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Bishop sections 8.1 and 8.3



BAYESIAN NETWORKS

• In order to motivate the use of directed graphs to 
describe probability distributions, consider first an 
arbitrary joint distribution 𝑝(𝑎, 𝑏, 𝑐) over three variables 
𝑎, 𝑏, and 𝑐.

• By application of the product rule of probability, we can 
write the joint distribution in the form

• A second application of the product rule, this time to the 
second term on the right hand side of (8.1), gives

• Note that this decomposition holds for any choice of the 
joint distribution.



BAYESIAN NETWORKS
• We now represent the right-hand side of (8.2) in terms of a 

simple graphical model as follows.

• First we introduce a node for each of the random variables 𝑎, 
𝑏, and 𝑐 and associate each node with the corresponding 
conditional distribution on the right-hand side of (8.2).

• Then, for each conditional distribution we add directed links 
(arrows) to the graph from the nodes corresponding to the 
variables on which the distribution is conditioned.

• Thus for the factor 𝑝(𝑐|𝑎, 𝑏), there will be links from nodes 𝑎
and 𝑏 to node 𝑐, whereas for the factor 𝑝(𝑎) there will be no 
incoming links.

• If there is a link going from a node 𝑎 to a node 𝑏, then we say 
that node 𝑎 is the parent of node 𝑏, and we say that node 𝑏 is 
the child of node 𝑎.



BAYESIAN NETWORKS

A directed graphical model representing the joint probability 
distribution over three variables 𝑎, 𝑏, and 𝑐, corresponding to the 
decomposition on the right-hand side of



BAYESIAN NETWORKS
• Consider the joint distribution over 𝐾 variables given by 
𝑝(𝑥1, . . . , 𝑥𝐾).

• By repeated application of the product rule of probability, 
this joint distribution can be written as a product of 
conditional distributions, one for each of the variables

• For a given choice of 𝐾, we can again represent this as a 
directed graph having 𝐾 nodes, one for each conditional 
distribution on the right-hand side of (8.3), with each 
node having incoming links from all lower numbered 
nodes.

• We say that this graph is fully connected because there is 
a link between every pair of nodes.



BAYESIAN NETWORKS

• Example of a directed acyclic graph describing the joint 
distribution over variables 𝑥1, . . . , 𝑥7.

• This is not a fully connected graph because, for instance, there is 
no link from 𝑥1 to 𝑥2 or from 𝑥3 to 𝑥7.



BAYESIAN NETWORKS
• The joint distribution of all 7 variables is given by

• We can now state in general terms the relationship 
between a given directed graph and the corresponding 
distribution over the variables.

• The joint distribution defined by a graph is given by the 
product, over all of the nodes of the graph, of a conditional 
distribution for each node conditioned on the variables 
corresponding to the parents of that node in the graph.

• Thus, for a graph with 𝐾 nodes, the joint distribution is 
given by



BAYESIAN NETWORKS

where pa𝑘 denotes the set of parents of 𝑥𝑘, and 
x = {𝑥1, . . . , 𝑥𝐾}.

• This key equation expresses the factorization properties 
of the joint distribution for a directed graphical model.

• The directed graphs that we are considering are subject 
to an important restriction namely that there must be no 
directed cycles.

• Such graphs are also called directed acyclic graphs, or 
DAGs.

• This is equivalent to the statement that there exists an 
ordering of the nodes such that there are no links that go 
from any node to any lower numbered node.



GENERATIVE MODELS
• Consider an object recognition task in which each observed data 

point corresponds to an image (comprising a vector of pixel 
intensities) of one of the objects. 

• In this case, the latent variables might have an interpretation as the 
position and orientation of the object. 

• Given a particular observed image, our goal is to find the posterior 
distribution over objects, in which we integrate over all possible 
positions and orientations.



DISCRETE VARIABLES
• Here, the parent and child node each correspond to 

discrete variables.

• The probability distribution 𝑝(x|𝜇) for a single discrete 
variable x having 𝐾 possible states (using the 1-of-𝐾
representation) is given by:

and is governed by the parameters 𝜇 = 𝜇1, . . . , 𝜇𝐾
𝑇.

• Due to the constraint σ𝑘 𝜇𝑘 = 1, only 𝐾 − 1 values for 
𝜇𝑘 need to be specified in order to define the 
distribution.



DISCRETE VARIABLES
• Now suppose that we have two discrete variables, x1 and 
x2, each of which has 𝐾 states, and we wish to model 
their joint distribution.

• We denote the probability of observing both 𝑥1𝑘 = 1 and 
𝑥2𝑙 = 1 by the parameter 𝜇𝑘𝑙, where 𝑥1𝑘 denotes the 𝑘th

component of x1, and similarly for 𝑥2𝑙.

• The joint distribution can be written:

• Because the parameters 𝜇𝑘𝑙 are subject to the constraint 
σ𝑘σ𝑙 𝜇𝑘𝑙 = 1, this distribution is governed by 
𝐾2 − 1 parameters.



DISCRETE VARIABLES
• It is easily seen that the total number of parameters that 

must be specified for an arbitrary joint distribution over 
𝑀 variables is 𝐾𝑀 − 1 and therefore grows exponentially 
with the number 𝑀 of variables.

• Using the product rule, we can factor the joint 
distribution 𝑝(x1, x2) in the form 𝑝(x2|x1)𝑝(x1), which 
corresponds to a two-node graph with a link going from 
the x1 node to the x2 node as shown below:

(a) This fully-connected graph describes a 
general distribution over two 𝐾-state 
discrete variables having a total of 
𝐾2 − 1 parameters. (b) By dropping the 
link between the nodes, the number of 
parameters is reduced to 2(𝐾 − 1).



DISCRETE VARIABLES
• The marginal distribution 𝑝(x1) is governed by 
𝐾 − 1 parameters.

• Similarly, the conditional distribution 𝑝(x2|x1) requires 
the specification of 𝐾 − 1 parameters for each of the 𝐾
possible values of x1.

• The total number of parameters that must be specified in 
the joint distribution is therefore 
(𝐾 − 1) + 𝐾(𝐾 − 1) = 𝐾2 − 1.

• Now suppose that the variables x1 and x2 were 
independent.

• Each variable is then described by a separate multinomial 
distribution, and the total number of parameters would be 
2(𝐾 − 1).



DISCRETE VARIABLES
• For a distribution over 𝑀 independent discrete variables, 

each having 𝐾 states, the total number of parameters 
would be 𝑀(𝐾 − 1), which therefore grows linearly with 
the number of variables.

• From a graphical perspective, we have reduced the 
number of parameters by dropping links in the graph, at 
the expense of having a restricted class of distributions.

• If we have 𝑀 discrete variables x1, . . . , x𝑀 and if the graph 
is fully connected then we have a completely general 
distribution having 𝐾𝑀 − 1 parameters, whereas if there 
are no links in the graph the joint distribution factorizes 
into the product of the marginals, and the total number 
of parameters is 𝑀(𝐾 − 1).



DISCRETE VARIABLES
• The marginal distribution 𝑝(x1) requires 𝐾 − 1 parameters, 

whereas each of the 𝑀 − 1 conditional distributions 
𝑝(x𝑖|x𝑖−1), for 𝑖 = 2, . . . , 𝑀, requires 𝐾(𝐾 − 1) parameters.

• This gives a total parameter count of 𝐾 − 1 + (𝑀 − 1)𝐾(𝐾 −
1), which is quadratic in 𝐾 and which grows linearly (rather 
than exponentially) with the length 𝑀 of the chain.

• An alternative way to reduce the number of independent 
parameters in a model is by sharing parameters (also known as 
tying of parameters). For instance, in the chain example given 
below, we can arrange that all of the conditional distributions 
𝑝(x𝑖|x𝑖−1), for 𝑖 = 2, . . . , 𝑀, are governed by the same set of 
𝐾(𝐾 − 1) parameters.

• Together with the 𝐾 − 1 parameters governing the distribution 
of 𝐱1, this gives a total of 𝐾2 − 1 parameters that must be 
specified in order to define the joint distribution.



LINEAR-GAUSSIAN MODELS
• Consider an arbitrary directed acyclic graph over 𝐷

variables in which node 𝑖 represents a single continuous 
random variable 𝑥𝑖 having a Gaussian distribution.

• The mean of this distribution is taken to be a linear 
combination of the states of its parent nodes pa𝑖 of node 𝑖

where 𝑤𝑖𝑗 and 𝑏𝑖 are parameters governing the mean, and 
𝑣𝑖 is the variance of the conditional distribution for 𝑥𝑖.



LINEAR- GAUSSIAN MODELS
• The log of the joint distribution is then the log of the 

product of these conditionals over all nodes in the graph 
and hence takes the form:

where x = 𝑥1, . . . , 𝑥𝐷
𝑇 and ‘const’ denotes terms 

independent of x.

• We see that this is a quadratic function of the  
components of 𝐱, and hence the joint distribution 𝑝(x) is 
a multivariate Gaussian.



LINEAR- GAUSSIAN MODELS
• We can determine the mean and covariance of the joint 

distribution recursively as follows.

• Each variable 𝑥𝑖 has (conditional on the states of its 
parents) a Gaussian distribution of the form (8.11) and so

where 𝜖𝑖 is a zero mean, unit variance Gaussian random 
variable satisfying 𝔼[𝜖𝑖] = 0 and 𝔼[𝜖𝑖𝜖𝑗] = 𝐼𝑖𝑗 , where 𝐼𝑖𝑗
is the 𝑖, 𝑗 element of the identity matrix.

• Taking the expectation, we have



LINEAR- GAUSSIAN MODELS
• We can use (8.14) and (8.15) to obtain the 𝑖, 𝑗 element of 

the covariance matrix for 𝑝(x) in the form of a recursion 
relation

and so the covariance can be evaluated recursively starting 
from the lowest numbered node.



• Consider the example

which has a link missing between variables 𝑥1 and 𝑥3.

• Using the recursion relations (8.15) and (8.16), we see 
that the mean and covariance of the joint distribution are 
given by







Consider three variables a, b, and c, and
suppose that the conditional distribution of a, given b and c, is 
such that it does not depend on the value of b, so that:

We say that a is conditionally independent of b given c

This can be expressed in a slightly different way if we consider 
the joint distribution of a and b conditioned on c, which we 
can write in the form

p(a, b|c) = p(a|b,c) p(b|c) = p(a|c) p(b|c).



We see that, conditioned on c, the joint distribution of a and 
b factorizes into the product of the marginal distribution of a 
and the marginal distribution of b (again both conditioned 
on c). This says that the variables a and b are statistically 
independent, given c.

p(a, b|c) = p(a|c) p(b|c).

This notation denotes that a is conditionally independent 
of b given c and is equivalent to



p(a, b, c) = p(a|c) p(b|c) p(c).

by marginalizing both sides of above with respect to c gives

where ∅ denotes the empty set, and the symbol ⊥⊥ means 

that the conditional independence property does not hold, 
in general.



From
p(a, b, c) = p(a|c) p(b|c) p(c), we also have:

The node c is said to be tail-to-tail with respect

to this path because the node is connected to the tails of 
the two arrows, and the presence of such a path connecting 
nodes a and b causes these nodes to be dependent.

However, when we condition on node c, as in Figure, 
the conditioned node ‘blocks’ the path from a to b and 
causes a and b to become (conditionally) independent.





Using Bayes’
Theorem,
and

The node c is said to be head-to-tail with respect to the path 
from node a to node b. Such a path connects nodes a and b 
and renders them dependent. If we now observe c, as in 
Figure, then this observation ‘blocks’ the path from a to b 
and so we obtain the conditional independence property.









MARKOV RANDOM FIELDS
• A Markov random field, also known as a Markov network 

or an undirected graphical model, has a set of nodes 
each of which corresponds to a variable or group of 
variables, as well as a set of links each of which connects 
a pair of nodes. The links are undirected, that is they do 
not carry arrows.

• It is possible to define graphical semantics for probability 
distributions such that conditional independence is 
determined by simple graph separation.

• By removing the directionality from the links of the 
graph, the asymmetry between parent and child nodes 
is removed.



MARKOV RANDOM FIELDS
• Suppose that in an undirected graph we identify three 

sets of nodes, denoted 𝐴, 𝐵, and 𝐶, and that we 
consider the conditional independence property

i.e., 𝐴 is conditionally independent of 𝐵 given 𝐶.

An example of an undirected 

graph in which every path from 

any node in set 𝐴 to any node in 

set 𝐵 passes through at least one 

node in set 𝐶. Consequently the 

conditional independence 

property 𝐴 ⫫ 𝐵 | 𝐶 holds for any 

probability distribution described 

by this graph.



MARKOV RANDOM FIELDS
• To test whether this property is satisfied by a probability 

distribution defined by a graph we consider all possible 
paths that connect nodes in set 𝐴 to nodes in set 𝐵.

• If all such paths pass through one or more nodes in set 
𝐶, then all such paths are ‘blocked’ and so the 
conditional independence property holds.

• However, if there is at least one such path that is not 
blocked, then the property does not necessarily hold, or 
more precisely there will exist at least some distributions 
corresponding to the graph that do not satisfy this 
conditional independence relation.



MARKOV RANDOM FIELDS
• An alternative way to view the conditional independence test is to 

imagine removing all nodes in set 𝐶 from the graph together with any 
links that connect to those nodes.

• We then ask if there exists a path that connects any node in 𝐴 to any 
node in 𝐵. If there are no such paths, then the conditional 
independence property must hold.

• The Markov blanket for an undirected graph takes a particularly simple 
form, because a node will be conditionally independent of all other 
nodes conditioned only on the neighboring nodes.

• Consider a node 𝑥𝑖. The set of nodes comprising the parents, the 
children and the co-parents of 𝑥𝑖 is called the Markov blanket.



MARKOV RANDOM FIELDS
• If we consider two nodes 𝑥𝑖 and 𝑥𝑗 that are not 

connected by a link, then these variables must be 
conditionally independent given all other nodes in the 
graph. 

• This follows from the fact that there is no direct path 
between the two nodes, and all other paths pass 
through nodes that are observed, and hence those paths 
are blocked. 

• This conditional independence property can be 
expressed as



MARKOV RANDOM FIELDS

where x\{𝑖,𝑗} denotes the set x of all variables with 𝑥𝑖 and 
𝑥𝑗 removed. 

• The factorization of the joint distribution must therefore 
be such that 𝑥𝑖 and 𝑥𝑗 do not appear in the same factor 
in order for the conditional independence property to 
hold for all possible distributions belonging to the graph.

• This leads us to consider a graphical concept called a 
clique, which is defined as a subset of the nodes in a 
graph such that there exists a link between all pairs of 
nodes in the subset.

• A maximal clique is a clique such that it is not possible to 
include any other nodes from the graph in the set 
without it ceasing to be a clique.



MARKOV RANDOM FIELDS
A four-node undirected graph showing a clique (outlined in  green) 
and a maximal clique (outlined in blue).

• This graph has five cliques of two nodes given by 
{𝑥1, 𝑥2}, {𝑥2, 𝑥3}, {𝑥3, 𝑥4}, {𝑥4, 𝑥2}, and {𝑥1, 𝑥3}, as well as two 
maximal cliques given by {𝑥1, 𝑥2, 𝑥3} and {𝑥2, 𝑥3, 𝑥4}. The set 
{𝑥1, 𝑥2, 𝑥3, 𝑥4} is not a clique because of the missing link from 𝑥1
to 𝑥4.



MARKOV RANDOM FIELDS
• Let us denote a clique by 𝐶 and the set of variables in 

that clique by x𝐶. Then the joint distribution is written as 
a product of potential functions 𝜓𝐶(x𝐶) over the 
maximal cliques of the graph

• Here the quantity 𝑍, sometimes called the partition 
function, is a normalization constant and is given by

which ensures that the distribution 𝑝(x) given by (8.39) is 
correctly normalized.



• To establish the connection between conditional 
independence and factorization for undirected graphs, 
we need to restrict attention to potential functions 
𝜓𝐶(x𝐶) that are strictly positive.

• Given this restriction, we can make a precise relationship 
between factorization and conditional independence. 

• Because we are restricted to potential functions which 
are strictly positive it is convenient to express them as 
exponentials

where 𝐸(x𝐶) is called an energy function, and the 
exponential representation is called the Boltzmann 
distribution.

• The joint distribution is defined as the product of 
potentials, and so the total energy is obtained by adding 
the energies of each of the maximal cliques.



Illustration: Image de-noising



RELATION TO DIRECTED GRAPHS
• We have introduced two graphical frameworks for 

representing probability distributions,  corresponding to 
directed and undirected graphs.

• Consider first the problem of taking a model that is 
specified using a directed graph and trying to convert it 
to an undirected graph.

(a) Example of a directed graph. (b) The equivalent undirected graph.



• Here the joint distribution for the directed graph is given 
as a product of conditionals in the form

• Now let us convert this to an undirected graph 
representation.

• In the undirected graph, the maximal cliques are simply 
the pairs of neighboring nodes, and so we get the joint 
distribution in the form

RELATION TO DIRECTED GRAPHS



• This is easily done by identifying

where we have absorbed the marginal 𝑝(𝑥1) for the first 
node into the first potential function. Note that in this 
case, the partition function 𝑍 = 1.

• Let us consider how to generalize this construction, so 
that we can convert any distribution specified by a 
factorization over a directed graph into one specified by 
a factorization over an undirected graph.

RELATION TO DIRECTED GRAPHS



• This can be achieved if the clique potentials of the 
undirected graph are given by the conditional 
distributions of the directed graph.

• In order for this to be valid, we must ensure that the set 
of variables that appears in each of the conditional 
distributions is a member of at least one clique of the 
undirected graph.

• For nodes on the directed graph having just one parent, 
this is achieved simply by replacing the directed link with 
an undirected link.

• However, for nodes in the directed graph having more 
than one parent, this is not sufficient.

RELATION TO DIRECTED GRAPHS



• Consider a simple directed graph over 4 nodes

Example of a simple directed graph (a) and the  
corresponding moral graph (b).

RELATION TO DIRECTED GRAPHS



• The joint distribution for the directed graph takes the 
form

• We see that the factor 𝑝(𝑥4|𝑥1, 𝑥2, 𝑥3) involves the four 
variables 𝑥1, 𝑥2, 𝑥3, and 𝑥4, and so these must all belong 
to a single clique if this conditional distribution is to be 
absorbed into a clique potential.

• To ensure this, we add extra links between all pairs of 
parents of the node 𝑥4.

• This process of ‘marrying the parents’ has become 
known as moralization, and the resulting undirected 
graph, after dropping the arrows, is called the moral 
graph.

RELATION TO DIRECTED GRAPHS



• It is important to observe that the moral graph in this 
example is fully connected and so exhibits no conditional 
independence properties, in contrast to the original 
directed graph.

• Thus in general to convert a directed graph into an 
undirected graph, we first add additional undirected 
links between all pairs of parents for each node in the 
graph and then drop the arrows on the original links to 
give the moral graph.

• Then we initialize all of the clique potentials of the moral 
graph to 1.

• We then take each conditional distribution factor in the 
original directed graph and multiply it into one of the 
clique potentials.

RELATION TO DIRECTED GRAPHS



• There will always exist at least one maximal clique that 
contains all of the variables in the factor as a result of the 
moralization step. Note that in all cases the partition 
function is given by 𝑍 = 1.

• The process of converting a directed graph into an 
undirected graph plays an important role in exact 
inference techniques.

• Converting from an undirected to a directed 
representation is much less common and in general 
presents problems due to the normalization constraints.

RELATION TO DIRECTED GRAPHS


