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where

1s called the logistic function or the sigmoid function.



We want to choose € so as to minimize J(f). To do so, let’s use a search
algorithm that starts with some “mmitial guess” for 6, and that repeatedly
changes 6 to make J(#) smaller, until hopefully we converge to a value of
0 that minimizes J(@). Specifically, let’s consider the gradient descent
algorithm, which starts with some initial #, and repeatedly performs the
update:

",

(This update is simultaneously performed for all values of 7 = 0,....n.)
Here., a 1s called the learning rate. This 1s a very natural algorithm that
repeatedly takes a step 1n the direction of steepest decrease of .J.




where

g(z)(1 — g(2)).




Logistic Regression

p(X)=Pr(Y¥ =1|X)
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Logistic regression uses the form

(e~ 2.71828 is a mathematical constant [Euler’s number.])
It 18 easy to see that no matter what values [, 51 or X take,
p(X') will have values between 0 and 1.

A bit of rearrangement gives (Solve it now)

log (1 ﬁ(jg(}) = fo + B X.

'This monotone transformation i1s called the log odds or logit
transformation of p(X).



Maximum lLikelihood

We use maximum likelihood to estimate the parameters.

((Bo. B) = || plz:) ] (1—p(z).

iy =1 iy =0

This likelihood gives the probability of the observed zeros and
ones 1n the data. We pick Gy and 31 to maximize the likelihood
of the observed data.

Logistic regression with several variables

p(X) \_ . .,
lﬂg(l—p{}f)) = By + 51 X1 + + Bp Xy
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So. given the logistic regression model, how do we fit 6 for 1t”

Let us assume that

Ply=1|z;0) = hg(z) Prob. model + MLE process
Ply=0|z;8) = 1— hg(x)

Note that this can be written more compactly as

1—
p(y | ;0) = (ho(z))” (1 — he(z)) ™"
Assuming that the m traming examples were generated mdependently, we
can then write down the likelihood of the parameters as

L#) = py|X;0)




_ ha(@) = 9(6"0) = T

1t will be easier to maximiz:

where

N 1
log L(6) 9:) = 1=

1s called the logistic function or the sigmoid function.

S
i=1

one training example (z,y), and take derivatives to derive the stochastic
osradient ascent rule:
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the stochastic gradient ascent rule

H‘- _H —|—;1{u

Same as LMS learning rule - except the non-linear sigmoid in "h”.

Newton Raphson’s method for maximizing ()




Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.
It 1s easily generalized to more than two classes. One version
(used in the R package glmnet) has the symmetric form

E.ﬂﬂk+.ﬂlkxl+---+.ﬁpkxp

Pl‘(}r — MX) — ?’il eBoe+B1e X1+ +Fp Xp

Here there 15 a linear function tor each class.

Multiclass logistic regression 1s also referred to as multinomial
TEGTreESSTON.




Consider a general classification problem, in which the response
variable y can take on any one of k values, soy € {1, 2, ..., k}.




response function




9)

The conditional distribution of p{'y — Eh*
y given X iIs :

This model, which applies to classification problems where y €
{1, ..., k}, is called softmax regression.
It is a generalization of logistic regression.



If we have a training set of m examples {(x(i), y(i));i=1,...

and would like to learn the parameters 0, of this model,
write down the log-likelihood, as:
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