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CLASSIFICATION AND REGRESSION TREES

* The process of selecting a specific model, given a new
input X, can be described by a sequential decision
making process corresponding to the traversal of a
binary tree (one that splits into two branches at each
node).

* Here we focus on a particular tree-based framework
called classification and regression trees, or CART
(Breiman et al., 1984)
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lllustration of a two-dimensional input
space that has been partitioned into five
regions using axis-aligned boundaries.

ION AND REGRESSION TREES

Binary tree corresponding to
the partitioning of input space
(eg BSP tree)



CLASSIFICATION AND REGRESSION TREES

* In the example given in previous slide, the first step
divides the whole of the input space into two regions
according to whether x; < 6, or x; > 0, where 8 is a
parameter of the model.

* This creates two sub regions, each of which can then be
subdivided independently.

* For instance, the region x; < 6, is further subdivided
according to whether x, < 6, or x, > 8,, giving rise to
the regions denoted A and B.

* For any new input x, we determine which region it falls
into by starting at the top of the tree at the root node
and following a path down to a specific leaf node
according to the decision criteria at each node.



CLASSIFICATION AND REGRESSION TREES

* Within each region, there is a separate model to predict
the target variable.

* For instance, in regression we might simply predict a
constant over each region, or in classification we might
assign each region to a specific class.

* EXAMPLE: For instance, to predict a patient’s disease, we
might
e first ask “is their temperature greater than some threshold?”. If
the answer is yes, then

* we might next ask “is their blood pressure less than some
threshold?”.

Each leaf of the tree is then associated with a specific
diagnosis.



CLASSIFICATION AND REGRESSION TREES

* Consider first a regression problem in which the goal is
to predict a single target variable t from a D-dimensional
vector X = (x4,...,xp)’ of input variables.

* The training data consists of input vectors
{X4,..., Xy} along with the corresponding continuous

labels {t4,...,tx}.

* If the partitioning of the input space is given, and we
minimize the sum-of-squares error function, then the
optimal value of the predictive variable within any given
region is just given by the average of the values of t,, for
those data points that fall in that region.



Hastie Sec. 9.2 - Also Murphy Sec. 16.2



Regression Trees — popular method for tree-based

regression and classification called CART

We choose the variable and split-point to achieve the best fit. Then one
or both of these regions are split into two more regions, and this process
is continued, until some stopping rule is applied. For example, in the top
right panel of Figure 9.2, we first split at X{ = £,1. Then the region X; <,
is split at X5 = t5 and the region X, > i, is split at X| = f1. Finally, the
region X, > t3 is split at X, = t4. The result of this process is a partition
into the five regions K4, R, ..., Hs shown in the figure. The corresponding
regression model predicts Y with a constant ¢, in region H,,, that is,

=

i

FX)=>" enl{(X1,Xs) € R} (9.9)

m=1

This same model can be represented by the binary tree in the hottom left
panel of Figure 9.2. The full dataset sits at the top of the tree. Observations
satisfying the condition at each junction are assigned to the left branch,
and the others to the right branch. The terminal nodes or leaves of the
tree correspond to the regions Ry, Rs, ..., Hs. The bottom right panel of
Figure 9.2 is a perspective plot of the regression surface from this model.
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FIGURE 9.2, Partitions and CART. Top right penel shows a partition of a
two-dimensional feature space by recursive binary splitting, as uwsed in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splifting. Bottom left panel shows the tree cor
responding to the portition in the top right panel, and a perspective plot of the
prediction surfoce appears in the bottom right panel.




4] Xi<iy R Rs

(a) (b)

Figure 16.1 A simple regression tree on two inputs. Based on Figure 9.2 of (Hastie et al. 2009).



9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,
(#i,9:) for i = 1,2,... N, with 2; = (2;1,2:,...,2;). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we
have a partition into M regions R, Ho, ..., Rar, and we model the response
as a constant ¢, in each region:

Il
HOE Z el (2 € R). (9.10)

If we adopt as our criterion minimization of the sum of squares » (y; —
f(z;))?, it is easy to see that the best &, is just the average of y; in region

R_.:

E';n — a-vE[:y1|£Eg = R';ln]. {9.11}




- ___________________________________________________________________________________________________________________
Now finding the best binary partition in terms of minimum simm of squares

is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

Ri(7,8) ={X|X; <s} and Ra(j,s) ={X|X; > s}. (9.12)

Then we seek the splitting variable § and split point s that solve

min [min Z (11, — 1 )* + min Z (1 — EEJE]. (9.13)

Jos L&l

]

T EHy(7,8) xyEHa(7,5)

For any choice § and s, the inner minimization is solved by

¢ = ave(y;|z; € R1(J,s)) and ¢» = ave(y:|z; € Ha(7, 5)). (0.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (7, 5} is feasible.




Having found the best split, we partition the data into the two resulting
regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.

Tree size is a tuning parameter governing the model’s complexity,
and the optimal tree size should be adaptively chosen from the data. One
approach would be to split tree nodes only if the decrease in sum-of-
squares due to the split exceeds some threshold. This strategy is too
short-sighted, however, since a seemingly worthless split might lead to a
very good split below it.

The preferred strategy is to grow a large tree TO, stopping the
splitting process only when some minimum node size (say 5) is reached.
Then this large tree is pruned using cost-complexity pruning, which we
describe later



9.9.3 Classification Trees

If the target is a classification outcome taking values 1,2,..., K, the only
changes needed in the tree algorithm pertain to the criteria for splitting

classification. In a node m, representing a region R, with N, observations,

let
1

b= = 3 Tai=P)

TiERm

the proportion of class k& observations in node m. We classify the obser-
vations in node m to class k(m) = arg maxy, Pr,;, the majority class in
node m. Different measures (),,(1') of node impurity include the following:

Misclassification error: ﬁ Yicn. LW # k(M) =1 — Prk(m).-

N n . L i .FI:- i A
Gini index: Zk;ﬁk*’ PmkPmkr = Z,T.,;=1 pmk{l - pmk}-
Cross-entropy or deviance: — Eﬁ‘;l P 108 Dk

(9.17)



vations in node m to class k(m) = argmaxy Pk, the majority class in
1ode m. Different measures (J,,(1') of node impurity include the following:

Misclassification error: ﬁ > icr, LW # k(m)) =1 — Prke(m).-
u noom A, i H Fal 4,
Gini index: D sl Pk = ) 3y Prmk(1 — Dmkc).
Cross-entropy or deviance: — Zle Dk 108 Dk
(9.17)

For two classes, if p is the proportion in the second class, these thres mes-
sures are 1 — max(p, 1 — p), 2p(1 — p) and —plogp — (1 —p)log(1 - p),




The split function chooses the best feature, and the best value for that feature, as follows;

(jﬁ:r*J = a:ng{Tli-z-]:ﬂ}ig%mat({}:nyﬁ ! Lj < L‘}) -|—EEIEJE{{I.;;.IE,|'¢ By = ﬁ}) il

The function that checks if a node is worth splitting can use several stopping heuristics, such
as the following:

# is the reduction in cost too small? Typically we define the gain of using a feature to be a
normalized measure of the reduction in cost:

L Pg|
P

D
A 2 cost(D) — (l Llcnst{ﬂL] Enst['ﬂg}) (16.6)
* has the tree exceeded the maximum desired depth?

* is the distribution of the response in either I’y or D sufficiently homogeneous (e.g., all
labels are the same, so the distribution is pure)?

» is the number of examples in either I, or T'p too small?




Regression cost

In the regression setting, we define the cost as follows:

cost(D) = 3 " (; —

iel?

Classification cost

In the classification setting, there are several ways to measure the quality of a split. First, we
fit a multinoulli model to the data in the leaf satisfying the test X; < ¢ by estimating the
class-conditional probabilities as follows:

- Z]I 5 (16.8)
="

where T is the data in the leaf. Given this, there are several common error measures for
evaluafing a proposed partition:

Ea

» Misclassification rate. We define the most probable class label as i, = argmax, #.. The
corresponding error rate is then

= Wy #§) =1—1y (16.9)



Entropy, or deviance:
H(#)=—) #logh (16.10)

Note that minimizing the entropy is equivalent to maximizing the information gain (Quinlan
1986) between test X; <X £ and the class label ¥, defined by

infoGain(X; < ¢,Y) £ H{Y)-H({Y|X; < i) (16.11)
= (— > ply=c)logply = E}) 16.12)
+ (Z ply = c|X; < t)logp(cX; < r}) 16.13)
since %, is an MLE for the distribution p(c|X; < t).
Gini index
o
Y Fl-f) =) do— > Fa=1-2 i (16.14)
e=1 e L e

This is the expected error rate. To see this, note that . is the probability a random entry in
the leaf belongs to class ¢, and (1 — % is the probability it would be misclassified.
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Figure 16.4 (a) Iris data. We only show the first two features, sepal length and sepal width, and ignore
petal length and petal width. (b) Decision boundaries induced by the decision tree in Figure 16.5(a).
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Figure 16.5 (a) Unpruned decision tree for Iris data. (b) Plot of misclassification error rate vs depth of
tree. Figure generated by dtreeDemoIris.







WHEN TO STOP ADDING NODES

* A simple approach would be to stop when the reduction
in residual error falls below some threshold.

* However, it is found empirically that often none of the
available splits produces a significant reduction in error,
and yet after several more splits a substantial error
reduction is found.

* For this reason, it is common practice to grow a large
tree, using a stopping criterion based on the number of
data points associated with the leaf nodes, and then
prune back the resulting tree.

* The pruning is based on a criterion that balances residual
error against a measure of model complexity.



WHEN

O S

OP ADDING NODES

* If we denote the starting tree for pruning by T,, then we
define T c T, to be a subtree of Ty if it can be obtained
by pruning nodes from T (in other words, by collapsing
internal nodes by combining the corresponding regions).

e Suppose the leaf nodes are indexed by
T =1,...,|T|, with leaf node T representing a region R,
of input space having N data points, and |T| denoting
the total number of leaf nodes.

* The optimal prediction for region R is then given by

1 Z
LYT

Xn EER'T



WHEN TO STOP ADDING NODES

* and the corresponding contribution to the residual sum-
of-squares is then
Z JIL Ef*r

X, ER -

* The pruning criterion is then given by

T

C(T) =) Q1)+ AT

T=1

* The regularization parameter A determines the trade-off
between the overall residual sum-of-squares error and
the complexity of the model as measured by the number
|T| of leaf nodes, and its value is chosen by cross-
validation.



WHEN TO STOP ADDING NODES

* For classification problems, the process of growing and
pruning the tree is similar, except that the sum-of-squares
error is replaced by a more appropriate measure of
performance.

* If we define p; to be the proportion of data points in region
R, assigned to class k, where k = 1,..., K, then two
commonly used choices are the cross-entropy

Qr (T Zf}’rk In pry
* and the Gini index

Qr (1 ZI’TL I —pri)

* These both vanish for p;;, = 0 and p;;, = 1 and have a
maximum at p;, = 0.5.



Advantages

* The cross entropy and the Gini index are better measures
than the misclassification rate for growing the tree
because they are more sensitive to the node probabilities.

* Also, unlike misclassification rate, they are differentiable
and hence better suited to gradient based optimization
methods.

* The human interpretability of a tree model such as CART
is often seen as its major strength.

Disadvantages

* In practice it is found that the particular tree structure
that is learned is very sensitive to the details of the data
set, so that a small change to the training data can result
in a very different set of splits.



Decision Tree Pruning

Example



'e define a subtree I C Yy to be any tree that can be obtained by
pruning 1p, that is, collapsing any number of its internal (non-terminal)
nodes. We index terminal nodes by m, with node m representing region
R... Let |I'| denote the number of terminal nodes in I'. Letting

N'.In — #{Ez = Rfm}-.

fm = Nim Z i,

TS M {915:1
1 PN
Qm(T) = 5 3 (= tm)?
zrEHm
we define the cost complexity criterion
1T
Col(T) = ) NnQm(T) + afT. (9.16)

m=1

The idea is to find, for each o, the subtree 1, C 7y to minimize C, (7).
The tuning parameter o > 0 governs the tradeoit between tree size and its
goodness of fit to the data. Large values of o result in smaller trees 1, and
conversely for smaller values of o, As the notation suggests, with oo = 0 the




Either the Gini index or cross-entropy should be used when
growing the tree.

To guide cost-complexity pruning, any of the three measures can be
used, but typically it is the misclassification rate.

The Gini index can be interpreted in two interesting ways. Rather than
classify observations to the majority class in the node, we could classify
them to class & with probability §,,r. Then the training error rate of this
rule in the node is ) Btk PkPmipr—the Gini index. Similarly, if we code

each ohservation as 1 for class kb and zero otherwise, the variance over the

gives the Gini index.
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I1:B An example pruning set

4: A 5:B 7:B 8: A

A decision tree with two classes A and

B (with node numbers and class
labels)



* The idea is to hold out some of the available
instances—the “pruning set”—when the tree is built,
and prune the tree until the classification error on
these independent instances starts to increase.

* Because the instances in the pruning set are not
used for building the decision tree, they provide a
less biased estimate of its error rate on future
instances than the training data.



z=()

3

z=1

z=0)

¥

10: A (2)

11: B (0)

7=1

4: A (0)

=0

z=1

3: A (D)

6: B (0)

10: A (2)

11: B (0)

(c)

10: A(2) | | 11: B(0)
(b)
x vy =z class
0 0 1 A
0 1 1 B
1 1 O B
I 0 O B
I 1 1 A

(d)



* In each tree, the number of instances in the pruning data that
are misclassified by the individual nodes are given in
parentheses.

* Assuming that the tree is traversed left-to-right, the pruning
pr%cedure first considers for removal the subtree attached to
node 3.

* Because the subtree’s error on the pruning data (1 error)
exceeds the error of node 3 itself (O errors), node 3 is
converted to a leaf.

* Next, node 6 is replaced by a leaf for the same reason.

e Having processed both of its successors, the pruning
rocedure then considers node 2 for deletion. However,
ecause the subtree attached to node 2 makes fewer

mistakes (0 errors) than node 2 itself (1 error), the subtree
remains in place. Next, the subtree extending from node 9 is
considered for pruning, resulting in a leaf.

* In the last step, node 1 is considered for pruning, leaving the
tree unchanged.






Feed-forward Network Functions - Notations

* X-input; y - output; w - weights

* N - no. of samples R
« x, - n™ sample

* t, - target output for x,,

* y, = yV(X,, W) - predicted output for x,

M - no. of nodes in the hidden layer

* K - no. of classes

* D - dimension of input X

* wj; -weight from node i in layer [ to node j in layer (I + 1)

* a; - linear combination of input variables with weights (pre-activation)
* v (X, W) - output at node k (output layer)

* V... = Vi (X, W) - output at node k for n' input ; likewise for t,,

* T -time step

* z; - activation of a; (h(a;) where h is the activation function)

* J; - error term with respect to output node k

* 0j - error term with respect to hidden node j



Feed-forward Network Functions

* The linear models for regression and classification are
based on linear combinations of fixed nonlinear basis
functions ¢;(x) and take the form

M
yx,w)=f (Z rrjr:j(x})

j=1
* where f( = ) is a nonlinear activation function in the case
of classification and is the identity in the case of
regression.

e Our goal is to extend this model by making the basis
functions ¢;(x) depend on parameters and then to allow
these parameters to be adjusted, along with the
coefficients {w;}, during training.
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hidden units

Network diagram for the two layer neural network. The input, hidden, and output
variables are represented by nodes, and the weight parameters are represented by
links between the nodes, in which the bias parameters are denoted by links coming
from additional input and hidden variables x,and z,.

Arrows denote the direction of information flow through the network during forward
propagation.



Feed-forward Network Functions

* The basic neural network model can be described a
series of functional transformations. First we construct M
linear combinations of the input variables x4,...,xp in
the form

() (1)
1

D

7

* wherej =1,..., M, and the superscript (1) indicates that
the corresponding parameters are in the first ‘layer’ of
the network.

* We shall refer to the parameters wb as weights and the

Ji
1 ]
parameters wb as biases.

j0
* The quantities a; are known as activations.



Feed-forward Network Functions

e Each of them is then transformed using a differentiable,
nonlinear activation function h( = ) to give
z; = h(a;).
* These quantities, in the context of neural networks, are called
hidden units.

* The nonlinear functions h( * ) are generally chosen to be
sigmoidal functions such as the logistic sigmoid or the ‘tanh’.

* These values are again linearly combined to give output unit
activations M

2 2
Al = E 'a.ri,j} Zi + E.{-‘LDJ
J=1

where k = 1,...,K,and K 1s the total number of outputs.

* This transformation corresponds to the second layer of the
network, and again the W,Eg)are bias parameters.



Feed-forward Network Functions

* Finally, the output unit activations are transformed using
an appropriate activation function to give a set of
network outputs yy.

* The choice of activation function is determined by the
nature of the data and the assumed distribution of target
variables and follows the same considerations as for
linear models.

* Thus for standard regression problems, the activation
function is the identity so that y, = a.

* Similarly, for multiple binary classification problems, each
output unit activation is transformed using a logistic
sigmoid function so that

1
ur = o(ar) where o(a) =

1 +exp(—a)




Feed-forward Network Functions

* Finally, for multiclass problems, a softmax activation
function is used.

* We can combine these various stages to give the overall
network function that, for sigmoidal output unit
activation functions, takes the form

M D

yL(X, W) =0 (Z -z.z*ﬁi} h (Z 'ii.‘g?;-{'i{ + “1‘5{1]}) + '2.{*5}} )
71=1 i=1

where the set of all weight and bias parameters have been

grouped together into a vector w.

* Thus the neural network model is simply a nonlinear
function from a set of input variables {x;} to a set of
output variables {y; } controlled by a vector w of
adjustable parameters.



hidden units

Network diagram for the two layer neural network. The input, hidden, and output
variables are represented by nodes, and the weight parameters are represented by
links between the nodes, in which the bias parameters are denoted by links coming
from additional input and hidden variables x,and z,.

Arrows denote the direction of information flow through the network during forward
propagation.



Feed-forward Network Functions

* The process of evaluating

D
1) 2
Uk X W) =0 ik J.?_ u ({] + u i[}}
_? J
i=1

can be mterpreted as a forward propagation of
information through the network.

* The bias parameters can be absorbed into the set of
weight parameters by defining an additional input
variable x, whose value is clamped at x; = 1, so that

D
S E (1)
aj = Wi T
i=0



Feed-forward Network Functions

* We can similarly absorb the second-layer biases into the
second-layer weights, so that the overall network
function becomes

M D
(X, W) =0 (Z E.{-‘Li-:] h (Z u*é?.r)) .

j=0 i=0

* If the activation functions of all the hidden units in a
network are taken to be linear, then for any such network
we can always find an equivalent network without
hidden units.

* Neural networks are said to be universal approximators.
For example, a two-layer network with linear outputs can
uniformly approximate any continuous function on a
compact input domain to arbitrary accuracy provided the
network has a sufficiently large number of hidden units.
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lllustration of the capability of a multilayer perceptron to approximate four different
functions comprising (a) f(x) = x2, (b) f(x) = sin(x), (c), f(x) = |x|, and

(d) f(x) = H(x) where H(x) is the Heaviside step function. In each case, N = 50 data
points, shown as blue dots, have been sampled uniformly in x over the interval (-1, 1)
and the corresponding values of f(x) evaluated. These data points are then used to
train a two layer network having 3 hidden units with ‘tanh’ activation functions and lineal
output units. The resulting network functions are shown by the red curves, and the
outputs of the three hidden units are shown by the three dashed curves.



Feed-forward Network Functions - Notations

* X-input; y - output; w - weights

* N - no. of samples R
« x, - n™ sample

* t, - target output for x,,

* y, = yV(X,, W) - predicted output for x,

M - no. of nodes in the hidden layer

* K - no. of classes

* D - dimension of input X

* wj; -weight from node i in layer [ to node j in layer (I + 1)

* a; - linear combination of input variables with weights (pre-activation)
* v (X, W) - output at node k (output layer)

* V... = Vi (X, W) - output at node k for n' input ; likewise for t,,

* T -time step

* z; - activation of a; (h(a;) where h is the activation function)

* J; - error term with respect to output node k

* 0j - error term with respect to hidden node j



Network training

* Given a training set comprising a set of input vectors
{x,,}, wheren =1,..., N, together with a corresponding
set of target vectors {tn} for regression, we minimize the
error function

Z |y (Xn, W) — ‘ :

n=1
* Now consider the case of binary classification in which
we have a single target variable t such thatt =1
denotes class C; and t = 0 denotes class C,.

* Consider a network having a single output whose
activation function is a logistic sigmoid
1
I + exp(—a)

y=ola) =

sothat 0 < y(x,w) < 1.



Network training

* We can interpret y(X, w) as the conditional probability
p(C;|X), with p(C,|x) given by 1 — y(X, w).

* The conditional distribution of targets given inputs is
then a Bernoulli distribution of the form

p(t)x, w) = y(x, w)" {1 —y(x, w)}' "

* If we consider a training set of independent
observations, then the error function, which is given by
the negative log likelihood, is then a cross-entropy error
function of the form

N
E(w) == {talny, + (1 t,) In(1 - g,)}

n=1

where y,, denotes y(X,, W).



Network training

* Using the cross-entropy error function instead of the
sum-of-squares for a classification problem leads to
faster training as well as improved generalization.

* If we have K separate binary classifications to perform,
then we can use a network having K outputs each of
which has a logistic sigmoid activation function.

* Associated with each output is a binary class label
t, € {0,1}, wherek =1,...,K.

* If we assume that the class labels are independent, given
the input vector, then the conditional distribution of the
targets is K

p(t|x, w) = H i (%, W) [1 = g (x, W) T
k=1



Network training

* Taking the negative logarithm of the corresponding
likelihood function then gives the following error

function
N K

E(W) — — Z Z {?L-nﬁc In ynr + (1 —tnk) In(1 — .E_fﬂ.ﬁc)}

n=1 k=1

where y,,;,. denotes y; (X,, W).

* Finally, we consider the standard multiclass classification
problem in which each input is assigned to one of K
mutually exclusive classes.

* The binary target variables t;, € {0, 1} have a 1-of-K
coding scheme indicating the class, and the network
outputs are interpreted as y, (X, W) = p(t; = 1|X),
leading to the following error function



Network training

e

N

K

E(w) = — Z Z trn In E}',I;(anw)'

n=1 k=1

———ememm o= —p

Geometrical view of the error function E (w)
as a surface sitting over weight space.
Point wy is a local minimum and wg is the
global minimum. At any point w, the local
gradient of the error surface is given by the
vector VE.



Network training

* The output unit activation function is given by the
softmax function

explar(x,w))

Z exp(a;(x,w))

J

Yr(X. W) =

* which satisfies 0 < y;, < 1and ), yx = 1.

Outputs
Real Values Probabilities
Output Activation Linear Softmax

Loss Function Squared Error | Cross Entropy




Gradient descent optimization

* The simplest approach to using gradient information is to
choose the weight update to comprise a small step in the
direction of the negative gradient, so that

w(T+D) — w(T) _ I}FE(W(T}J

where the parameter n > 0 is known as the learning rate with
T being the timestep.

» After each such update, the gradient is re-evaluated for the
new weight vector and the process repeated.

* Note that the error function is defined with respect to a
training set, and so each step requires that the entire training
set be processed in order to evaluate IV'E.

* At each step the weight vector is moved in the direction of
the greatest rate of decrease of the error function, and so this
approach is known as gradient descent or steepest descent.



Gradient descent optimization

* On-line gradient descent, also known as sequential
gradient descent or stochastic gradient descent, makes
an update to the weight vector based on one data point
at a time, so that

w(T+l) W(TJ _ ??vE?-,-_._{W(T}J.



Feed-forward Network Functions - Notations

* X-input; y - output; w - weights

* N - no. of samples R
« x, - n™ sample

* t, - target output for x,,

* y, = yV(X,, W) - predicted output for x,

M - no. of nodes in the hidden layer

* K - no. of classes

* D - dimension of input X

* wj; -weight from node i in layer [ to node j in layer (I + 1)

* a; - linear combination of input variables with weights (pre-activation)
* v (X, W) - output at node k (output layer)

* V... = Vi (X, W) - output at node k for n' input ; likewise for t,,

* T -time step

* z; - activation of a; (h(a;) where h is the activation function)

* J; - error term with respect to output node k

* 0j - error term with respect to hidden node j



Error Backpropagation

e Our goal in this section is to find an efficient technique for

evaluating the gradient of an error function E (w) for a feed-
forward neural network.

* We shall see that this can be achieved using a local message
passing scheme in which information is sent alternately
forwards and backwards through the network and is known
as error backpropagation, or sometimes simply as backprop.

* We now derive the backpropagation algorithm for a general
network having arbitrary feed-forward topology, arbitrary
differentiable nonlinear activation functions, and a broad
class of error function.

* The resulting formulae will then be illustrated using a simple
layered network structure having a single layer of sigmoidal
hidden units together with a sum-of-squares error.



Error Backpropagation

* Many error functions of practical interest, for instance
those defined by maximum likelihood for a set of i.i.d.
data, comprise a sum of terms, one for each data point in
the training set, so that

N
E(w) =Y En(w).

n=1

* Here we shall consider the problem of evaluating
VE, (w) for one such term in the error function.

* This may be used directly for sequential optimization, or
the results can be accumulated over the training set in
the case of batch methods.



Error Backpropagation

* Consider first a simple linear model in which the outputs
Vi are linear combinations of the input variables x; so

that
Yk = Z Wiy

together with an error function that, for a particular input
pattern n, takes the form

n — 2 E Ynk — nk

where, V... = Vi (Xp, w).
The gradient of this error function with respect to a
weight w;; is given by o F,

— ['Ll"n — 1in ')J-"n-f.
dw j; J J



Error Backpropagation

* In a general feed-forward network, each unit computes
a weighted sum of its inputs of the form

* where z; is the activation of a unlt or input, that sends a
connection to unit j, and wj; is the weight associated
with that connection.

* This sum is transformed by a nonlinear activation
function h( * ) to give the activation z; of unit j in the

form
z; = h(a;).

* Now consider the evaluation of the derivative of E,, with
respect to a weight wy;.



Error Backpropagation

* First we note that £}, depends on the weight w;; only via
the summed input a; to unit j. We can therefore apply
the chain rule for partial derivatives to give

OE, OFE, Oa,

f)'ﬂ_i-'j-i—'_ -';'J{]j EJ'EE_‘ji

* We now introduce a useful notation |
. OFE,,

f}j =

{jf_’!j

where the 6’s are often referred to as errors.

e Using a; =) wjiz we can write 2% _ .
O !
i 'ji



Error Backpropagation

e We thus obtain
OF,,

rﬂ-u.‘ ji

= Eij 23

* For the output units, we

O = Y — tk

#

have

lllustration of the calculation of 5j for hidden

unit j by backpropagation of the §’s from
those units k to which unit j sends
connections. The blue arrow denotes the
direction of information flow during forward
propagation, and the red arrows indicate
the backward propagation of error
information.



Error Backpropagation

* To evaluate the ¢’s for hidden units, we again make use
of the chain rule for partial derivatives,

OF, Z OFE,, Oay
da; - day, Oa;

where the sum runs over all unlts k to which unit j sends
connections.

* |f we now substitute the definition of  we obtain the
following backpropagation formula

0; = h'(a;) Z Wy, O,

Lk



(’i — {}En Z n dﬂﬁ., (555)

da; day, da;

k
From equation 5.51 which is _
. OE, .
Ur.!-j
dE, 9En
e | . e, =2=¢§, 1
5, " be writtenas 0. i.e., ' Ba = Oy (1)

day . day aZj
aaj o aZj aaj

* According to chain rule,

From equations 5.48 and 5.49 we have:

aj =Y wiiz (5.48)

2 = h(ay). | (5.49)

6ak _ aZ]
oy = Wi andgl = W) 2)
Substituting (1) and (2) in egn 5.55 we get

ES} — h.f[{’!-j) Z “"kjdk (55@)
k



Error Backpropagation: Summary

The backpropagation procedure can therefore be
summarized as follows:

* Apply an input vector x,, to the network and forward
propagate through the network to find the activations of
all the hidden and output units.

* Evaluate the 6y, for all the output units.

* Backpropagate the d’s to obtain o; for each hidden unit
in the network.

* Evaluate the required derivatives.

For batch methods, the derivative of the total error E can
then be obtained by repeating the above steps for each
pattern in the training set and then summing over all

patterns: OF OF.

Ow ji Jw i
n



Backpropagation Algorithm: Definitions

e Each training example is a pair of the form (X, t), where X

is the vector of network input values, and £ is the vector
of target network output values.

* 1 is the learning rate (e.g., 0.05)., D is the number of
network inputs, M the number of units in the hidden
layer, and K the number of output units. The weight
from unit p to unit q is denoted w,,.



Backpropagation Algorithm

* Create a feed-forward network with D inputs, M hidden
units, and K output units.

* Initialize all network weights to small random numbers.

* Until the termination condition is met, Do
* For each (X, f) in training examples, Do
* Propagate the input forward through the network:

1. Input the instance x to the network and compute
the output y;, of every unit k in the network.

* Propagate the errors backward through the
network:



Backpropagation Algorithm

* Propagate the errors backward through the
network:

2. For each network output unit k, calculate its
error term 94,

O < (tk — Yk)
3. For each hidden unit z;, calculate its error term
0

5, « I'(a)) Z WS

keoutputs
4. Update each network weight w,,,

Wap < Wap — NVE(Wgp)
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Various types of ANN Architectures:

- Boltzmann Machine,

- Hopfield Network

- CAM (Content Addressable memories);
- BAM (Bidirectional associative memory)
- SOM (self-organizing maps)

- Deep Belief Networks

- RBM, RBF

- CNN, Relu

- GAN

- Auto-encoders (AE)

- LSTM
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Figure 16.1 A simple regression tree on two inputs. Based on Figure 9.2 of (Hastie et al. 2009).






