
OPERATING SYSTEMS
CS3500

PROF. SUKHENDU DAS DEPTT. OF COMPUTER SCIENCE
AND ENGG., IIT MADRAS, CHENNAI – 600036.

Email: sdas@cse.iitm.ac.in
URL: http://www.cse.iitm.ac.in/~vplab/os.html

OCT. – 2022.

VM_ II

PAGE REPLACEMENT

WHAT HAPPENS IF THERE IS NO FREE FRAME?

• Used up by process pages

• Also in demand from the kernel, I/O buffers, etc

• How much to allocate to each?

• Page replacement – find some page in memory, but not really in use, page it
out

• Algorithm – terminate? swap out? replace the page?

• Performance – want an algorithm which will result in minimum number
of page faults

• Same page may be brought into memory several times

PAGE REPLACEMENT

• Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

• Use modify (dirty) bit to reduce overhead of page transfers – only
modified pages are written to disk

• Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

NEED FOR PAGE REPLACEMENT

BASIC PAGE REPLACEMENT
1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a

victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and
frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT;

Use dirty bit to swap out contents (for code, say ?)

PAGE REPLACEMENT

PAGE AND FRAME REPLACEMENT ALGORITHMS
• Frame-allocation algorithm determines

• How many frames to give each process

• Which frames to replace

• Page-replacement algorithm

• Want lowest page-fault rate on both first access and re-access

• Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

• String is just page numbers, not full addresses

• Repeated access to the same page does not cause a page fault

• Results depend on number of frames available

• In all our examples, the reference string of referenced page numbers is

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

GRAPH OF PAGE FAULTS VERSUS THE NUMBER OF FRAMES

FIRST-IN-FIRST-OUT (FIFO) ALGORITHM
• Reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

• 3 frames (3 pages can be in memory at a time per process)

• Can vary by reference string: consider 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Adding more frames can cause more page faults!

• Belady’s Anomaly

• How to track ages of pages?

• Just use a FIFO queue

15 page faults

FIFO ILLUSTRATING BELADY’S ANOMALY

OPTIMAL ALGORITHM
• Replace page that will not be used for longest period of time

• #page faults = 9; ? is optimal for the example, better than FIFO

• How do you know this?

• Can’t read the future

• Used for measuring how well your algorithm performs

LEAST RECENTLY USED (LRU) ALGORITHM
• Use past knowledge rather than future

• Replace page that has not been used in the most amount of time

• Associate time of last use with each page

• 12 faults (?)
– better than FIFO but worse than OPT

• Generally good algorithm and frequently used

• But how to implement?

LRU ALGORITHM (CONT.)
• Counter implementation

• Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter

• When a page needs to be changed, look at the counters to find smallest value

• Search through table needed

• Stack implementation

• Keep a stack of page numbers in a double link form:

• Page referenced:

• move it to the top

• requires 6 pointers to be changed

• But each update more expensive

• No search for replacement

LRU ALGORITHM (CONT.)
• LRU and OPT are cases of stack algorithms that don’t have Belady’s

Anomaly

• Use of A Stack to Record Most Recent Page References

LRU APPROXIMATION ALGORITHMS
• LRU needs special hardware and still slow

• Reference bit
• With each page associate a bit, initially = 0
• When page is referenced bit set to 1
• Replace any with reference bit = 0 (if one exists)

• We do not know the order, however.
• Additional Reference bits used too – use K-bit Shift Reg; least No. replaced

• Second-chance algorithm
• Generally FIFO, plus hardware-provided reference bit
• “Clock” replacement algo.
• If page (victim) to be replaced has

• Reference bit = 0 -> replace it
• reference bit = 1 then:

• set reference bit 0, leave page in memory
• replace next victim page, subject to same rules

SECOND-CHANCE
ALGORITHM

ENHANCED SECOND-CHANCE ALGORITHM
• Improve algorithm by using reference bit and modify bit (if available) in

concert

• Take ordered pair (reference, modify):

• (0, 0) neither recently used not modified – best page to replace

• (0, 1) not recently used but modified – not quite as good, must write out
before replacement

• (1, 0) recently used but clean – probably will be used again soon

• (1, 1) recently used and modified – probably will be used again soon and
need to write out before replacement

• When page replacement called for, use the clock scheme but use the four
classes - replace page in lowest non-empty class

• Might need to search circular queue several times

COUNTING ALGORITHMS

• Keep a counter of the number of references that have been made to each page

• Not common

• Lease Frequently Used (LFU) Algorithm:

• Replaces page with smallest count – page heavily used and then idle in
memory for a long time; Solution – use SR - exponentially decaying average
usage count.

• Most Frequently Used (MFU) Algorithm:

• Based on the argument that the page with the smallest count was probably just
brought in and has yet to be used

• Both not commonly used

PAGE-BUFFERING ALGORITHMS-
• Typically used as additional measures with PRA, for enhancement of performance.

• Keep a pool of free frames, always

• Then frame available when needed; But, Page fault forces to locate a free &
victim frames

• Read page into free frame and select victim to evict and add to free pool

• When convenient, evict victim

• Possibly, keep list of modified pages

• When backing store otherwise idle, write pages there and set modify bit to
non-dirty

• Possibly, keep free frame contents intact and note what is in them

• If referenced again before reused, no need to load contents again from disk

• Generally useful to reduce penalty if wrong victim frame selected

APPLICATIONS AND PAGE REPLACEMENT
• All of these algorithms have OS guessing about future page access

• Some applications have better knowledge – i.e. databases

• Memory intensive applications can cause double buffering

• OS keeps copy of page in memory as I/O buffer

• Application keeps page in memory for its own work

• Operating system can given direct access (ie the ability to use a secondary
storage partition as a large sequential array of logical blocks) to the disk,
getting out of the way of the applications

• Raw disk mode – not like conventional File system access

• Bypasses buffering, locking, etc.

