝑣2 = 1

The ellipse is centered at 𝑢 = 𝑣 = 0, but the axes no longer line up 
with the coordinate axes.

It can be shown that the axes of 

the ellipse point toward the 

eigenvector of A. 

As 𝐴 = 𝐴𝑇 , those eigenvectors

and axes are orthogonal.

The major axis of the ellipse corresponds to the smallest eigenvalue 
of A.

Fig: The ellipse 𝑥𝑇𝐴𝑥 = 5𝑢2 + 8𝑢𝑣 + 5𝑣2 =
1 and its principal axes.



Singular Value Decomposition

• 𝐴 = 𝑈Σ𝑉𝑇 is known as the “SVD” or the singular value 
decomposition.

• The SVD is closely associated with the eigenvalue-eigenvector 
factorization 𝑄Λ𝑄𝑇 of a positive definite matrix.

• Any 𝑚 × 𝑛 matrix 𝐴 can be factored into

• The columns of 𝑈 (𝑚 × 𝑚) are eigenvectors of 𝑨𝑨𝑻 , and the 
columns of 𝑉 (𝑛 × 𝑛) are eigenvectors of 𝑨𝑻𝑨. 

• The 𝑟 singular values on the diagonal of Σ (𝑚 × 𝑛) are the square 
roots of the nonzero eigenvalues of both 𝐴𝐴𝑇 and 𝐴𝑇𝐴.

• While eigen-value decomposition can be applied only to square 
matrices, SVD can be applied to any matrix (including rectangular 
matrix). 



Singular Value Decomposition

Remark 1. 

• For positive definite matrices, Σ is Λ and 𝑈Σ𝑉𝑇 is identical to 𝑄Λ𝑄𝑇.

• For other symmetric matrices, any negative eigenvalues in Λ
become positive in Σ.

• For complex matrices, Σ remains real but 𝑈 and 𝑉 become unitary
(the complex version of orthogonal). 𝑨 = 𝑼𝚺𝑽𝑯

Remark 2.

U and V give orthonormal bases for all four fundamental subspaces:



Singular Value Decomposition

Remark 4. 

Eigenvectors of 𝐴𝐴𝑇 and 𝐴𝑇𝐴 must go into the columns of 𝑈 and 𝑉:

• U must be the eigenvector matrix for 𝐴𝐴𝑇 . 

• The eigenvalue matrix in the middle is ΣΣ𝑇— which is 𝑚 × 𝑚 with 
𝜎1
2 , … , 𝜎𝑟

2 on the diagonal.

• From the 𝐴𝑇𝐴 = 𝑉Σ𝑇Σ𝑉𝑇 , the 𝑉 matrix must be the eigenvector 
matrix for 𝐴𝑇𝐴.



Singular Value Decomposition

Example 1.

This A has only one column: rank 𝑟 = 1. Then Σ has only 𝜎1 = 3:



Singular Value Decomposition

Example 2.

Now 𝐴 has rank 2, and 𝐴𝐴𝑇 = 
2 −1
−1 2

with 𝜆 = 3 and 1:

Notice 3 and 1. The columns of 𝑈 are left singular vectors (unit 
eigenvectors of 𝐴𝐴𝑇 ). 

The columns of 𝑉 are right singular vectors (unit eigenvectors of 
𝐴𝑇𝐴).



Applications of Singular Value Decomposition

Image Processing.

• Suppose a satellite takes a picture, and wants to send it to Earth. 

• The picture may contain 1000 × 1000 “pixels”—a million little 
squares, each with a definite color. 

• We can code the colors, and send back 1,000,000 numbers. 

• It is better to find the essential information inside the 𝟏𝟎𝟎𝟎 ×
𝟏𝟎𝟎𝟎 matrix, and send only that.

In SVD some 𝜎’s are significant and others are extremely small.

If we keep 20 and throw away 980, then we send only the 
corresponding 20 columns of 𝑈 and 𝑉.

The other 980 columns are multiplied in 𝑈Σ𝑉𝑇 by the small 𝜎’s that 
are being ignored. If only 20 terms are kept, we send 20 times 2000 
numbers instead of a million (25 to 1 compression).



Applications of Singular Value Decomposition

Polar decomposition.

• Every nonzero complex number 𝑧 is a positive number 𝑟 times a 
number 𝑒𝑖𝜃 on the unit circle: 𝑧 = 𝑟𝑒𝑖𝜃 .

• That expresses 𝑧 in “polar coordinates.”

• If we think of 𝑧 as a 1 × 1 matrix, 𝑟 corresponds to a positive 
definite matrix and 𝑒𝑖𝜃 corresponds to an orthogonal matrix.

• More exactly, since 𝑒𝑖𝜃 is complex and satisfies 𝑒−𝑖𝜃𝑒𝑖𝜃 = 1, it 
forms a 1 × 1 unitary matrix: 𝑈𝐻𝑈 = 𝐼.

• The SVD extends this “polar factorization” to matrices of any size:



• Pseudo-Inverse

Pseudo inverse is a generalization of the matrix inverse 
when the matrix may not be invertible.



Minimum Principles

Our goal is to find the minimum principle equivalent to 𝐴𝑥 = 𝑏, and 
the minimization equivalent to 𝐴𝑥 = 𝜆𝑥.

We want to find the “parabola” 𝑃(𝑥) whose minimum occurs when 
𝐴𝑥 = 𝑏. 



Minimum Principles



Minimum Principles

Example. Minimize 𝑃(𝑥) = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 − 𝑏1𝑥1 − 𝑏2𝑥2.

The usual approach, by calculus, is to set the partial derivatives to 
zero. This gives 𝐴𝑥 = 𝑏:

Linear algebra recognizes this 𝑃(𝑥) as 
1

2
𝑥𝑇𝐴𝑥 − 𝑥𝑇𝑏, and knows 

immediately that 𝐴𝑥 = 𝑏 gives the minimum.

Substitute 𝑥 = 𝐴−1𝑏 into 𝑃(𝑥):



Minimizing with Constraints

• Many applications add extra equations 𝐶𝑥 = 𝑑 on top of the 
minimization problem.

• These equations are constraints. We minimize 𝑃(𝑥) subject to the 
extra requirement 𝐶𝑥 = 𝑑.

• Usually 𝑥 can’t satisfy 𝑛 equations 𝐴𝑥 = 𝑏 and also 𝑙 extra 
constraints 𝐶𝑥 = 𝑑. We have too many equations and we need 𝑙
more unknowns.



Minimizing with Constraints

Those new unknowns 𝑦1, … , 𝑦𝑙 are called Lagrange multipliers.

𝐿 is chosen exactly so that 𝜕𝐿/𝜕𝑦 = 0 brings back 𝐶𝑥 = 𝑑. When 
we set the derivatives of 𝐿 to zero, we have 𝑛 + 𝑙 equations for 𝑛 + 𝑙
unknowns 𝑥 and 𝑦:



Minimizing with Constraints

Example. Suppose 𝑃 𝑥1, 𝑥2 =
1

2
𝑥1
2 +

1

2
𝑥2
2 . Its smallest value is 

certainly 𝑃𝑚𝑖𝑛 = 0.

• This unconstrained problem has 𝑛 = 2, 𝐴 = 𝐼, and 𝑏 = 0. 

• So the minimizing equation 𝐴𝑥 = 𝑏 just gives 𝑥1 = 0 and 
𝑥2 = 0.

• Now add one constraint 𝑐1𝑥1 + 𝑐2𝑥2 = 𝑑.

• This puts 𝑥 on a line in the 𝑥1 − 𝑥2 plane. The old minimizer 
𝑥1 = 𝑥2 = 0 is not on the line.

• The Lagrangian 𝐿 𝑥, 𝑦 =
1

2
𝑥1
2 +

1

2
𝑥2
2 + 𝑦(𝑐1𝑥1 + 𝑐2𝑥2 − 𝑑) has 

𝑛 + 𝑙 = 2 + 1 partial derivatives

Contd.



Minimizing with Constraints

The Lagrangian 𝐿 𝑥, 𝑦 =
1

2
𝑥1
2 +

1

2
𝑥2
2 + 𝑦(𝑐1𝑥1 + 𝑐2𝑥2 − 𝑑) has 

𝑛 + 𝑙 = 2 + 1 partial derivatives:

Substituting 𝑥1 = −𝑐1𝑦 and 𝑥2 = −𝑐2𝑦 into the 3rd equation gives 
− 𝑐1

2𝑦 − 𝑐2
2𝑦 = 𝑑.



The Rayleigh quotient 

• Goal is to find a minimization problem equivalent to 𝐴𝑥 = 𝜆𝑥.

• The function to minimize cannot be a quadratic, or its derivative 
would be linear, and the eigenvalue problem is nonlinear (𝜆 times 
𝑥).

• The trick that succeeds is to divide one quadratic by another one: 



The Rayleigh quotient

• If we keep 𝑥𝑇𝐴𝑥 = 1, then 𝑅(𝑥) is a minimum when 𝑥𝑇 𝑥 = 𝑥
2

is as large as possible.

• We are looking for the point on the ellipsoid 𝑥𝑇𝐴𝑥 = 1 farthest 
from the origin—the vector 𝑥 of greatest length. Its longest axis 
points along the first eigenvector. So 𝑅(𝑥) is a minimum at 𝑥1.



The Rayleigh quotient


