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Introduction
• How do we represent a text document or protein

sequence, which can be of variable length?
• One approach is to define a generative model for the data, 

and use the inferred latent representation and/or the
parameters of the model as features, and then to plug
these features in to standard methods

• Another approach is to assume that we have a way of
measuring the similarity between objects, that doesn’t  
require preprocessing them into feature vector format

• For example, when comparing strings, we can compute the 
edit distance betweenthem
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Kernel functions
• We define a kernel function to be a real-valued function of 

two arguments, , for .
• X is some abstract space
• Typically the function has the following properties:

• Symmetric
• Non-negative
• Can be interpreted as a measure of similarity

• We will discuss several examples of kernel functions
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RBFkernels
• Squared exponential kernel (SE kernel) or Gaussian kernel

• If is diagonal, this can be written as

We can interpret the ௝ as defining the characteristic length 
scale of dimension j

• If Σ is spherical, we get the isotropic kernel

An example of RBF  (Radial basis function)  kernel (since it is a 
function of ) where ଶ is known as the bandwidth4



Kernels for comparingdocuments
• If we use a bag of words representation, where ௜௝ is the

number of times words occurs in document , we can use  
the cosine similarity

• Unfortunately, this simple method does not work very well
• Stop words (such as “the” or “and”) are not 

discriminative
• Similarity is artificially boosted when a discriminative 

word occurs multiple times
• Replace the word count vector with Term frequency 

inverse document frequency (TF-IDF)
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Kernels for comparingdocuments
• Define the term frequency as:

• This reduces the impact of words that occur many times 
with a document

• Define inverse document frequency where is the total 
number of documents

• Our new kernel has the form
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Kernels for comparingdocuments - Example
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𝑥 Doc
car 27
auto 3
insurance 3
best 14

df idf
car 18164 1.65
auto 6722 2.08
insurance 19240 1.63
best 25234 1.51

Doc tf tf-idf
car 1.45 2.39
auto 0.60 1.25
insurance 0.60 0.98
best 1.18 1.78

• The number of times
each word occurs in a 
particular document (𝑥௜௝) 
which belongs to a 
collection of 811,400 
documents and the 
number of documents 
in which each word 
occurs (document 
frequency) is given. 

• idf, tf, tf-idf are 
calculated

can be
used for 
comparing 
documents



Mercer (positive definite)kernels
• Gram matrix is defined as

• If the Gram matrix is positive definite for any set of inputs, 
the Kernel is a Mercer kernel

• Mercer’s theorem: If the Gram matrix is positive definite,
we can compute an eigenvector decomposition of it as
follows:

where is a diagonal matrix of eigenvalues ௜
• Now consider an element of 
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Mercer (positive definite)kernels
• In general, if the kernel is Mercer, then there exists a 

function mapping to ஽ such that

• For example, consider the (non-stationary) polynomial
kernel

If = 2, = = and ଶ, we have

This can be written as ் ᇱ where
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Linearkernels
• Deriving the feature vector implied by a kernel is in general 

quite difficult, and only possible if the kernel is Mercer.
• However, deriving a kernel from a feature vector is easy

• If , we get the linear kernel, defined by 

• This is useful if the original data is already high dimensional, 
and if the original features are individually informative

• Not all high dimensional problems are linearly separable. 
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Matern kernels
• The Matern kernel, which is commonly used in Gaussian 

process regression

Where , , , and ఔ is a modified 
Bessel function
• As , this approaches the SE  kernel. If , the 

kernel simplifies to
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String kernels
• The real power of kernels arises when the inputs are 

structured objects.
• As an example, we now describe one way of comparing two 

variable length strings using a string kernel
• Consider two strings and of lengths , each defined 

over the alphabet
•
• Let x be the following sequence of length 110

• and let be the following sequence of length 153
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String kernels
• These strings have the substring LQE in common. We can 

define the similarity of two strings to be the number of 
substrings they have in common.

• Now let 𝑠 denote the number of times that substring 
appears in string

• More formally and more generally, let us say that s is a
substring of if we can write for some (possibly
empty)  strings , and .

where ௦ and ∗ is the set of all strings (of any 
length) from the alphabet 
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Using kernels insideGLMs
• We define a kernel machine to be a GLM (generalized 

linear model) where the input feature vector has the form

where ௞ are a set of centroids
• If κ is an RBF kernel, this is called an RBF network
• We will discuss ways to choose the 𝑘 parameters
• Note that in this approach, the kernel need not be a 

Mercer  kernel.
• We can use the kernelized feature vector for logistic 

regression by defining
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Using kernels insideGLMs
• This provides a simple way to define a non-linear decision

boundary
• As an example, consider the data coming from the

or function.
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Two classes of object which correspond to labels 0 and 1  
The inputs are colored shapes as shown in (a). These have 
been described by a set of features or attributes, which 
are stored in an design matrix , shown in (b).
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Design Matrix

Consider a simple toy example of classification



A function is fitted with data points with K uniformly 
spaced RBF prototypes ( 1 … 𝐾). The design matrix is a 

matrix given by:
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Design Matrix when a kernelized feature 
vector is used
RBF Kernel: Feature vector: 



Using kernels insideGLMs
• Use kernelized feature vector inside a linear regression
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L1VMs, RVMs, and other sparse vector
machines
• The main issue with kernel machines is: how do we choose 

the centroids μk?
• If the input is low-dimensional Euclidean space, we can

uniformly tile the space occupied by the data with 
prototypes

• However, this approach breaks down in higher numbers of
dimensions because of the curse of dimensionality

• A simpler approach is to make each example ௜ be a 
prototype, so we get
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L1VMs, RVMs, and other sparse vector
machines
• Now , we have as many parameters as data points
• However, we can use any of the sparsity- promoting

priors for to efficiently select a subset of the training
exemplars. We call this a sparse vector machine

• Most natural choice is to use L1 regularization resulting in L1VM
or “L1 regularised vector machine”

• By analogy, we define the use of an L2 regularizer to be a L2VM
or “L2-regularized vector machine”
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• Greater sparsity can be achieved by using Automatic relevance 
determination (ARD)/ sparse Bayesian learning (SBL) resulting 
in relevance vector machine or RVM

• Another very popular approach to creating a sparse kernel 
machine is to use a support vector machine or SVM

• Rather than using a sparsity-promoting prior, it essentially 
modifies the likelihood term. Nevertheless, the effect is
similar, as we will see

L1VMs, RVMs, and other sparse vector
machines
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Example of non-linear binary classification using an RBF kernel 
with bandwidth σ = 0.3. (a) L2VM with λ = 5. (b) L1VM with λ 
= 1. (c) RVM. (d) SVM with C = 1/λ chosen by cross validation. 
Black circles denote the support vectors
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Example of kernel based regression on the noisy sinc function using an RBF 
kernel with bandwidth 𝜎 = 0.3. (a) L2VM with 𝜆 = 0.5. (b) L1VM with 𝜆 = 0.5. (c) 
RVM. (d) SVM regression with 𝐶 = 1/𝜆 chosen by cross validation, and ϵ = 0.1. 
Red circles denote the retained training exemplars. 23



The kerneltrick
• Rather than defining our feature vector in terms of 

kernels, ଵ ே , we can work 
with the original feature vectors , but modify the 
algorithm so that it replaces all inner products of the 
form with a call to the kernel function, 

• This is called the kernel trick.
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Kernelized nearest neighborclassification
• Recall that in a 1-NN classifier, we need to compute the

Euclidean distance of a test vector to all  the training
points, find the closest one, and look up its label

• This can be kernelized by observing that

• This allows us to apply the nearest neighbor classifier to
structured data objects.
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Kernelized K-medoids clustering
• This is similar to K-means, but instead of representing each 

cluster’s centroid by the mean of all data vectors assigned to 
this cluster, we make each centroid be one of the data 
vectors themselves

• When we update the centroids, we look at each object ( ) 
that belongs to the cluster ( ), and measure the sum of its 
distances to all the others in the same cluster; we then pick 
the one which has the smallest such sum

where ௜ is the cluster which belongs to

• This algorithm can be kernelized by using (14.30) to replace 
the computation of distance “d”.
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Kernelized ridgeregression
• Applying the kernel trick to distance-based methodswas 

straightforward
• It is not so obvious how to apply it to parametric models

such as ridge regression
• The primal problem

• Let ஽ be some feature vector, and be the 
corresponding design matrix

• Minimize

• The optimal solution is given by
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Kernelized ridgeregression
• The dual problem

• Using the matrix inversion lemma 

• Takes ଷ  ଶ time to compute. This can be 
advantageous if is large

28



Proof for
• Start with

• Add to both sides

• Left-multiply both sides by and right-
multiply both sides by  

• Therefore
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Kernelized ridgeregression
• We can partially kernelize this, by replacing 𝑇 with the 

Gram matrix
• But what about the leading 𝑇 term?
• Let us define the following dual variables:

• Then we can rewrite the primal variables as follows

• This tells us that the solution vector is just a linear sum 
of the training vectors. When we plug this in at test 
time to compute the predictive mean, we get
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Kernelized ridgeregression
• So we have successfully kernelized ridge regression by 

changing from primal to dual variables
• This technique can be applied to many other linear 

models, such as logistic regression
• The cost of computing the dual variables is ଷ , 

whereas the cost of computing the primal variables is ଷ
• However, prediction using the dual variables takes 

time, while prediction using the primal variables 
only takes time
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Support vector machines(SVMs)
• Consider the ଶ regularized empirical risk function

• If is quadratic loss, this is equivalent to ridge regression
• We can rewrite these equations in a way that only 

involves inner products of the form ் , which we can 
replace by calls to a kernel function, 

• This is kernelized, but not sparse
• If we replace the quadratic loss with some other loss 

function, we can ensure that the solution is sparse, so 
that predictions only depend on a subset of the training 
data, known as support vectors

• This combination of the kernel trick plus a modified loss
function is known as a support vector machine or SVM 33



SVMs for regression
• The problem with kernelized ridge regression is that the

solution vector depends on all the training inputs
• We now seek a method to produce a sparse estimate
• Consider the epsilon insensitive loss function

• This means that any point lying inside an -tube around the 
prediction is not penalized
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SVMs for regression

(a) Illustration of ℓଶ, Huber and 𝜖-insensitive loss functions, 
where 𝜖 =  1.5

(b) Illustration of the 𝜖-tube used in SVM regression. 

35

Huber Loss:



SVMs for regression

• The corresponding objective function

• where ௜ ௜ ் ௜ ଴ and is a 
regularization constant

• This objective is convex and unconstrained, but not 
differentiable, because of the absolute value function in 
the loss term
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SVMs forregression
• One popular approach is to formulate the problem as a 

constrained optimization problem
• In particular, we introduce slack variables to represent the

degree to which each point lies outside the tube

• We can rewrite the objective               
as follows:

• This is a quadratic function of , and must be 
minimized subject to the linear constraints as well as 
the positivity constraints ௜ା and ௜ି
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SVMs for regression
• This is a standard quadratic program in 

variables.
• The optimal solution has the form

where ௜
• Furthermore, it turns out that the vector is sparse, 

because we don’t care about errors which are smaller 
than . The ௜ for which ௜ are called the support 
vectors. These are points for which the errors lie on or 
outside the -tube
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SVMs for regression
• Once the model is trained, we can then make predictions

using

• Plugging in the definition of we get

• Finally, we can replace ௜் with ௜ to get a 
kernelized solution
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SVMs forclassification
• The Hinge loss is defined as

• We have assumed the labels are , 
is our “confidence” in choosing label ; however, it 
need not have any probabilistic semantics

Illustration of various 
loss functions for 
binary classification. 
The horizontal axis is 
the margin η, the 
vertical axis is the 
loss. 
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SVMs forclassification
• The overall objective has the form

• Once again, this is non-differentiable, because of the max 
term. However, by introducing slack variables ௜, one can  
show that this is equivalent to solving

• This is a quadratic program in N + D + 1 variables, subject 
to constraints. Standard solvers take ଷ time
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SVMs forclassification
• One can show that the solution has the form

where is sparse (because of the hinge loss)
• The ௜ for which ௜ are called support vectors; these

are points which are either incorrectly classified, or are  
classified correctly but are on or inside the margin
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SVMs forclassification
• At test time, prediction is done using

• Using the kernel trick we have

This takes time to compute, where is the 
number of support vectors. This depends on the sparsity 
level, and hence on the regularizer
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The large marginprinciple

Illustration of the large margin principle
Left: a separating hyper-plane with large margin
Right: a separating hyper-plane with small margin
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The large marginprinciple
Illustration of the geometry of a 
linear decision boundary in 2d. A 
point 𝐱 is classified as belonging in 
decision region 𝑅ଵ if 𝑓(𝐱)  >  0, 
otherwise it belongs in decision 
region 𝑅଴; here 𝑓(𝐱) is known as a 
discriminant function. The 
decision boundary is the set of 
points such that 𝑓(𝐱)  =  0. 𝒘 is a 
vector which is perpendicular to 
the decision boundary. The term 𝑤଴ controls the distance of the 
decision boundary from the origin. 
The signed distance of 𝐱 from its 
orthogonal projection onto the
decision boundary, 𝒙ୄ, is given by 𝑓(𝐱)/||𝒘||. 
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The large marginprinciple
• Here, we derive the Equation form a completely different 

perspective.

• where is the distance of from the decision boundary 
whose normal vector is , and ୄ is the orthogonal 
projection of onto this boundary

• Now so 
• Hence
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The large marginprinciple
• We would like to make this distance as

large as possible
• Intuitively, the best one to pick is the one that maximizes

the margin, i.e., the perpendicular distance to the closest
point

• In addition, we want to ensure each point is on the correct
side of the boundary, hence we want 𝑖 𝑖 .

• So our objective becomes
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The large marginprinciple
• Our objective: 

• Note that by rescaling the parameters using and ଴ ଴, we do not change the distance of any point to  the
boundary, since the factor cancels out when we divide by

.
• Therefore let us define the scale factor such that 𝑖 𝑖 for

the point that is closest to the decision boundary
• We therefore want to optimize

• The constraint says that we want all points to be on the correct
side of the decision boundary with a margin of at least 1
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Soft marginconstraints
• If the data is not linearly separable (even after using the

kernel trick), there will be no feasible solution in which௜ ௜ for all .
• We replace the hard constraints with the soft margin

constraints that 𝑖 𝑖 𝑖.
• Our objective was:

• The new objective  becomes
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Soft marginconstraints
• We therefore have introduced
slack variables ௜ such that௜ if the point is on or
inside the correct margin
boundary, and ௜ ௜ ௜
otherwise
• ௜ the point lies
inside the margin, but on the
correct side of the decision
boundary
• If ௜ , the point lies on the
wrong side of the decision
boundary
• Points with circles around 
them are support vectors. 50
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Probabilisticoutput
• An SVM classifier produces a hard-labeling, 

.
• However, we often want a measure of confidence in our

prediction
• One heuristic approach is to interpret as the log-odds 

ratio, 

• where a, b can be estimated by maximum likelihood on a 
separate validation set

• However, the resulting probabilities are not particularly 
well calibrated
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Probabilisticoutput

Log-odds vs x for 3 different methods
Suppose we have 1d data where p(x|y = 0) =Unif(0, 1) and p(x|y = 1) 
= Unif(0.5, 1.5). Since the class-conditional distributions overlap in 
the middle, the log-odds of class 1 over class 0 should be zero in [0.5, 
1.0], and infinite outside this region.
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SVMsfor multi-class classification
• A binary logistic regression model is “upgraded” to the 

multi-class case, by  replacing the sigmoid function with
the softmax, and the Bernoulli distribution with the
multinomial.

• Upgrading an SVM to the multi-class case is not so easy, 
since the outputs are not on a calibrated scale and hence  
are hard to compare to eachother

• The obvious approach is to use a one-versus-the-rest 
approach (also called one-vs-all), in which we train binary  
classifiers, ௖ , where the data from class is treated as 
positive, and the data from all the other classes istreated  
as negative
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SVMsfor multi-class classification
• However, this can result in regions of input space which 

are ambiguously labeled.
• The green region is predicted to be both class 1 and class 

2.
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SVMsfor multi-class classification
• Another approach is to use the one-versus-one or OVO

approach, also called all pairs, in which we train C(C−1)/2  
classifiers to discriminate all pairs ஼,஼ᇱ

• We then classify a point into the class which has the 
highest number of votes. However, this can also result in 
ambiguities
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ChoosingC
• Typically C  is chosen by cross-validation.
• C  interacts quite strongly with the kernelparameters.
• To choose C  efficiently, one can develop a path following 

algorithm 
• The basic idea is to start with λ large, so that the margin

is wide, and hence all points are inside of it
and  have ௜

• By slowly decreasing λ, a small set of points will move
from inside the margin to outside, and their ௜ values
will  change from 1 to 0, as they cease to be support
vectors
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SVM vs. Other Methods
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SVM classifier break-even F1 results are shown for the 10 
largest categories and for micro-averaged performance 
over all 90 categories on the Reuters-21578 data set. 
(https://nlp.stanford.edu/IR-
book/html/htmledition/experimental-results-1.html)



Summary of key points
• Summarizing the above discussion, we recognize that SVM 

classifiers involve three key ingredients:
• The kernel trick : preventunderfitting
• Sparsity, large margin principle : prevent overfitting
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