
Operating Systems
CS3500 – CH-14

Prof. Sukhendu Das Deptt. of Computer Science and
Engg., IIT Madras, Chennai – 600036.

Email: sdas@cse.iitm.ac.in
URL: http://www.cse.iitm.ac.in/~vplab/os.html

OCT. – 2022.

Outline :
File System Implementation

 File-System Structure
 File-System Operations
 Directory Implementation
 Allocation Methods
 Free-Space Management
 Efficiency and Performance
 Recovery

File system provides the mechanism for online storage and access
to file contents, including data and programs. In CH-13: File structure,
attributes, types, operations, Access methods, protection etc. were studied;

In Ch-14: - Directory; Allocation, Free-space Mgmnt, Efficiency, Recovery.

so - What vs How ?

File-System Structure
• File structure

• Logical storage unit
• Collection of related information

• File system resides on secondary storage (disks)
• Provided user interface to storage, mapping logical to physical
• Provides efficient and convenient access to disk by allowing data to

be stored, located & retrieved easily
• Disk provides in-place rewrite and random access

• I/O transfers performed in blocks of sectors (usually 512 bytes)
• File control block (FCB) – storage structure consisting of information

about a file
• Device driver controls the physical device
• File system organized into layers

File System Layers
• Device drivers manage I/O devices at the I/O control layer

Given commands like
read drive1, cylinder 72, track 2, sector 10, into memory

location 1060
Outputs low-level hardware specific commands to hardware

controller
• Basic file system given command like “retrieve block 123”

translates to device driver
• Also manages memory buffers and caches (allocation, freeing,

replacement)
• Buffers hold data in transit
• Caches hold frequently used data

• File organization module understands files, logical address, and
physical blocks
Translates logical block # to physical block #
Manages free space, disk allocation

File System Layers (Cont.)

• Logical file system manages metadata
information
• Translates file name into file number, file

handle, location by maintaining file
control blocks (inodes in UNIX)

• Directory management
• Protection

• Layering useful for reducing complexity and
redundancy, but adds overhead and can
decrease performance

• Logical layers can be implemented by any
coding method according to OS designer

File systems provide efficient and convenient access to the storage
device by allowing data to be stored, located, and retrieved easily.

The logical file system manages metadata information. Metadata
includes all of the file-system structure except the actual data (or contents of
the files). The logical file system manages the directory structure to provide
the file-organization module with the information the latter needs, given a
symbolic file name. It maintains file structure via file-control blocks. A file
control block (FCB) (an inode in UNIX file systems) contains information about
the file, including ownership, permissions, and location of the file contents.
The logical file system is also responsible for protection.

File-organization module knows about files and their logical blocks.
Each file’s logical blocks are numbered from 0 (or 1) through N. The file
organization module also includes the free-space manager.

Basic file system (called the “block I/O subsystem” in Linux) needs
only to issue generic commands to the appropriate device driver to read and
write blocks on the storage device. It issues commands to the drive based
on logical block addresses. It is also concerned with I/O request scheduling.

The I/O control level consists of device drivers and interrupt
handlers to transfer information between the main memory and the disk system.
Its input consists of high level commands, such as “retrieve block 123.” Its
output consists of low-level,hardware-specific instructions that are used by
the hardware controller, which interfaces the I/O device to the rest of the

File System Layers (Cont.)

• Many file systems, sometimes many within an operating
system
• Each with its own format:
• CD-ROM is ISO 9660;
• Unix has UFS, FFS;
• Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD

Blu-ray,
• Linux has more than 130 types, with extended file system

ext3 and ext4 leading; plus distributed file systems, etc.)
• New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

File-System Operations
• We have system calls at the API level, but how do we

implement their functions?  On-disk and in-memory
structures

Boot control block contains info needed by system to boot OS
from that volume

• Needed if volume contains OS, usually first block of volume
(UFS – Boot block; NTFS – partition boot sector)

• Volume control block (UFS - superblock, NTFS - master file
table) contains volume details
• Total # of blocks, # of free blocks, block size, free block

pointers or array
• Directory structure organizes the files

• Names and inode numbers, master file table

File Control Block (FCB)
• OS maintains FCB per file, which contains many details about

the file
• Typically, inode number, permissions, size, dates
• Example

In-Memory File System Structures
• Mount table storing file system mounts, mount points, file system types
• System-wide open-file table contains a copy of the FCB of each file and

other info
• Per-process open-file table contains pointers to appropriate entries in

system-wide open-file table as well as other info (File descriptor or File
Handle)

• Figure (a) refers to opening a file
• Figure (b) refers to reading a file

Directory Implementation

• Linear list of file names with pointer to the data blocks
• Simple to program
• Time-consuming to execute

• Linear search time
• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure
• Decreases directory search time
• Collisions – situations where two file names hash to the same location
• Only good if entries are fixed size, or use chained-overflow method

Allocation Method
• An allocation method refers to how disk blocks are allocated for files:

• Contiguous
• Linked
• File Allocation Table (FAT)

An allocation method refers to how disk blocks are allocated for files:
Each file occupies set of contiguous blocks

Best performance in most cases
Simple – only starting location (block #) and length (number of
blocks) are required
Problems include:

Finding space on the disk for a file,
Knowing file size,
External fragmentation, need for compaction off-line (downtime)
or on-line; effectively compacts all free space into one contiguous
space, solving the fragmentation problem

Contiguous Allocation Method

Contiguous Allocation (Cont.)
• Mapping from logical to physical

(block size =512 bytes)

• Block to be accessed =
starting address + Q

• Displacement into block = R

• If the file is n blocks long
and starts at location b, then it
occupies blocks

b, b + 1, b + 2, ..., b + n − 1.

LA/512

Q

R

Extent-Based Systems
• Many newer file systems (i.e., Veritas File System) use a

modified contiguous allocation scheme
• Extent-based file systems allocate disk blocks in extents
• An extent is a contiguous block of disks

• Extents are allocated for file allocation
• A file consists of one or more extents

A contiguous chunk of space is allocated initially. Then,
if that amount proves not to be large enough, another
chunk of contiguous space, known as an extent, is add

Linked Allocation

• Each file is a linked list of blocks
• File ends at nul pointer
• No external fragmentation
• Each block contains pointer to next block
• No compaction, external fragmentation
• Free space management system called when new block

needed
• Improve efficiency by clustering blocks into groups but

increases internal fragmentation
• Reliability can be a problem
• Locating a block can take many I/Os and disk seeks

Linked Allocation Example
• Each file is a linked list of disk

blocks: blocks may be scattered
anywhere on the disk

• Scheme
• Mapping

• Block to be accessed is the Qth

block in the linked chain of
blocks representing the file.

• Displacement into block = R + 1

LA/511
Q

R

If a pointer requires 4 bytes out of a 512-byte block, then 0.78 percent
of the disk is being used for pointers, rather than for information. Each file
requires slightly more space. Soln: collect blocks into multiples, called
clusters, and to allocate clusters rather than blocks

FAT Allocation Method (Altn to Linked Allocn.)
• Beginning of volume has table, indexed by block number
• Much like a linked list, but faster on disk and cacheable
• New block allocation simple

File-Allocation Table

Indexed Allocation Method
• Each file has its own index block(s) of pointers to its data

blocks
• Logical view

index table

Example of Indexed Allocation

Uses paging scheme; supports
direct access, no wasted
space; no external
fragmentation; larger pointer
overhead than linked Allocn;

How large in an index block ?
Several schemes – linked,
multi-level and combined.

Combined Scheme : UNIX UFS
•4K bytes per
block, 32-bit
addresses – 4GB

•More index
blocks than can
be addressed
with 32-bit file
pointer
(or 64/128-bit

too)

If the block size is 4 KB, then upto 48 KB
of data can be accessed directly (12
pointers for direct).

Rest used indirectly

The UNIX inode.

Performance
• Best method depends on file access type

• Contiguous great for sequential and random
• Linked good for sequential, not random
• Declare access type at creation

• Select either contiguous or linked
• Indexed more complex

• Single block access could require 2 index block reads then data
block read

• Clustering can help improve throughput, reduce CPU overhead
Given the disparity between CPU speed and disk speed, it is

not unreasonable to add thousands of extra instructions to the
operating system to save just a few disk-head movements;
optimization algos used.
• For NVM, no disk head - so different algorithms and optimizations

needed
• Using old algorithm uses many CPU cycles trying to avoid non-

existent head movement
• Goal is to reduce CPU cycles and overall path needed for I/O

Free-Space Management
• File system maintains free-space list to track available

blocks/clusters
• (Using term “block” for simplicity)

• Bit vector or bit map (n blocks)

…
0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation:
(number of bits per word) * (number of 0-value words) + offset of first 1 bit

CPUs have instructions to
return offset within word
of first “1” bit

Bit map requires extra space
Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 32MB)
if clusters of 4 blocks -> 8MB of memory

A 1.3-GB disk with 512-byte blocks would need a bitmap of over
332 KB to track its free blocks,
although clustering the blocks in groups of four reduces this number to
around 83 KB per disk. A 4-TB disk with 8-KB blocks would require
64 MB (242 / 213 = 229 bits = 226 bytes = 26 MB) to store its bitmap.

Linked Free Space List on Disk

 Linked list (free list)
• Cannot get contiguous

space easily
• No waste. Linked Free

Space List on Disk of
space

• No need to traverse the
entire list (if # free blocks
recorded)

Free-Space Management (Cont.)
• Grouping

• Modify linked list to store address of next n-1 free blocks
in first free block, plus a pointer to next block that
contains free-block-pointers (like this one)

• Heard of run-length coding ?

• Counting
• Because space is frequently contiguously used and freed,

with contiguous-allocation allocation, extents, or
clustering
• Keep address of first free block and count of following

free blocks
• Free space list then has entries containing addresses

and counts

Free-Space Management (Cont.)
• Space Maps

• Used in ZFS (Oracle, Solaris)
• Consider meta-data I/O on very large file systems

• Full data structures like bit maps cannot fit in memory 
thousands of I/Os; scattered blocks totaling GB

• Divides device space into metaslab units and manages
metaslabs
• Given volume can contain hundreds of metaslabs

• Each metaslab has associated space map
• Uses counting algorithm

• But records to log file (log-structured file-system
techniques) rather than file system
• Log of all block activity, in time order, in counting format

• Metaslab activity  load space map into memory in
balanced-tree structure, indexed by offset
• Replay log into that structure (the log plus the balanced

tree is the free list)
• Combine contiguous free blocks into single entry (flush)

TRIMing Unused Blocks
• HDDs overwrite in place so need only free list
• Blocks not treated specially when freed

• Keeps its data but without any file pointers to it, until
overwritten

• Storage devices not allowing overwrite (like NVM) suffer
badly with this same algorithm
• Must be erased before written, erases made in large

chunks (blocks, composed of pages) and are slow
• TRIM is a newer mechanism for the (ATA-based, EIDE or

PATA) file system to inform the NVM storage device that a
page (or block) is free
• Can be garbage collected or if block is free, now block

can be erased

Efficiency and Performance
• Efficiency dependent on:

• Disk allocation and directory algorithms
• Types of data kept in file’s directory entry
• Pre-allocation or as-needed allocation of metadata structures (keep

a file’s data blocks near that file’s inode block to reduce seek time)
• Fixed-size or varying-size data structures

• Performance
• Keeping data and metadata close together
• Buffer cache – separate section of main memory for frequently
used blocks (also page cache, unified virtual memory)
• Synchronous writes sometimes requested by apps or needed by OS

• No buffering / caching – writes must hit disk before proceeding
(acknowledgement)

• Asynchronous writes more common, buffer-able, faster
• Free-behind (removes a page from the buffer as soon as the next

page is requested. The previous pages are not likely to be used again
and waste buffer space) and read-ahead – techniques to optimize
sequential access

• Reads frequently slower than writes (why?)

Page Cache
• A page cache caches pages rather

than disk blocks using virtual
memory techniques and
addresses

• Memory-mapped I/O uses a page
cache

• Routine I/O through the file
system uses the buffer (disk)
cache

memory mapping a file, allows a part of the
virtual address space to be logically associated
with the file - mapping a disk block to a page
(or pages) in memory. Simplifies and speeds
up file access and usage. When file is closed,
all the memory-mapped data are written back
to the file on secondary storage and removed
from the virtual memory of the process.

I/O Without a Unified Buffer Cache

Unified Buffer Cache

• A unified buffer cache uses the same page cache to cache both
memory-mapped pages and ordinary file system I/O to avoid double
caching
 But which caches (process vs file) get priority, and what replacement

algorithms to use?

I/O Using a Unified Buffer Cache

Recovery
• Files and directories are kept both in main memory and on the

storage volume, and care must be taken to ensure that a
system failure does not result in loss of data or in data
inconsistency.

Consistency checking:
compares data in directory structure with data blocks on disk, and
tries to fix inconsistencies

• Can be slow and sometimes fails
• Use system programs to back up data from disk to another storage

device (magnetic tape, other magnetic disk, optical)
• Recover lost file or disk by restoring data from backup

Log Structured File Systems
• Log structured (or journaling) file systems record each metadata

update to the file system as a transaction
• All transactions are written to a log (circular buffer)

• A transaction is considered committed once it is written to the
log (sequentially)

• Sometimes to a separate device or section of disk
• However, the file system may not yet be updated

• The transactions in the log are asynchronously written to the file
system structures

• When the file system structures are modified, the transaction
is removed from the log

• If the file system crashes, all remaining transactions in the log
must still be performed

• Faster recovery from crash, removes chance of inconsistency of
metadata

