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INTRODUCTION

• Improved performance can be obtained by combining 
multiple models together in some way, instead of just 
using a single model in isolation

• For instance, we might train 𝐿 different models and then 
make predictions using the average of the predictions 
made by each model. Such combinations of models are 
sometimes called committees.

• An important variant of the committee method, known 
as boosting, involves training multiple models in 
sequence in which the error function used to train a 
particular model depends on the performance of the 
previous models



BAGGING
• Find a way to introduce variability between the different 

models within the committee

• One approach is to use bootstrap datasets where 
multiple data sets are created

• Suppose our original data set consists of 𝑁 data points 
𝑋 = {𝑥1, … , 𝑥𝑁}. Create a new data set 𝑋𝐵 by drawing 𝑁
points at random from 𝑋, with replacement, so that 
some points in 𝑋 may be replicated in 𝑋𝐵, whereas other 
points in 𝑋 may be absent from 𝑋𝐵. 

• This process can be repeated 𝐿 times to generate 𝐿 data 
sets each of size 𝑁



BAGGING
• Consider a regression problem in which we are trying to 

predict the value of a single continuous variable, and 
suppose we generate 𝑀 bootstrap data sets and then 
use each to train a separate copy 𝑦𝑚(𝐱) of a predictive 
model where 𝑚 = 1,… ,𝑀. The committee prediction is 
given by

• The procedure is known as bootstrap aggregation or 
bagging



BAGGING
• Suppose the true regression function that we are trying 

to predict is given by ℎ(𝐱), so that the output of each of 
the models can be written as the true value plus an error 
in the form

• Average sum-of-squares error then takes the form 

• Where           denotes a frequentist expectation with 
respect to the distribution of the input vector 𝐱. The 
average error made by the models acting individually is 
therefore 



BAGGING
• Similarly, the expected error from the committee is given 

by

• If we assume that the errors have zero mean and are 
uncorrelated, so that



BAGGING
• We obtain

• The average error of a model can be reduced by a factor 
of 𝑀 simply by averaging 𝑀 versions of the model

• Unfortunately, it depends on the key assumption that 
the errors due to the individual models are uncorrelated 

• In practice, the errors are typically highly correlated, and 
the reduction in overall error is generally small

• However, it can be shown that the expected committee 
error will not exceed the expected error of the 
constituent models i.e.



BOOSTING
• The principal difference from bagging, is that the base 

classifiers are here are trained in sequence

• Each base classifier is trained using a weighted form of the 
data set in which the weighting coefficient associated with 
each data point depends on the performance of the previous 
classifiers

• Points that are misclassified by one of the base classifiers are 
given greater weight when used to train the next classifier in 
the sequence

• Once all the classifiers have been trained, their predictions 
are then combined through a weighted majority voting 
scheme

• Here we describe the most widely used form of boosting 
algorithm called AdaBoost for a 2-class classification problem



BOOSTING

Schematic illustration of the boosting framework. Each base classifier 𝑦𝑚(𝐱) is 
trained on a weighted form of the training set (blue arrows) in which the 

weights 𝑤𝑛
(𝑚)

depend on the performance of the previous base  
classifier 𝑦𝑚−1(𝐱) (green arrows). Once all base classifiers have been trained, 
they are combined to give the final classifier 𝑌𝑀(𝐱) (red arrows)



AdaBoost Algorithm

1. Initialize the data weighting coefficients {𝑤𝑛} by 

setting {𝑤𝑛
(1)
} = 1/𝑁 for n = 1,… , N

2. For m = 1,… ,M:
a) Fit a classifier 𝑦𝑚(𝐱) to the training data by minimizing the 

weighted error function

where                                     is the indicator function and

equals 1 when and 0 otherwise

The training data comprises input vectors 𝐱1, … , 𝐱𝑁
along with corresponding binary target variables 
t1, … , 𝑡𝑁 where 𝑡𝑛 ∈ {−1, 1}



AdaBoost Algorithm

b) Evaluate the quantities

and then use these to evaluate

c) Update the data weighting coefficients

3. Make predictions using the final model, which is given 
by



AdaBoost Algorithm

The base learners consist of simple thresholds applied to one or other of the 
axes. Each figure shows the decision boundary of the most recent base learner 
(dashed black line) and the combined decision boundary of the ensemble (solid 
green line). Each data point is depicted by a circle whose radius indicates the 
weight assigned to that data point when training the most recently added base 
learner.



BOOSTING
• In subsequent iterations the weighting coefficients 𝑤𝑛

(𝑚)

are increased for data points that are misclassified and 
decreased for data points that are correctly classified

• Successive classifiers are thereby forced to place greater 
emphasis on points that have been misclassified by 
previous classifiers, and data points that continue to be 
misclassified by successive classifiers receive ever greater 
weightage

• The quantities 𝜖𝑚 represent weighted measures of the 
error rates of each of the base classifiers on the data set

• The weighting coefficients 𝛼𝑚 give greater weight to the 
more accurate classifiers when computing the overall 
output 



Minimizing exponential error
• An interpretation of boosting in terms of the sequential 

minimization of an exponential error function

• Consider the exponential error function defined by

where 𝑓𝑚(𝐱) is a classifier defined in terms of a linear 
combination of base classifiers 𝑦𝑙(𝐱) of the form

• 𝑡𝑛 ∈ {−1, 1} are the training set target values

• Goal is to minimize 𝐸 w.r.t. the weighting coefficients 𝛼𝑙
and the parameters of the base classifiers 𝑦𝑙(𝐱)



Minimizing exponential error
• Suppose that the base classifiers 𝑦1(𝐱), … , 𝑦𝑚−1(𝐱) and 

their coefficients 𝛼1, … , 𝛼𝑚−1, are fixed. 

• We are minimizing only with respect to 𝛼𝑚 and 𝑦𝑚(𝐱)

• The error function can be written as

where the coefficients can be 
viewed as constants because we are optimizing only 𝛼𝑚
and 𝑦𝑚(𝐱)



Minimizing exponential error
• Let us denote by 𝑇𝑚 the set of data points that are 

correctly classified by 𝑦𝑚(𝐱), and the remaining 
misclassified points by 𝑀𝑚

• The error function can be rewritten as

• When we minimize this with respect to 𝑦𝑚(𝐱), we see 
that the second term is constant which is equivalent to 
minimizing the expression given in the algorithm. Similar, 
is the case where we minimize with respect to 𝛼𝑚



Minimizing exponential error
• Having found 𝛼𝑚 and 𝑦𝑚(𝐱), the weights on the data 

points are updated using

• Making use of the fact that

we see that the weights 𝑤𝑛
(𝑚)

are updated at the next     
iteration using

• Because the term exp(−𝛼𝑚/2) is independent of 𝑛, we 
see that it weights all data points by the same factor and 
can be discarded



BOOSTING TREES
• Regression trees partition the space of all joint predictor 

variable values into disjoint regions 𝑅𝑗,  j = 1, 2,... , J

• A constant 𝛾𝑗 is assigned to each such region and the 
predictive rule is

• Thus a tree can be formally expressed as

with parameters . J is usually treated as a    
meta-parameter

• The parameters are found by minimizing the empirical 
risk



BOOSTING TREES
• The boosted tree model is a sum of such trees

• We look at a generic gradient tree-boosting algorithm for 
regression. Specific algorithms are obtained by inserting 
different loss criteria 𝐿(𝑦, 𝑓(𝑥))



GRADIENT TREE BOOSTING ALGORITHM



GRADIENT TREE BOOSTING

• The first line of the algorithm initializes to the optimal 
constant model, which is just a single terminal node tree 

• The components of the negative gradient computed at 
line 2(a) are referred to as generalized or pseudo 
residuals, 𝑟

• Two basic tuning parameters are the number of 
iterations 𝑀 and the sizes of each of the constituent 
trees 𝐽𝑚, where 𝑚 = 1, 2, … ,𝑀




