
KERNELS, SVM
CS5011- MACHINE LEARNING

Murphy 14.1, 14.2.1-14.2.6, 14.3, 14.4, 14.5

1

Introduction
• How do we represent a text document or protein

sequence, which can be of variable length?
• One approach is to define a generative model for the data,

and use the inferred latent representation and/or the
parameters of the model as features, and then to plug
these features in to standard methods

• Another approach is to assume that we have a way of
measuring the similarity between objects, that doesn’t
require preprocessing them into feature vector format

• For example, when comparing strings, we can compute the
edit distance betweenthem

2

Kernel functions
• We define a kernel function to be a real-valued function of

two arguments, , for .
• X is some abstract space
• Typically the function has the following properties:

• Symmetric
• Non-negative
• Can be interpreted as a measure of similarity

• We will discuss several examples of kernel functions

3

RBFkernels
• Squared exponential kernel (SE kernel) or Gaussian kernel

• If is diagonal, this can be written as

We can interpret the ௝ as defining the characteristic length
scale of dimension j

• If Σ is spherical, we get the isotropic kernel

An example of RBF (Radial basis function) kernel (since it is a
function of) where ଶ is known as the bandwidth4

Kernels for comparingdocuments
• If we use a bag of words representation, where ௜௝ is the

number of times words occurs in document , we can use
the cosine similarity

• Unfortunately, this simple method does not work very well
• Stop words (such as “the” or “and”) are not

discriminative
• Similarity is artificially boosted when a discriminative

word occurs multiple times
• Replace the word count vector with Term frequency

inverse document frequency (TF-IDF)

5

Kernels for comparingdocuments
• Define the term frequency as:

• This reduces the impact of words that occur many times
with a document

• Define inverse document frequency where is the total
number of documents

• Our new kernel has the form

6

Kernels for comparingdocuments - Example

7

𝑥 Doc
car 27
auto 3
insurance 3
best 14

df idf
car 18164 1.65
auto 6722 2.08
insurance 19240 1.63
best 25234 1.51

Doc tf tf-idf
car 1.45 2.39
auto 0.60 1.25
insurance 0.60 0.98
best 1.18 1.78

• The number of times
each word occurs in a
particular document (𝑥௜௝)
which belongs to a
collection of 811,400
documents and the
number of documents
in which each word
occurs (document
frequency) is given.

• idf, tf, tf-idf are
calculated

can be
used for
comparing
documents

Mercer (positive definite)kernels
• Gram matrix is defined as

• If the Gram matrix is positive definite for any set of inputs,
the Kernel is a Mercer kernel

• Mercer’s theorem: If the Gram matrix is positive definite,
we can compute an eigenvector decomposition of it as
follows:

where is a diagonal matrix of eigenvalues ௜
• Now consider an element of

8

Mercer (positive definite)kernels
• In general, if the kernel is Mercer, then there exists a

function mapping to ஽ such that

• For example, consider the (non-stationary) polynomial
kernel

If = 2, = = and ଶ, we have

This can be written as ் ᇱ where

9

Linearkernels
• Deriving the feature vector implied by a kernel is in general

quite difficult, and only possible if the kernel is Mercer.
• However, deriving a kernel from a feature vector is easy

• If , we get the linear kernel, defined by

• This is useful if the original data is already high dimensional,
and if the original features are individually informative

• Not all high dimensional problems are linearly separable.

10

Matern kernels
• The Matern kernel, which is commonly used in Gaussian

process regression

Where , , , and ఔ is a modified
Bessel function
• As , this approaches the SE kernel. If , the

kernel simplifies to

11

String kernels
• The real power of kernels arises when the inputs are

structured objects.
• As an example, we now describe one way of comparing two

variable length strings using a string kernel
• Consider two strings and of lengths , each defined

over the alphabet
•
• Let x be the following sequence of length 110

• and let be the following sequence of length 153

12

String kernels
• These strings have the substring LQE in common. We can

define the similarity of two strings to be the number of
substrings they have in common.

• Now let 𝑠 denote the number of times that substring
appears in string

• More formally and more generally, let us say that s is a
substring of if we can write for some (possibly
empty) strings , and .

where ௦ and ∗ is the set of all strings (of any
length) from the alphabet

13

Using kernels insideGLMs
• We define a kernel machine to be a GLM (generalized

linear model) where the input feature vector has the form

where ௞ are a set of centroids
• If κ is an RBF kernel, this is called an RBF network
• We will discuss ways to choose the 𝑘 parameters
• Note that in this approach, the kernel need not be a

Mercer kernel.
• We can use the kernelized feature vector for logistic

regression by defining

14

Using kernels insideGLMs
• This provides a simple way to define a non-linear decision

boundary
• As an example, consider the data coming from the

or function.

15

Two classes of object which correspond to labels 0 and 1
The inputs are colored shapes as shown in (a). These have
been described by a set of features or attributes, which
are stored in an design matrix , shown in (b).

16

Design Matrix

Consider a simple toy example of classification

A function is fitted with data points with K uniformly
spaced RBF prototypes (1 … 𝐾). The design matrix is a

matrix given by:

17

Design Matrix when a kernelized feature
vector is used
RBF Kernel: Feature vector:

Using kernels insideGLMs
• Use kernelized feature vector inside a linear regression

18

L1VMs, RVMs, and other sparse vector
machines
• The main issue with kernel machines is: how do we choose

the centroids μk?
• If the input is low-dimensional Euclidean space, we can

uniformly tile the space occupied by the data with
prototypes

• However, this approach breaks down in higher numbers of
dimensions because of the curse of dimensionality

• A simpler approach is to make each example ௜ be a
prototype, so we get

19

L1VMs, RVMs, and other sparse vector
machines
• Now , we have as many parameters as data points
• However, we can use any of the sparsity- promoting

priors for to efficiently select a subset of the training
exemplars. We call this a sparse vector machine

• Most natural choice is to use L1 regularization resulting in L1VM
or “L1 regularised vector machine”

• By analogy, we define the use of an L2 regularizer to be a L2VM
or “L2-regularized vector machine”

20

• Greater sparsity can be achieved by using Automatic relevance
determination (ARD)/ sparse Bayesian learning (SBL) resulting
in relevance vector machine or RVM

• Another very popular approach to creating a sparse kernel
machine is to use a support vector machine or SVM

• Rather than using a sparsity-promoting prior, it essentially
modifies the likelihood term. Nevertheless, the effect is
similar, as we will see

L1VMs, RVMs, and other sparse vector
machines

21

Example of non-linear binary classification using an RBF kernel
with bandwidth σ = 0.3. (a) L2VM with λ = 5. (b) L1VM with λ
= 1. (c) RVM. (d) SVM with C = 1/λ chosen by cross validation.
Black circles denote the support vectors

22

Example of kernel based regression on the noisy sinc function using an RBF
kernel with bandwidth 𝜎 = 0.3. (a) L2VM with 𝜆 = 0.5. (b) L1VM with 𝜆 = 0.5. (c)
RVM. (d) SVM regression with 𝐶 = 1/𝜆 chosen by cross validation, and ϵ = 0.1.
Red circles denote the retained training exemplars. 23

The kerneltrick
• Rather than defining our feature vector in terms of

kernels, ଵ ே , we can work
with the original feature vectors , but modify the
algorithm so that it replaces all inner products of the
form with a call to the kernel function,

• This is called the kernel trick.

24

Kernelized nearest neighborclassification
• Recall that in a 1-NN classifier, we need to compute the

Euclidean distance of a test vector to all the training
points, find the closest one, and look up its label

• This can be kernelized by observing that

• This allows us to apply the nearest neighbor classifier to
structured data objects.

25

(14.30)

Kernelized K-medoids clustering
• This is similar to K-means, but instead of representing each

cluster’s centroid by the mean of all data vectors assigned to
this cluster, we make each centroid be one of the data
vectors themselves

• When we update the centroids, we look at each object ()
that belongs to the cluster (), and measure the sum of its
distances to all the others in the same cluster; we then pick
the one which has the smallest such sum

where ௜ is the cluster which belongs to

• This algorithm can be kernelized by using (14.30) to replace
the computation of distance “d”.

26

Kernelized ridgeregression
• Applying the kernel trick to distance-based methodswas

straightforward
• It is not so obvious how to apply it to parametric models

such as ridge regression
• The primal problem

• Let ஽ be some feature vector, and be the
corresponding design matrix

• Minimize

• The optimal solution is given by

27

Kernelized ridgeregression
• The dual problem

• Using the matrix inversion lemma

• Takes ଷ ଶ time to compute. This can be
advantageous if is large

28

Proof for
• Start with

• Add to both sides

• Left-multiply both sides by and right-
multiply both sides by

• Therefore

29

Kernelized ridgeregression
• We can partially kernelize this, by replacing 𝑇 with the

Gram matrix
• But what about the leading 𝑇 term?
• Let us define the following dual variables:

• Then we can rewrite the primal variables as follows

• This tells us that the solution vector is just a linear sum
of the training vectors. When we plug this in at test
time to compute the predictive mean, we get

30

Kernelized ridgeregression
• So we have successfully kernelized ridge regression by

changing from primal to dual variables
• This technique can be applied to many other linear

models, such as logistic regression
• The cost of computing the dual variables is ଷ ,

whereas the cost of computing the primal variables is ଷ
• However, prediction using the dual variables takes

time, while prediction using the primal variables
only takes time

31

32

Support vector machines(SVMs)
• Consider the ଶ regularized empirical risk function

• If is quadratic loss, this is equivalent to ridge regression
• We can rewrite these equations in a way that only

involves inner products of the form ் , which we can
replace by calls to a kernel function,

• This is kernelized, but not sparse
• If we replace the quadratic loss with some other loss

function, we can ensure that the solution is sparse, so
that predictions only depend on a subset of the training
data, known as support vectors

• This combination of the kernel trick plus a modified loss
function is known as a support vector machine or SVM 33

SVMs for regression
• The problem with kernelized ridge regression is that the

solution vector depends on all the training inputs
• We now seek a method to produce a sparse estimate
• Consider the epsilon insensitive loss function

• This means that any point lying inside an -tube around the
prediction is not penalized

34

SVMs for regression

(a) Illustration of ℓଶ, Huber and 𝜖-insensitive loss functions,
where 𝜖 = 1.5

(b) Illustration of the 𝜖-tube used in SVM regression.

35

Huber Loss:

SVMs for regression

• The corresponding objective function

• where ௜ ௜ ் ௜ ଴ and is a
regularization constant

• This objective is convex and unconstrained, but not
differentiable, because of the absolute value function in
the loss term

36

SVMs forregression
• One popular approach is to formulate the problem as a

constrained optimization problem
• In particular, we introduce slack variables to represent the

degree to which each point lies outside the tube

• We can rewrite the objective
as follows:

• This is a quadratic function of , and must be
minimized subject to the linear constraints as well as
the positivity constraints ௜ା and ௜ି

37

SVMs for regression
• This is a standard quadratic program in

variables.
• The optimal solution has the form

where ௜
• Furthermore, it turns out that the vector is sparse,

because we don’t care about errors which are smaller
than . The ௜ for which ௜ are called the support
vectors. These are points for which the errors lie on or
outside the -tube

38

SVMs for regression
• Once the model is trained, we can then make predictions

using

• Plugging in the definition of we get

• Finally, we can replace ௜் with ௜ to get a
kernelized solution

39

SVMs forclassification
• The Hinge loss is defined as

• We have assumed the labels are ,
is our “confidence” in choosing label ; however, it
need not have any probabilistic semantics

Illustration of various
loss functions for
binary classification.
The horizontal axis is
the margin η, the
vertical axis is the
loss.

40
Logloss:

SVMs forclassification
• The overall objective has the form

• Once again, this is non-differentiable, because of the max
term. However, by introducing slack variables ௜, one can
show that this is equivalent to solving

• This is a quadratic program in N + D + 1 variables, subject
to constraints. Standard solvers take ଷ time

41

SVMs forclassification
• One can show that the solution has the form

where is sparse (because of the hinge loss)
• The ௜ for which ௜ are called support vectors; these

are points which are either incorrectly classified, or are
classified correctly but are on or inside the margin

42

SVMs forclassification
• At test time, prediction is done using

• Using the kernel trick we have

This takes time to compute, where is the
number of support vectors. This depends on the sparsity
level, and hence on the regularizer

43

The large marginprinciple

Illustration of the large margin principle
Left: a separating hyper-plane with large margin
Right: a separating hyper-plane with small margin

44

The large marginprinciple
Illustration of the geometry of a
linear decision boundary in 2d. A
point 𝐱 is classified as belonging in
decision region 𝑅ଵ if 𝑓(𝐱) > 0,
otherwise it belongs in decision
region 𝑅଴; here 𝑓(𝐱) is known as a
discriminant function. The
decision boundary is the set of
points such that 𝑓(𝐱) = 0. 𝒘 is a
vector which is perpendicular to
the decision boundary. The term 𝑤଴ controls the distance of the
decision boundary from the origin.
The signed distance of 𝐱 from its
orthogonal projection onto the
decision boundary, 𝒙ୄ, is given by 𝑓(𝐱)/||𝒘||.

45

The large marginprinciple
• Here, we derive the Equation form a completely different

perspective.

• where is the distance of from the decision boundary
whose normal vector is , and ୄ is the orthogonal
projection of onto this boundary

• Now so
• Hence

46

The large marginprinciple
• We would like to make this distance as

large as possible
• Intuitively, the best one to pick is the one that maximizes

the margin, i.e., the perpendicular distance to the closest
point

• In addition, we want to ensure each point is on the correct
side of the boundary, hence we want 𝑖 𝑖 .

• So our objective becomes

47

The large marginprinciple
• Our objective:

• Note that by rescaling the parameters using and ଴ ଴, we do not change the distance of any point to the
boundary, since the factor cancels out when we divide by

.
• Therefore let us define the scale factor such that 𝑖 𝑖 for

the point that is closest to the decision boundary
• We therefore want to optimize

• The constraint says that we want all points to be on the correct
side of the decision boundary with a margin of at least 1

48

Soft marginconstraints
• If the data is not linearly separable (even after using the

kernel trick), there will be no feasible solution in which௜ ௜ for all .
• We replace the hard constraints with the soft margin

constraints that 𝑖 𝑖 𝑖.
• Our objective was:

• The new objective becomes

49

Soft marginconstraints
• We therefore have introduced
slack variables ௜ such that௜ if the point is on or
inside the correct margin
boundary, and ௜ ௜ ௜
otherwise
• ௜ the point lies
inside the margin, but on the
correct side of the decision
boundary
• If ௜ , the point lies on the
wrong side of the decision
boundary
• Points with circles around
them are support vectors. 50

51

Probabilisticoutput
• An SVM classifier produces a hard-labeling,

.
• However, we often want a measure of confidence in our

prediction
• One heuristic approach is to interpret as the log-odds

ratio,

• where a, b can be estimated by maximum likelihood on a
separate validation set

• However, the resulting probabilities are not particularly
well calibrated

52

Probabilisticoutput

Log-odds vs x for 3 different methods
Suppose we have 1d data where p(x|y = 0) =Unif(0, 1) and p(x|y = 1)
= Unif(0.5, 1.5). Since the class-conditional distributions overlap in
the middle, the log-odds of class 1 over class 0 should be zero in [0.5,
1.0], and infinite outside this region.

53

SVMsfor multi-class classification
• A binary logistic regression model is “upgraded” to the

multi-class case, by replacing the sigmoid function with
the softmax, and the Bernoulli distribution with the
multinomial.

• Upgrading an SVM to the multi-class case is not so easy,
since the outputs are not on a calibrated scale and hence
are hard to compare to eachother

• The obvious approach is to use a one-versus-the-rest
approach (also called one-vs-all), in which we train binary
classifiers, ௖ , where the data from class is treated as
positive, and the data from all the other classes istreated
as negative

54

SVMsfor multi-class classification
• However, this can result in regions of input space which

are ambiguously labeled.
• The green region is predicted to be both class 1 and class

2.

55

SVMsfor multi-class classification
• Another approach is to use the one-versus-one or OVO

approach, also called all pairs, in which we train C(C−1)/2
classifiers to discriminate all pairs ஼,஼ᇱ

• We then classify a point into the class which has the
highest number of votes. However, this can also result in
ambiguities

56

ChoosingC
• Typically C is chosen by cross-validation.
• C interacts quite strongly with the kernelparameters.
• To choose C efficiently, one can develop a path following

algorithm
• The basic idea is to start with λ large, so that the margin

is wide, and hence all points are inside of it
and have ௜

• By slowly decreasing λ, a small set of points will move
from inside the margin to outside, and their ௜ values
will change from 1 to 0, as they cease to be support
vectors

57

SVM vs. Other Methods

58

SVM classifier break-even F1 results are shown for the 10
largest categories and for micro-averaged performance
over all 90 categories on the Reuters-21578 data set.
(https://nlp.stanford.edu/IR-
book/html/htmledition/experimental-results-1.html)

Summary of key points
• Summarizing the above discussion, we recognize that SVM

classifiers involve three key ingredients:
• The kernel trick : preventunderfitting
• Sparsity, large margin principle : prevent overfitting

59

