Spectral Clustering

Machine Learning – CS5011

Content Credits:

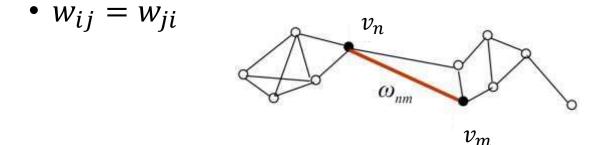
- 1. Von Luxburg, U., "A tutorial on spectral clustering."; Statistics and Computing, 17(4), 395-416. Springer (2007).
- 2. Davide Eynard, "Notes on Spectral Clustering."; (2012).

Similarity graph

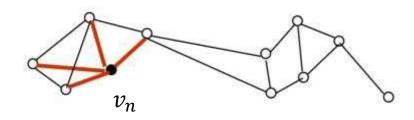
- The objective of a clustering algorithm is partitioning data into groups such that:
 - Points in the **same** group are **similar**
 - Points in **different** groups are **dissimilar**
- Similarity graph G = (V, E) [undirected graph]:
 - Vertices v_i and v_j are connected by a **weighted** edge if their similarity is above a given threshold
 - GOAL: find a partition of the graph such that:
 - edges within a group have high weights
 - edges across different groups have low weights

Weighted adjacency matrix

- Let G(V, E) be an undirected graph with vertex set $V = \{v_1, \dots, v_n\}$
- Weighted adjacency matrix $W = (w_{ij})_{i,j=1,...,n}$
 - $w_{ij} \ge 0$ is the weight of the edge between v_i and v_j .
 - $w_{ij} = 0$ means that v_i and v_j are not connected by an edge



- Degree of a vertex $v_i \in V$: $d_i = \sum_{j=1,...,n} w_{ij}$
- Degree matrix $D = diag(d_1, ..., d_n)$



Similarity graphs - variants

• *ε*-neighborhood:

- Connect all points whose pairwise distance is less than ε
- K-nearest neighbor graph
 - Connect vertex v_i with vertex v_j if v_j is among the k-nearest neighbours of v_i .
- Fully connected
 - *all* points with similarity $w_{ij} > 0$ are connected.
 - use a similarity function like the **Gaussian**: $w_{ij} = w(v_i, v_j) = \exp(-\|v_i - v_j\|^2/(2\sigma^2))$

Graph Laplacians

- Graph Laplacian:
 - L = D W (symmetric and positive semi-definite)
- Properties:
 - Smallest eigenvalue $\lambda_1 = 0$ with eigenvector $\mathbb{1}$
 - n non-negative, real-valued eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$
 - the multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.

Spectral Clustering algorithm (1)

- Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.
 - 1. Construct a similarity graph as previously described. Let W be its weighted adjacency matrix.
 - 2. Compute the unnormalized Laplacian *L*
 - 3. Compute the first k eigenvectors u_1, \ldots, u_k of L
 - 4. Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \ldots, u_k as columns
 - 5. For i = 1, ..., n let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U
 - 6. Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters $C_1, ..., C_k$.
- Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Normalized Graph Laplacians

- Symmetric: $L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
 - λ is an eigenvalue of L_{sym} with eigenvector u iff λ and u solve the **generalized eigenproblem** $Lu = \lambda Du$
 - 0 is an eigenvalue of L_{sym} with eigenvector $D^{\frac{1}{2}}$
 - L_{sym} is positive semi-definite and have n non-negative, realvalued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$
 - the multiplicity k of the eigenvalue 0 of L_{sym} equals the number of connected components A₁, ..., A_k in the graph.

Spectral Clustering algorithm (2)

- Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.
 - 1. Construct a similarity graph as previously described. Let W be its weighted adjacency matrix.
 - 2. Compute the normalized Laplacian L_{sym}
 - 3. Compute the first k eigenvectors u_1, \ldots, u_k of L_{sym} .
 - 4. normalize the eigenvectors
- Output: Clusters A_1, \dots, A_k with $A_i = \{j | y_j \in C_i\}$.