OPERATING SYSTEMS
CS3500 - CHAP - 2.

PROF. SUKHENDU DAS DEPTT. OF COMPUTER SCIENCE
AND ENGG, IIT MADRAS, CHENNAI - 600036.

Email: sdas@cse.iitm.ac.in
URL: //www.cse.iitm.ac.in/~vplab/os.html

https://sites.google.com/smail.iitm.ac.in/3500-o0s/

Aug.—2022.

OPERATING-SYSTEM SERVICES

OUTLINE

Operating System Services

User and Operating System-Interface

System Calls

Linkers and Loaders

Why Applications are Operating System Specific

Design and Implementation

OPERATING SYSTEM SERVICES

* Operating systems provide an environment for execution of programs and services

to programs and users

* One set of operating-system services provides functions that are helpful to the user:
* User interface - Almost all operating systems have a user interface (Ul).

* Varies between Command-Line (CLI), Graphics User Interface
(GUI), touch-screen, Batch

* Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or abnormally

(indicating error)

* 1/O operations - A running program may require I/O, which may involve a file

or an I/O device

* File-system manipulation - The file system is of particular interest. Programs

need to read and write files and directories, create and delete them, search

them, list file Information, permission management.

OPERATING SYSTEM SERVICES (CONT.)

* One set of operating-system services provides functions that are helpful to the user
(Cont.):

 Communications — Processes may exchange information, on the same

computer or between computers over a network

¢ Communications may be via shared memory or through message passing

(packets moved by the OY)
* Error detection — OS needs to be constantly aware of possible errors
* May occur in the CPU and memory hardware, in /O devices, in user
program
* For each type of error, OS should take the appropriate action to ensure

correct and consistent computing

 Debugging facilities can greatly enhance the user’s and programmer’s

abilities to efficiently use the system

OPERATING SYSTEM SERVICES (CONT.)

* Another set of OS functions exists for ensuring the efficient operation of the system
itself via resource sharing
* Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them
* Many types of resources - CPU cycles, main memory, file storage, I/O
devices.
* Logging - To keep track of which users use how much and what kinds of
computer resources
* Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other
* Protection involves ensuring that all access to system resources is
controlled

* Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

AVIEW OF OPERATING SYSTEM SERVICES

user and other system programs

GUI

touch screen | command line

user interfaces

system calls
program I/0 file I resource ,
. : communication : accounting
execution operations systems allocation
protection
error e
detection ,
: security
services
operating system

hardware

COMMAND LINE INTERPRETER

Bourne Shell Command Interpreter

* CLI allows direct command entry

* Sometimes implemented in kernel,

sometimes by systems program

1. root@r6181-d5-us01:~ (ssh)
X root@r6181-d5-u... @ 81 ssh ;:" 382 » root@r6181-d5-us01... 3

* Sometimes multiple flavors

implemented — shells

* Primarily fetches a command from

user and executes it

* Sometimes commands built-in,
sometimes just names of

programs

* If the latter, adding new

features doesn’t require shell

modification

:~S uptime
15:52:12 up 29 min, 2 users, load average: 0.08, 0.30, 0.33
:~§ df -kh
Filesystem Size Used Avail Use% Mounted on
udev 3.9G 0 3.9¢ 0% /dev
tmpfs 796M 1.6M 794M 1% /run
/dev/sdas 50G 8.8G 39G 19% /
tmpfs 3.9G ® 3.9¢ 0% /dev/shm
tmpfs 5.6M 4.0K 5.8M 1% /run/lock
tmpfs 3.9G @ 3.9C 0% [sys/fs/cqgroup
[dev/loopl 128K 128K 0@ 100% /snap/bare/5
:~$ ps aux | sort -nrk 3,3 | head -n 5
osta 4457 3.7 3.7 3655680 303392 ? Ssl 15:48 0:09 Jusr/bin/gnome-shell
meena 2782 2.1 4.0 3688244 333404 ? Ssl 15:29 0:30 Jfusr/bin/gnome-shell
osta 4287 1.2 0.8 254984 72040 tty3 S+ 15:48 0:03 Jusr/lib/xorg/Xorg v
t3 -displayfd 3 -auth /run/user/1800/gdm/Xauthority -background none -noreset -keeptty
-verbose 3
osta 4753 0.8 0.6 814616 51284 ? Ssl 15:48 0:01 [fusr/libexec/gnome-t
erminal-server
osta 4481 0.6 0.4 278020 33576 ? S1 15:48 0:01 Jusr/libexec/ibus-ex
tension-gtk3
:~5 1s -1 fusr/bin/gnome-shell
-rwXr-xr-x 1 root root 23168 May 19 2021

S

LISl [l ";J!" A g%
7 i ot LA F j' 2 74 i ‘ §

r r o) g L i

vl i/ 4 F);) .

¥ ' - SN 3 . 4 - b Ei b
2y f/ [N0 Tk 4 - s

df -kh

df : used to display information related to file systems about total space and available
space

The '-h' option displays the disc space in human-readable format. It will display the size
in powers of 1024, appending G for gigabytes, M for megabytes, and B for bytes.

-k: equivalent to --block-size=1K ; scale sizes by SIZE here 1K before printing them.

ps aux:
To monitor processes running on your Linux system.

sort -nrk 3,3

-n : to sort according to string numerical value
-r : reverses your results

-k : to sort according to particular columns

head -n 5
show the specified number of lines from the output

Is -1 : The -I option signifies the long list format ; displays the file permissions, the
number of links, owner name, owner group, file size, time of last modification, and the
file or directory name

COMMON UBUNTU Commands

cat

Ip

Is

df

sudo

firewall-cmd

dig/nslookup

chmod, chown

id, ip, du, Isof, netstat

top, env, ps, grep, tail, curl, dm

find, awk, traceroute, tar, history, sestatus

rsync, strace, tac, rev, sed, awk, cut, watch, diff

USER OPERATING SYSTEM INTERFACE - GUI

* User-friendly desktop metaphor interface
* Usually mouse, keyboard, and monitor
* lcons represent files, programs, actions, etc

* Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

* Invented at Xerox PARC

* Many systems now include both CLI and GUI interfaces
* Microsoft Windows is GUI with CLI “command” shell

* Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

* Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

TOUCHSCREEN INTERFACES

* Touchscreen devices require new

interfaces

* Mouse not possible or not

desired

* Actions and selection based on

gestures

* Virtual keyboard for text entry

* Voice commands

o AT&T LTE

Messages Calendar Photos Camera

-~ @@

Stocks iTunes Store

‘ I
=) [L
20 s

App Store Weather

[TE—,
- B . D @
X S 7
*/A

Podcasts Photography Avalanche

= =

Mtn Project Spotify

> © <
=
Dropbox
&@w

Twitter Instagram Weather

.]

Safari Mail

THE MAC OS X GUI

@ PowerPoint File Edit View Insert Format Arrange Tools Slide Show Window Help A0 ©009@b)veaERZNVIT EREORXEBHL 0L = @ EE % 1620 ERBBE C S5 T FiosnedT O D o O Peter Galvin Q
Sl | i
Cosexosoc Flles 7-pbo 7. ey 2
O > pbg > imp > book > 0s10-dir > ' text-dir v O osc > 0s10c-dir > text-dir > Chapters > ch2 s
Name Sz Datev Name size o +
= 2t 14M8 9/9/16,2:50 PM a 2.040ps 35..M8 = = . TGS
= tpdt 778K8 9/9/16,250PM = 0SK0S.eps 12MB O[5/, 11:43 PM e
= 7pat 410k8 o2/15,228PM | UnocAcheps 13M8 82116, 556 oM B vy ries _2.04eps i 35.1MB Enca..cript
@) 7-pbatex 98KB 8/1/15,11:43AM || = WsLeps 1OMB 8/616, 525 PM Screen Shot 2016-09-09 at 3.05.17 PM Today, 3:05 PM 29MB PNG image
= 7-pbygpdl 532K8 8115, 11:33 AM = LINK-LOAD.eps 1.4 M8 7124116, 6:09 PM ﬁ pbg = Screen Shot 2016-09-09 at 3.05.15 PM (2) Today, 3:05 PM 16.9MB PNG image
B um o8ka a6, 1057 AMY| [203-iphone.eps — . Screen Shot 2016-09-09 at 3.05.15 PM Today, 3:05 PM 7.8MB PNG image
R :; ‘*:' ,:: :: j;;::s‘:z :x L) ;Z; i Q dlctlonary ‘ - Screen Shot 2016-09-09 at 2.37.04 PM Today, 2:37 PM 1.3MB PNG image
e 3 & 2.02.eps
@) 7texoldtex 98KB 7/10/15,3:23PM 2.02.eps-old Top HTs > i Cvilization IV Beyond the Sword Today, 1:36 PM -~ Folder
) tex 152K8 4/1/15,6:30PM & placeholder.eps m Screen Shot 2016-09-09 at 10.30.22 AM Today, 10:30 AM 997 KB PNG image
= bicpd 553KB 4/1/15,6:7PM = 21308 55 e i i = Screen Shot 2016-09-09 at 10.24.55 AM Today, 10:25 AM 330KB PNG image
o 4ke 22n5,326°M || = in2.2eps el e el = Screen Shot 2016-09-09 at 10.12.40 AM Today, 10:12 AM 304KB PNG image
I ot Sl i S| | I Soniaind S iistin o chescn » 1 ChronoSync Documents Today, 3:04 AM -~ Folder
R oo ol o s bt) 2.20.e8 « Screen Shot 2016-09-08 at 5.33.55 PM Yesterday, 5:34 PM 187KB PNG image
toc.doc 8K6 322015,326PM || 5 2.19.ps oseTIoN
S Q4181 Saeies ok B e 8 det = Screen Shot 2016-09-08 at 5.24.42 PM Yesterday, 5:24 PM 187KB PNG image
) psfigtex 12Ks 3j22/15,3260M | m 2.17.ps s W = Screen Shot 2016-09-08 at 5.12.47 PM Yesterday, 5:12 PM 69KB PNG image
%] preface.tex 29KB 3/22/15, 326 PM & 2.16.eps W dctiscem —thoker: Gerensi & xis-gpis-periormance v53 Yesterday, 5:09 Pii 418 KB Micr...(xisx)
@ partatex 4Ke 32215,326PM || = 215.ps = Dictionary = Screen Shot 2016-09-08 at 5.09.18 PM Yesterday, 5:09 PM 114KB PNG image
) part7.tex 4KB 3/22/15, 3:26 PM 2_14.eps (9 olctopervcon Dk foter/Eatl Version: 2.2.1 -
8 o . a 214 A o = Screen Shot 2016-09-08 at 5.08.49 PM Yesterday, 5:08 PM 120KB PNG image
B pertotex 4K Sag, oaom = 21zepe . = Screen Shot 2016-09-08 at 5.08.29 PM Yesterday, 5:08 PM 118KB PNG image
*) partS.tex 4KB 3122115, 3:26 PM & 2 11.eps W Dictionary v
9 rerininx 4K8 St emE Sl v e i Screen Shot 2016-09-08 at 5.05.22 PM Yesterday, 5:05 PM 176 KB PNG image
) partatex 4K 322015,326°M | = 2.09ps B The Sieeping Dictionary Kind Application = Screen Shot 2016-09-08 at 5.04.33 PM Yesterday, 5:04 PM 116KB PNG image
4 part2.tex 4Ke 3/22/16, 3:26 PM & 2.07.cps FOLDERS. Size 13.9M8 = Screen Shot 2016-09-08 at 5.04.27 PM Yesterday, 5:04 PM 111 KB PNG image
@ partt.tex axe 3y2215,326PM ||| & 2.06eps i el = Screen Shot 2016-09-08 at 5.04.09 PM Yesterday, 5:04 PM 207KB PNG image
palmath.sty ARE: 22/1%, 20PN &) 2 06.eps " Last opened 9/9/16 = Screen Shot 2016-09-08 at 4.56.21 PM Yesterday, 4:66 PM 120KB PNG image
oscis 10268 3/22/15,326PM || & 2.0%.eps et B = Screen Shot 2016-09-08 at 4.56.14 PM Yesterday, 4:56 PM 113KB PNG image
12K8 3122115, 3:26 PM = Screen Shot 2016-09-08 at 4.53.40 PM Yesterday, 4:53 PM 111 KB PNG image ;_, a
soust aapisiacs o B syncptcty + Screen Shot 2016-09-08 at 4.44.37 PM Yesterday, 4:44 PM 185KB PNGimage |
4aK8 3/22/15, 3:26 PM - Screen Shot 2016-09-08 at 4.42.43 PM Yesterday, 4:42 PM 214 KB PNG image
aKe 3122115, 326 M 7] Creative Cloud Files - Screen Shot 2016-09-08 at 4.41.37 PM Yesterday, 4:41 PM 196KB PNG image
W gen-toc. 4x8 3/22/15, 3:26 PM I = Screen Shot 2016-09-08 at 4.29.24 PM Yesterday, 4:29 PM 78 KB PNG image
M gen-ool 4K5) S12215,3:26 M iTunes = Screen Shot 2016-09-08 at 3.47.41 PM Yesterday, 3:47 PM 214KB PNGimage
i b :ﬁ;;:: oo I L = Screen Shot 2016-09-08 at 3.46.43 PM Yesterday, 3:46 PM 314KB PNGimage
e aie. oo S = Screen Shot 2016-09-08 at 11.48.03 AM Yesterday, 11:48 AM 635KB PNG image
29KB 3/22/15,3:26 PM I £ macero = Screen Shot 2016-09-08 at 11.45.45 AM Yesterday, 11:45 AM 732KB PNG image
axa 2/22/15, 3:26 PM s N = Screen Shot 2016-09-08 at 11.44 36 AM Yesterday, 11:44 AM 588 KR PNG image
X B} s = Y, g
{—paias e o I = S e e - e et
M bitoc 3/22/15, 3:26 PM 2 oo s {8 imactusion > B8 Users » it pbo > B Documents > & 2.04.ep8
) blaex 1 PFS summary v3 1 f 2,220 coloctod, 1.26 T8 availablo
W bcout =
7 hicvi
* beoib 1. ' . oy~ o =il shape Fil [Q apple Computer CJ Apple Computer Inc
il R N Covertto | Pouwre Shpes Tew | Amange Quck L Shape Outine Avple Computar nc.
9 bibtex Format gide 2 Section v 2afus - SmartArt Box Styles T
Pe
1v . Format Background phone 1(800) MYAPPLE
ey (2 foume) =] 5 call O FaceTime Audio
< AlA atingsl] 2 email 800-275-2273
v il
Al (DISHSRERD The kit 3E work 1Infinite Loop
- © soidil Cupertino CA 95014
i Gradient fill United States
operating system operating system | %paadiNG sistar | 5= Piture or texture fil
operating systems noun 6 = Pattern fill
. Hide Background Graphics
the softwara that supports a computer's basic functions, sich as
scheduling tasks, executing applications, and controlling peripherals, & Colar S .
v Te.. Trarsparency O o 3

Click to add notes.

Apply to All

SYSTEM CALLS

* Programming interface to the services provided by the OS
* Typically written in a high-level language (C or C++)

* Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call use

* Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux,
and Mac OS X), and Java API for the Java virtual machine (JVM)

*Note that the system-call names used throughout this text are generic

EXAMPLE OF SYSTEM CALLS

* System call sequence to copy the contents of one file to another file

source file

>

destination file

e Example System Call Sequence O

Acquire input file name
Write prompt to screen
Accept input

EXAMPLE OF STANDARD API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read () function that is avail-
able in UNIX and Linux systems. The API for this function is obtained from

the man page by invoking the command
man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize t read(int fd, void *buf, size t count)
return function parameters
value name

A program that uses the read () function mustinclude the unistd.hheader
file, as this file defines the ssize_t and size_t data types (among other
things). The parameters passed to read () are as follows:
¢ int fd—the file descriptor to be read
® void x*buf-—a buffer into which the data will be read
® size_t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

SYSTEM CALL IMPLEMENTATION

* Typically,a number is associated with each system call
¢ Systeme-call interface maintains a table indexed according to these

numbers

* The system call interface invokes the intended system call in OS kernel and
returns status of the system call and any return values
* The caller need know nothing about how the system call is implemented
* Just needs to obey API and understand what OS will do as a result call

* Most details of OS interface hidden (eg encapsulation in object class) from

programmer by API

* Managed by run-time support library (set of functions built into libraries

included with compiler)

APl - SYSTEM CALL - OS RELATIONSHIP

user application

open()
user
mode
system call interface
kernel
mode A
L open()
* Implementation
i » ofopen()
system call
return

SYSTEM CALL PARAMETER PASSING

* Often, more information is required than simply identity of desired system call
* Exact type and amount of information vary according to OS and call

* Three general methods used to pass parameters to the OS
* Simplest: pass the parameters in registers
* In some cases, may be more parameters than registers

* Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register

* This approach taken by Linux and Solaris

* Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

* Block and stack methods do not limit the number or length of parameters
being passed

PARAMETER PASSINGVIATABLE

— X

reqgister

X: parameters
for call

use parameters code for
load address X A e S =tem
b

system call 13 ol

user program

operating system

TYPES OF SYSTEM CALLS

* Process control
° create process, terminate process
* end, abort
* load, execute
° get process attributes, set process
attributes
* wait for time
° wait event, signal event
* allocate and free memory
* Dump memory if error

* Debugger for determining bugs,

single step execution

* Locks for managing access to

* File management
* create file, delete file
* open, close file
* read, write, reposition

* get and set file attributes

* Device management
* request device, release device
* read, write, reposition

* get device attributes, set

device
attributes

* logically attach or detach

devices

TYPES OF SYSTEM CALLS (CONT.)

 Information maintenance

* get time or date, set time or
date

* get system data, set system
data

* get and set process, file, or

device attributes

* Protection
* Control access to resources
* Get and set permissions
* Allow and deny user access

 Communications

create, delete communication
connection
send, receive messages if
message passing model to
host name or process
name

* From client to server
Shared-memory model
create and gain access to
memory regions
transfer status information
attach and detach remote
devices

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

The following illustrates various equivalent system calls for Windows and

UNIX operating systems.

Windows
Process CreateProcess()
control ExitProcess()

File
management

Device
management

Information
maintenance

Communications

Protection

WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity ()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit ()
wait()

open()
read ()
write()
close()

ioctl()
read ()
write()

getpid()
alarm()
sleep()

pipe)
shm_open ()
mmap ()

chmod ()
umask ()
chown ()

STANDARD C LIBRARY EXAMPLE

* C program invoking printf() library call, which calls write() system call

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf () statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system —in this
instance, the write () system call. The C library takes the value returned by
write() and passes it back to the user program:

#include <stdio.h>
int main()

{

printf ("Greetings"); |-~

return 0;

}

user

mode Y
standard C library
kernel
mode
write()

write()
system call

LINKERS AND LOADERS

* Source code compiled into object files designed to be loaded into any physical

memory location — relocatable object file

* Linker combines these into single binary executable file

* Also brings in libraries
* Program resides on secondary storage as binary executable

* Must be brought into memory by loader to be executed
* Relocation assigns final addresses to program parts and adjusts code and data
in program to match those addresses
* Modern general purpose systems don’t link libraries into executables

* Rather, dynamically linked libraries (in Windows, DLLs) are loaded as
needed, shared by all that use the same version of that same library (loaded

once)

* Object, executable files have standard formats, so operating system knows how to

THE ROLE OFTHE LINKERAND LOADER

source main Ne
program

.

(compiler) gcc -C maln.c

i generates

object main.o
other
object
files o

éoe

"’A(—) gcc -o main main.o -1m

¢ generates

.

executable main
file
(loader) ./maln
dynamically

Hilien ,L

libraries /"«
~
~

A program

in memory

WHY APPLICATIONS ARE OPERATING SYSTEM SPECIFIC

* Apps compiled on one system usually not executable on other operating systems

* Each operating system provides its own unique system calls

* Own file formats, etc.

* Apps can be multi-operating system

* Written in interpreted language like Python, Ruby, and interpreter available

on multiple operating systems

* App written in language that includes a VM containing the running app (like

Java)

* Use standard language (like C), compile separately on each operating system

to run on each

* Application Binary Interface (ABI) is architecture equivalent of API, defines

how different components of binary code can interface for a given operating

system on a given architecture, CPU, etc.

DESIGN AND IMPLEMENTATION

Design and Implementation of OS is not “solvable”, but some

approaches have proven successful

Internal structure of different Operating Systems can vary widely
Start the design by defining goals and specifications

Affected by choice of hardware, type of system

User goals and System goals

e User goals — operating system should be convenient to use, easy to learn,

reliable, safe, and fast

* System goals — operating system should be easy to design, implement, and

maintain, as well as flexible, reliable, error-free, and efficient

Specifying and designing an OS is highly creative task of software

engineering

IMPLEMENTATION

* Much variation
* Early OSes in assembly language
* Then system programming languages like Algol, PL/I
* Now C, C++

* Actually usually a mix of languages
* Lowest levels in assembly
* Main body in C
* Systems programs in C, C++, scripting languages like PERL, Python, shell
scripts
* More high-level language easier to port to other hardware

* But slower

* Emulation can allow an OS to run on non-native hardware

