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Introduction

• A linear regression model assumes that the regression 
function 𝐸(𝑌 |𝑋) is linear in the inputs 𝑋1, . . . , 𝑋𝑝. 

• They are simple and often provide an adequate and 
interpretable description of how the inputs affect the output. 
For prediction purposes they can sometimes outperform 
fancier nonlinear models, especially in situations with small 
numbers of training cases, low signal-to-noise ratio or 
sparse data.



Linear Regression Models and 
Least Squares

• Purpose: - to predict a real-valued output 𝑌. The linear 

regression model has the form.

𝑓(𝑋) = 𝛽0 +  𝑗=1
𝑝

𝑋𝑗𝛽𝑗 .                               (3.1)

• The linear model either assumes that the regression function 
𝐸(𝑌 |𝑋) is linear, or that the linear model is a reasonable 
approximation. Here the 𝛽j ’s are unknown parameters or 
coefficients, and the variables 𝑋𝑗 can come from different 

sources:



• We have a set of training data (𝑥1, 𝑦1) . . . (𝑥𝑁, 𝑦𝑁) from which to 
estimate the parameters . Each 𝑥𝑖 = 𝑥𝑖1,

𝑥𝑖2, . . . ,
𝑥𝑖𝑝

𝑇 is a vector 

of feature measurements for the 𝑖𝑡ℎ case. The most popular 
estimation method is 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠, in which we pick the 
coefficients  𝛽 = 𝛽0, 𝛽1, . . . , 𝛽𝑝

𝑇 to minimize the residual sum 
of squares

𝑅𝑆𝑆 𝛽 =  
𝑖=1

𝑁

(𝑦𝑖 − 𝑓 𝑥𝑖 )2

=  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2
.            (3.2)

• From a statistical point of view, this criterion is reasonable if 
the training observations (𝑥𝑖, 𝑦𝑖) represent independent 
random draws from their population. Even if the 𝑥𝑖’𝑠 were 
not drawn randomly, the criterion is still valid if the 𝑦𝑖’𝑠 are 
conditionally independent given the inputs 𝑥𝑖. 



FIGURE 3.1. Linear least squares fitting with 𝑋 ∈ ℝ2. We seek 
the linear function of 𝑋 that minimizes the sum of squared 

residuals from 𝑌.

Figure 3.1 illustrates the geometry of least-squares fitting in the (p+1)-
dimensional space occupied by the pairs (X, Y ).



• Figure 3.1 illustrates the geometry of least-squares fitting 
in the ℝ𝑝+1 −dimensional space occupied by the pairs 
(𝑋, 𝑌 ). Note that (3.2) makes no assumptions about the 
validity of model (3.1); it simply finds the best linear fit to 
the data. Least squares fitting is intuitively satisfying no 
matter how the data arise; the criterion measures the 
average lack of fit.

• How do we minimize (3.2)?
Denote by 𝐗 the  𝑁 × (𝑝 + 1) matrix with each row an 

input vector (with a 1 in the first position), and similarly let 
𝒚 be the 𝑁-vector of outputs in the training set. Then we 
can write the residual sum-of-squares as

𝑅𝑆𝑆 𝛽 = 𝒚 − 𝑿𝛽 𝑇 (𝒚 − 𝑿𝛽). (3.3)



• This is a quadratic function in the 𝑝 + 1 parameters. 

Differentiating with respect to we obtain

𝜕𝑅𝑆𝑆

𝜕𝛽
= −2𝑿𝑇 𝒚 − 𝑿𝛽

𝜕2𝑅𝑆𝑆

𝜕𝛽𝜕𝛽𝑇 = 2𝑿𝑇𝑿. (3.4)

• Assuming (for the moment) that 𝑿 has full column rank, and 
hence 𝑿𝑇𝑿 is positive definite, we set the first derivative to 

zero

𝑿𝑇(𝒚 − 𝑿𝛽) = 0 (3.5)

• To obtain the unique solution

 𝛽 = 𝑿𝑇𝑿 −1𝐗T𝐲. (3.6)



FIGURE 3.2. The N-dimensional geometry of least 
squares regression with two predictors. The outcome vector 𝑦 is 
orthogonally projected onto the hyperplane spanned by the 
input vectors 𝑥1 and 𝑥2. The projection  𝑦 represents the vector 
of the least squares predictions



• The predicted values at an input vector 𝑥0 are given by                 
 𝑓 𝑥0 = 1 ∶ 𝑥0

𝑇  𝛽 ;the fitted values at the training inputs are

 𝑦 = 𝑿  𝛽 = 𝑿 𝑿𝑇𝑿 −1𝑿𝑇𝑦, (3.7)

where  𝑦𝑖 =  𝑓(𝑥𝑖) .The matrix 𝐇 = 𝑿 𝑿𝑇𝑿 −1𝑿𝑇 appearing 
in equation (3.7) is sometimes called the “hat” matrix because 
it puts the hat on 𝑦.

• The hat matrix 𝐇 computes the orthogonal projection, and 
hence it is also known as a projection matrix. It might 
happen that the columns of 𝑿 are not linearly independent, 
so that 𝐗 is not of full rank. for example, if two of the inputs 
were perfectly correlated, (𝑒. 𝑔. , 𝑥2 = 3x1) .



• Then 𝑿𝑇𝑿 is singular and the least squares coefficients  𝛽 are 

not uniquely defined. However, the fitted values  𝑦 = 𝑿  𝛽 are 
still the projection of 𝑦 onto the columns pace of 𝑿; The non-
full-rank case occurs most often when one or more 
qualitative inputs are coded in a redundant fashion.

• There is usually a natural way to resolve the non-unique 
representation, by recoding and/or dropping redundant 
columns in 𝑿.



• Rank deficiencies can also occur in signal and image 
analysis, where the number of inputs 𝑝 can exceed the 
number of training cases 𝑁. In this case, the features are 
typically reduced by filtering or else the fitting is controlled 
by regularization 

• Assume that the observations 𝑦𝑖 are uncorrelated and have 
constant variance 𝜎2, and that the 𝑥𝑖 are fixed (non random). 
The variance–covariance matrix of the least squares 
parameter estimates is easily derived from (3.6) and is given 
by

𝑉𝑎𝑟  𝛽 = 𝑿𝑇𝑿 −1𝜎2. (3.8)



• Typically one estimates the variance 𝜎2 by. 

 𝜎2 =
1

𝑁 − 𝑝 −1
 𝑖=1

𝑁 ( 𝑦𝑖 −  𝑦𝑖
2).                          (3.8)

• The 𝑁 − 𝑝 − 1 rather than N in the denominator makes  𝜎2

an unbiased estimate of 𝜎2: 𝐸(  𝜎2) =  𝜎2.



• The conditional expectation of 𝑌 is linear in 𝑋1, . . . , 𝑋𝑝. We also 
assume that the deviations of 𝑌 around its expectation are 
additive and Gaussian. Hence

𝑌 = 𝐸 𝑌 𝑋1, . . . , 𝑋𝑝 + 𝜀

= 𝛽0 +  𝑗=1
𝑝

𝑋𝑗𝛽𝑗 + 𝜀 , (3.9)

where the error 𝜀 is a Gaussian random variable with 
expectation zero and variance 𝜎2, written ε ~ N(0, 𝜎2) .Under 
(3.9), it is easy to show that

 𝛽 ~ 𝑁(𝛽, 𝑿𝑇𝑿 −1𝜎2). (3.10)

• This is a multivariate normal distribution with mean vector 
and variance–covariance matrix as shown.



The Gauss–Markov Theorem

• One of the most famous results in statistics asserts that 
the least squares estimates of the parameters 𝜷
have the smallest variance among all linear 
unbiased estimates. 

• This observation will lead us to consider biased estimates 
such as ridge regression later. We focus on estimation of 
any linear combination of the parameters θ = 𝑎𝑇𝛽 ; for 
example, predictions 𝑓 𝑥0 = 𝑥0

𝑇𝛽 are of this form. 

• The least squares estimate of 𝑎𝑇𝛽 is

 𝜃 = 𝑎𝑇  𝛽 = 𝑎𝑇 𝑿𝑇𝑿 −1𝑿𝑇𝒚. (3.17)



• Considering 𝑿 to be fixed, this is a linear function 𝒄0
𝑇𝒚 of the 

response vector 𝒚. If we assume that the linear model is 

correct, 𝛼𝑇  𝛽 is unbiased since

𝐸(𝑎𝑇  𝛽) = 𝐸(𝑎𝑇 𝑿𝑇𝑿 −1𝑿𝑇𝒚)

= 𝑎𝑇 𝑿𝑇𝑿 −1𝑿𝑇𝛽

= 𝑎𝑇𝛽. (3.18)

• The Gauss–Markov theorem states that if we have any 
other linear estimator  𝜃 = 𝒄𝑇𝒚 that is unbiased for 𝑎𝑇𝛽,
that is, 𝐸 𝒄𝑇𝒚 = 𝑎𝑇𝛽 , then

𝑉𝑎𝑟(𝑎𝑇  𝛽) ≤ 𝑉𝑎𝑟(𝒄𝑇𝒚). (3.19)



• Consider the mean squared error of an estimator  𝜃 in 
estimating θ:

𝑀𝑆𝐸  𝜃 = 𝐸  𝜃 − 𝜃 2

= 𝑉𝑎𝑟  𝜃 + 𝐸  𝜃 − 𝜃 2. (3.20)

• The first term is the variance, while the second term is the 
squared bias. The Gauss-Markov theorem implies that the 
least squares estimator has the smallest mean squared error 
of all linear estimators with no bias. 



Multiple Regression from Simple 
Univariate Regression

• The linear model (3.1) with 𝑝 > 1 inputs is called the multiple 
linear regression model. 

• Suppose first that we have a univariate model with no 
intercept, that is,

𝑌 = 𝑋𝛽 + 𝜀. (3.23)

• The least squares estimate and residuals are

 𝛽 =
 1

𝑁 𝑥𝑖𝑦𝑖

 1
𝑁 𝑥𝑖

2 ,

𝑟𝑖 = 𝑦𝑖 − 𝑥𝑖
 𝛽 . (3.24)
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• Convenient vector notation, we let                                                
y = 𝑦1, . . . , 𝑦𝑁

𝑇 , x = (𝑥1, . . . , 𝑥𝑁)𝑇 and define

x, y =  𝑖=1
𝑁 𝑥𝑖𝑦𝑖 ,

= x𝑇y, (3.25)

• 𝐼𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 between 𝑥 and 𝑦1.Then we can write

 𝛽 =
𝐱, 𝒚

𝐱, 𝐱
,

𝑟 = y − x  𝛽. (3.26)



• As we will see, this simple univariate regression provides 
the building block for multiple linear regression. 

• Suppose next that the inputs x1, x2, . . . , x𝑝 (the columns of 

the data matrix 𝑿) are orthogonal; that is xj, x𝑘 = 0 for 

all 𝑗 ≠ 𝑘. Then it is easy to check that the multiple least 

squares estimates  𝛽𝑗 are equal to x𝑗 , y / x𝑗 , x𝑗 —the 

univariate estimates. In other words, when the inputs are 
orthogonal, they have no effect on each other’s parameter 
estimates in the model.

• Orthogonal inputs occur most often with balanced, 
designed experiments (where orthogonality is enforced), 
but almost never with observational data. 



• Hence we will have to orthogonalize them. Suppose next 
that we have an intercept and a single input x. Then the 
least squares coefficient of x has the form

 𝛽1 =
x−  𝑥𝟏, 𝑦

x−  𝑥𝟏, x−  𝑥𝟏
, (3.27)

• where  𝑥 =  
𝑖
𝑥𝑖/𝑁 , and 𝟏 = x0, the vector of 𝑁 ones. 

• We can view the estimate (3.27) as the result of two 
applications of the simple regression(3.26). The steps are:

1. Regress x on 𝟏 to produce the residual 𝑧 = x −  𝑥𝟏;

2. Regress y on the residual 𝒛 to give the coefficient  𝛽1.



Linear Methods for Regression

FIGURE 3.4. Least squares regression by orthogonalization of the 
inputs. The vector 𝐱2 is regressed on the vector 𝐱1, leaving the 
residual vector 𝒛. The regression of 𝒚 on 𝒛 gives the multiple 

regression coefficient of 𝐱2. Adding together the projections of 𝒚 on 
each of 𝐱𝟏 and 𝒛 gives the least squares fit  𝒚.



• In this procedure, “regress 𝑏 on a” means a simple 
univariate regression of 𝑏 on a with no intercept, 
producing coefficient  𝛾 = ⟨𝑎, 𝑏⟩/⟨𝑎,𝑎⟩ and residual vector 
𝐛 −  γ𝐚. We say that 𝒃 is adjusted for a, or is 
“orthogonalized” with respect to a.

• Step 1 orthogonalizes x with respect to x0 = 𝟏. Step 2 is 
just a simple univariate regression, using the orthogonal 
predictors 𝟏 and 𝑧. Figure 3.4 shows this process for two 
general inputs x1 and x2. The orthogonalization does not 
change the subspace spanned by x1 and x2, it simply 
produces an orthogonal basis for representing it.

• This recipe generalizes to the case of p inputs, as shown 
in Algorithm 3.1.Note that the inputs z0, . . . , zj−1 in step 2 are 

orthogonal, hence the simple regression coefficients 
computed there are in fact also the multiple regression 
coefficients.



1. Initialize 𝑧0 = x0 = 𝟏.

2. For 𝑗 = 1, 2, . . . , 𝑝
Regress x𝑗 on z0, z1, . . . , , zj

− 1 to    
produce coefficients:

 𝛾ℓ𝑗 =

𝒛ℓ, 𝐱ℓ

𝒛ℓ, 𝐳ℓ

, ℓ = 0, . . . , 𝑗 − 1

and residual vector

𝑧𝑗 = x𝑗 −  𝑘=0
𝑗−1

 𝛾𝑘𝑗z𝑘 .

3. Regress y on the residual z𝑝 to give the estimate  𝛽𝑝.

Algorithm 3.1 Regression by Successive Orthogonalization.



• The result of this algorithm is

 𝛽𝑝 =
⟨zp, y⟩

⟨zp, zp⟩
(3.28)

• Re-arranging the residual in step 2, we can see that each of 
the 𝐱𝑗 is a linear combination of the z𝑘, 𝑘 ≤ 𝑗. 

• Since the 𝒛𝑗 are all orthogonal, they form a basis for the 
column space of 𝐗, and hence the least squares projection 
onto this subspace is  y. 

• Since z𝑝 alone involves x𝑝 (with coefficient 1), we see that 

the coefficient (3.28) is indeed the multiple regression 

coefficient of y on x𝑝.

• The multiple regression coefficient  𝛽𝑗 represents the additional 

contribution of x𝑗 on 𝒚, after x𝑗 has been adjusted 

for x0, x1, . . . , x𝑗−1, x𝑗+1. . . , x𝑝.



• Algorithm 3.1 is known as the Gram–Schmidt

procedure for multiple regression,. We can obtain 

from it not just  𝛽𝑝, but also the entire multiple least 
squares fit, 

• We can represent step 2 of Algorithm 3.1 in matrix form:

𝐗 = 𝐙𝚪, (3.30)

where 𝐙 has as columns the z𝑗 (in order), and 𝚪 is the 

upper triangular matrix with entries  𝛾𝑘𝑗. 



• Introducing the diagonal matrix 𝐃 with 𝑗𝑡ℎ diagonal entry 
𝐷𝑗𝑗 = ∥ z𝑗 ∥, we get

𝐗 = 𝐙𝐃−𝟏𝐃𝚪

= 𝐐𝐑, (3.31)
the so-called QR decomposition of 𝐗. Here 𝐐 is an                           

𝑁 × (𝑝 + 1) orthogonal matrix, 𝐐𝑇𝐐 = 𝐈, and 𝐑 is a                                  
(𝑝 + 1) × (𝑝 + 1) upper triangular matrix. 

• The 𝑸𝑹 decomposition represents a convenient 
orthogonal  basis for the column space of 𝑿. It is easy to 

see, for example, that the least squares solution is given 
by

ߚ  = 𝐑−1𝐐𝑇𝒚, (3.32)

ݕ  = 𝐐𝐐𝑇𝒚. (3.33)
• Equation (3.32) is easy to solve as 𝑹 is upper triangular



Multiple Outputs

• Suppose we have multiple outputs 𝑌1, 𝑌2, . . . , 𝑌𝐾 that we wish 
to predict from our inputs 𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑝. We assume a 
linear model for each output

𝑌𝑘 = 𝛽0𝑘 +  𝑗=1
𝑝

𝑋𝑗𝛽𝑗𝑘 + 𝜀𝑘 (3.34)

= 𝑓𝑘(𝑋) + 𝜀𝑘. (3.35)

• With 𝑁 training cases we can write the model in matrix 

notation

𝐘 = 𝐗𝐁 + 𝐄. (3.36)

• Here 𝐘 is the 𝑁 × 𝐾 response matrix, with 𝑖𝑘 entry 𝑦𝑖𝑘, 𝐗 is 
the 𝑁 × (𝑝 + 1) input matrix, 𝐁 is the (𝑝 + 1) × 𝐾 matrix of 
parameters and 𝐄 is the 𝑁 × 𝐾 matrix of errors.



• A straightforward generalization of the univariate loss 
function (3.2) is

𝑅𝑆𝑆 𝐁 =  

𝑘=1

𝐾

 

𝑖=1

𝑁

(𝑦𝑖𝑘 − 𝑓𝑘 𝑥𝑖 )2 (3.37)

= 𝑡𝑟[ 𝐘 − 𝐗𝐁 𝑇(𝐘 − 𝐗𝐁)]. (3.38)

• The least squares estimates have exactly the same form as 
before

 𝐁 = 𝐗𝑇𝐗 −1𝐗𝑇𝐘. (3.39)

If the errors e = (e1,……, ek) in (3.34) are correlated;  if

Cov(e) =  S, then the multivariate weighted criterion:





Shrinkage Methods

• By retaining a subset of the predictors and discarding the 
rest, subset selection produces a model that is interpretable 
and has possibly lower prediction error than the full model. 
However, because it is a discrete process—variables are 
either retained or discarded—it often exhibits high variance, 
and so doesn’t reduce the prediction error of the full model. 
Shrinkage methods are more continuous, and don’t suffer as 
much from high variability.

Ridge Regression

• Ridge regression shrinks the regression coefficients by 
imposing a penalty on their size. 



FIGURE 3.7. Estimated 
prediction error curves and 
their standard errors for the 

various selection and 
shrinkage methods. Each 

curve is plotted as a function 
of the corresponding 

complexity parameter for that 
method. The horizontal axis 
has been chosen so that the 

model complexity increases as 
we move from left to right. 
The estimates of prediction 

error and their standard errors 
were obtained by tenfold 

cross-validation; full details 
are given in Section 7.10. The 

least complex model within 
one standard error of the best 

is chosen, indicated by the 
green vertical broken lines.



• The ridge coefficients minimize a penalized residual sum of 
squares,

 𝛽𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2 + 𝜆  𝑗=1
𝑝

𝛽𝑗
2 . (3.41)

• Here 𝜆 ≥ 0 is a complexity parameter that controls the 
amount of shrinkage: the larger the value of 𝜆, the greater 
the amount of shrinkage. The coefficients are shrunk toward 
zero (and each other). 

• An equivalent way to write the ridge problem is

 𝛽𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2,

3.42

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑗=1
𝑝

𝛽𝑗
2 ≤ 𝑡,



• Which makes explicit the size constraint on the parameters. 
There is a one to-one correspondence between the 
parameters 𝜆 in (3.41) and 𝑡 in (3.42). When there are many 
correlated variables in a linear regression model, their 
coefficients can become poorly determined and exhibit high 
variance. A wildly large positive coefficient on one variable 
can be canceled by a similarly large negative coefficient on 
its correlated cousin. By imposing a size constraint on the 
coefficients, as in (3.42), this problem is alleviated.

• The ridge solutions are not equivariant under scaling of the 
inputs, and so one normally standardizes the inputs before 
solving (3.41). The solution to (3.41) can be separated into 
two parts, after reparametrization using centered inputs: 
each 𝑥𝑖𝑗 gets replaced by 𝑥𝑖𝑗 −  𝑥𝑗 . We estimate 𝛽0 by  𝑦 =
1

𝑁
 1

𝑁 𝑦𝑖. 



• The remaining coefficients get estimated by a ridge 
regression without intercept, using the centered 𝑥𝑖𝑗 . 
Henceforth we assume that this centering has been done, so 
that the input matrix 𝐗 has 𝑝 (rather than 𝑝 + 1) columns.

• Writing the criterion in (3.41) in matrix form,

𝑅𝑆𝑆 𝜆 = 𝒚 − 𝐗𝛽 𝑇 𝒚 − 𝐗𝛽 + 𝜆𝛽𝑇𝛽, (3.43)

• The ridge regression solutions are easily seen to be

 𝛽𝑟𝑖𝑑𝑔𝑒 = 𝐗𝑇𝐗 + 𝜆 𝐈 −1𝐗𝑇𝒚, (3.44)

• Where 𝐈 is the 𝑝 × 𝑝 identity matrix. Notice that with the 
choice of quadratic penalty 𝛽𝑇𝛽, the ridge regression solution 
is again a linear function of 𝑦. The solution adds a positive 
constant to the diagonal of 𝑿𝑇𝑿 before inversion. 



• This makes the problem nonsingular, even if 𝑿𝑇𝑿 is not of full 
rank, and was the main motivation for ridge regression when 
it was first introduced in statistics (Hoerl and Kennard, 1970).

• Traditional descriptions of ridge regression start with 
definition (3.44). We choose to motivate it via (3.41) and 
(3.42), as these provide insight into how it works.



• Ridge regression can also be derived as the mean or mode 
of a posterior distribution, with a suitably chosen prior 

distribution. In detail, suppose 𝑦𝑖 ~ 𝑁(𝛽0 + 𝑥𝑖
𝑇𝛽, 𝜎2), and the 

parameters 𝛽𝑗 are each distributed as 𝑁(0, 𝜏2), independently 
of one another. Then the (negative) log-posterior density of 
𝛽, with  𝜏2 and 𝜎2 assumed known, is equal to the 
expression in curly braces in (3.41), with 𝜆 = 𝜎2/𝜏2 Thus the 
ridge estimate is the mode of the posterior distribution; 
since the distribution is Gaussian, it is also the posterior 
mean.

• The 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑆𝑉𝐷) of the centered input 
matrix 𝐗 gives us some additional insight into the nature of 
ridge regression. The 𝑆𝑉𝐷 of the 𝑁 × 𝑝 matrix 𝐗 has the form

𝐗 = 𝐔𝐃𝐕𝑇 (3.45)



• Using the singular value decomposition we can write the 
least squares fitted vector as

𝑿  𝛽𝑙𝑠 = 𝑿 𝑿𝑇 𝑿 −1𝑿𝑇𝒚,

(3.46)
= 𝑼𝑼𝑇𝒚,

• After some simplification. Note that 𝐔𝑇𝒚 are the 
coordinates of 𝒚 with respect to the orthonormal basis 
𝐔. Note also the similarity with (3.33); 𝐐 and 𝐔 are 

generally different orthogonal bases for the column 
space of 𝐗 (𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 3.8).
Now the ridge solutions are

𝑋  𝛽𝑟𝑖𝑑𝑔𝑒 = 𝑿 𝑿𝑇𝑿 + 𝜆𝑰 −1𝑿𝑇𝒚
(3.47)

= 𝑼 𝑫 𝑫2 + 𝜆𝑰 −1𝑫 𝑼𝑇𝒚

=  𝑗=1
𝑝

𝒖𝑗

𝑑𝑗
2

𝑑𝑗
2+𝜆

𝒖𝑗
𝑇y,



• Where the 𝒖𝑗 are the columns of 𝐔. Note that since 𝜆 ≥ 0, we 

have 𝑑𝑗
2/(𝑑𝑗

2 + 𝜆) ≤ 1. Like linear regression, ridge regression 

computes the coordinates of y with respect to the 
orthonormal basis 𝐔. It then shrinks these coordinates by 

the factors 𝑑𝑗
2/(𝑑𝑗

2 + 𝜆) .This means that a greater amount of 

shrinkage is applied to the coordinates of basis vectors with 

smaller 𝑑𝑗
2.

• What does a small value of 𝑑𝑗
2 mean? The 𝑆𝑉𝐷 of the 

centered 𝐗 is another way of expressing the 
𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 of the variables in 𝐗. The sample 
covariance matrix is given by  𝑺 = 𝑿𝑇𝑿/𝑁, and from (3.45) we 
have

𝑿𝑇𝑿 = 𝑽𝑫2𝑽𝑇, (3.48)



• Which is the 𝑒𝑖𝑔𝑒𝑛 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 of 𝑿𝑇𝑿 (and of 𝑺, up to a 
factor 𝑁).The eigenvectors 𝑣𝑗 (columns of 𝑽) are also called 
the 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (or Karhunen–Loeve) directions of 𝐗. 

Sample variance is easily seen to be and in fact               
𝒛1 = 𝑿𝑣1 = 𝒖1𝑑1

𝑉𝑎𝑟 𝒛1 = 𝑉𝑎𝑟 𝑿𝑣1 =
𝑑1

2

𝑁
, (3.49)

• Subsequent principal components 𝒛𝑗 have maximum variance 

𝑑𝑗
2/𝑁, subject to being orthogonal to the earlier ones. 

Conversely the last principal component has minimum 
variance. Hence the small singular values 𝑑𝑗 correspond to 
directions in the column space of 𝐗 having small variance, 

and ridge regression shrinks these directions the most.



• In Figure 3.7 we have plotted the estimated prediction error 
versus the quantity

𝑑𝑓 𝜆 = 𝑡𝑟 𝑿 𝑿𝑇𝑿 + 𝜆𝑰 −1𝑿𝑇 ,

= 𝑡𝑟 𝐇𝜆

=  𝑗=1
𝑝 𝑑𝑗

2

𝑑𝑗
2+𝜆

. (3.50)

• This monotone decreasing function of 𝜆 is the 
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 of the ridge regression fit. 
Usually in a linear-regression fit with 𝑝 variables, the 
degrees-of-freedom of the fit is 𝑝, the number of free 
parameters. The idea is that although all 𝑝 coefficients in a 
ridge fit will be non-zero, they are fit in a restricted fashion 
controlled by 𝜆 . Note that 𝑑𝑓(𝜆) = 𝑝 when 𝜆 = 0 (no 
regularization) and 𝑑𝑓(𝜆) → 0 as 𝜆 → ∞.



The Lasso

• The lasso is a shrinkage method like ridge, with subtle but 
important differences. The lasso estimate is defined by

 𝛽𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑗=1
𝑝

|𝛽𝑗| . (3.51)

• Write the lasso problem in the equivalent Lagrangian form

 𝛽𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽

1

2
 

𝑖=1

𝑁

(𝑦𝑖 − 𝛽0 −  

𝑗=1

𝑝

𝑥𝑖𝑗𝛽𝑗)
2 + 𝜆  

𝑗=1

𝑝

|𝛽𝑗| .

(3.52)



• Notice the similarity to the ridge regression problem (3.42) or 

(3.41): the 𝐿2 ridge penalty  1
𝑝

𝛽
𝑗

2
is replaced by the 𝐿1 lasso 

penalty  1
𝑝

|𝛽𝑗| .Thus the lasso does a kind of continuous 

subset selection. If 𝑡 is chosen larger than 𝑡0 =  1
𝑝

|  𝛽𝑗| (where 
 𝛽𝑗 =  𝛽𝑗

𝑙𝑠, the least squares estimates), then the lasso 

estimates are the  𝛽𝑗’s. On the other hand, for 𝑡 = 𝑡0/2 say, 
then the least squares coefficients are shrunk by about 50%
on average.





Discussion: Subset Selection, 
Ridge Regression and the Lasso

• In the case of an orthonormal input matrix 𝐗 the three 
procedures have explicit solutions. Each method applies a 

simple transformation to the least squares estimate  𝛽𝑗, as 
detailed in Table 3.4.

• Ridge regression does a proportional shrinkage. Lasso 
translates each coefficient by a constant factor 𝜆, truncating 
at zero. This is called “soft thresholding,”. Best-subset 
selection drops all variables with coefficients smaller than 

the 𝑀th largest; this is a form of “hard-thresholding.”

• Back to the no orthogonal case; some pictures help 
understand their relationship. Figure 3.11 depicts the lasso 
(𝑙𝑒𝑓𝑡) and ridge regression (𝑟𝑖𝑔ℎ𝑡) when there are only two 
parameters. The residual sum of squares has elliptical 
contours, centered at the full least squares estimate.



FIGURE 3.11. Estimation picture for the lasso (left) and ridge 
regression (right). Shown are contours of the error and constraint 

functions. The solid blue areas are the constraint regions             
|𝛽1| + |𝛽2| ≤ 𝑡 and 𝛽1

2 + 𝛽2
2 ≤ 𝑡2, respectively, while the red ellipses 

are the contours of the least squares error function.



• Region for ridge regression is the disk 𝛽1
2 + 𝛽2

2 ≤ 𝑡, while 

that for lasso is the diamond |𝛽1| + |𝛽2| ≤ 𝑡. Both methods 

find the first point where the elliptical contours hit the 
constraint region. Unlike the disk, the diamond has corners; 
if the solution occurs at a corner, then it has one parameter 
𝛽𝑗 equal to zero. When 𝑝 > 2, the diamond becomes a 

rhomboid, and has many corners, flat edges and faces; 
there are many more opportunities for the estimated 
parameters to be zero. Consider the criterion

•  𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑖=1
𝑁 (𝑦𝑖 − 𝛽0 −  𝑗=1

𝑝
𝑥𝑖𝑗𝛽𝑗)

2 + 𝜆  𝑗=1
𝑝

|𝛽𝑗|
𝑞 .  

(3.53)

• for 𝑞 ≥ 0. The contours of constant value of  𝑗 |𝛽𝑗|
𝑞are shown 

in Figure 3.12, for the case of two inputs.



• Thinking of 𝛽𝑗
𝑞 as the log-prior density. The case                     

𝑞 = 1 (𝑙𝑎𝑠𝑠𝑜) is the smallest 𝑞 such that the constraint region 
is convex; non-convex constraint regions make the 
optimization problem more difficult. In this view, the lasso, 
ridge regression and best subset selection are Bayes 
estimates with different priors. They are derived as posterior 
modes, that is, maximizers of the posterior. 

FIGURE 3.12. Contours of constant value of  𝑗 𝛽𝑗
𝑞 for given 

values of 𝑞.



• FIGURE 3.13. Contours of constant value of  𝑗 𝛽𝑗
𝑞 for                    

𝑞 = 1.2 (𝑙𝑒𝑓𝑡 𝑝𝑙𝑜𝑡), and the elastic-net penalty                        
 𝑗 (𝛼𝛽𝑗

2 + (1 − 𝛼)|𝛽𝑗|) for 𝛼 = 0.2 (𝑟𝑖𝑔ℎ𝑡 𝑝𝑙𝑜𝑡). Although visually 

very similar, the elastic

• Zou and Hastie (2005) introduced the 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 penalty

𝜆  𝑗=1
𝑝

(𝛼𝛽𝑗
2 + (1 − 𝛼)|𝛽𝑗|) , (3.54)


