
2.1

OPERATING SYSTEMS
CS3500 – CHAP - 2.

PROF. SUKHENDU DAS DEPTT. OF COMPUTER SCIENCE
AND ENGG., IIT MADRAS, CHENNAI – 600036.

Email: sdas@cse.iitm.ac.in
URL: //www.cse.iitm.ac.in/~vplab/os.html

https://sites.google.com/smail.iitm.ac.in/3500-os/

Aug. – 2022.

2.2

OPERATING-SYSTEM SERVICES

2.3

OUTLINE

• Operating System Services

• User and Operating System-Interface

• System Calls

• Linkers and Loaders

• Why Applications are Operating System Specific

• Design and Implementation

2.4

OPERATING SYSTEM SERVICES
• Operating systems provide an environment for execution of programs and services

to programs and users

• One set of operating-system services provides functions that are helpful to the user:

• User interface - Almost all operating systems have a user interface (UI).

• Varies between Command-Line (CLI), Graphics User Interface
(GUI), touch-screen, Batch

• Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or abnormally
(indicating error)

• I/O operations - A running program may require I/O, which may involve a file
or an I/O device

• File-system manipulation - The file system is of particular interest. Programs
need to read and write files and directories, create and delete them, search
them, list file Information, permission management.

2.5

OPERATING SYSTEM SERVICES (CONT.)
• One set of operating-system services provides functions that are helpful to the user

(Cont.):

• Communications – Processes may exchange information, on the same
computer or between computers over a network

• Communications may be via shared memory or through message passing
(packets moved by the OS)

• Error detection – OS needs to be constantly aware of possible errors

• May occur in the CPU and memory hardware, in I/O devices, in user
program

• For each type of error, OS should take the appropriate action to ensure
correct and consistent computing

• Debugging facilities can greatly enhance the user’s and programmer’s
abilities to efficiently use the system

2.6

OPERATING SYSTEM SERVICES (CONT.)
• Another set of OS functions exists for ensuring the efficient operation of the system

itself via resource sharing
• Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them
• Many types of resources - CPU cycles, main memory, file storage, I/O

devices.
• Logging - To keep track of which users use how much and what kinds of

computer resources
• Protection and security - The owners of information stored in a multiuser

or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other
• Protection involves ensuring that all access to system resources is

controlled
• Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access attempts

2.7

A VIEW OF OPERATING SYSTEM SERVICES

2.8

COMMAND LINE INTERPRETER
• CLI allows direct command entry

• Sometimes implemented in kernel,
sometimes by systems program

• Sometimes multiple flavors
implemented – shells

• Primarily fetches a command from
user and executes it

• Sometimes commands built-in,
sometimes just names of
programs

• If the latter, adding new
features doesn’t require shell
modification

Bourne Shell Command Interpreter

2.9

2.10

df -kh
df : used to display information related to file systems about total space and available
space
The '-h' option displays the disc space in human-readable format. It will display the size
in powers of 1024, appending G for gigabytes, M for megabytes, and B for bytes.
-k: equivalent to --block-size=1K ; scale sizes by SIZE here 1K before printing them.

ps aux:
To monitor processes running on your Linux system.

sort -nrk 3,3
-n : to sort according to string numerical value

-r : reverses your results
-k : to sort according to particular columns

head -n 5
show the specified number of lines from the output

ls -l : The -l option signifies the long list format ; displays the file permissions, the
number of links, owner name, owner group, file size, time of last modification, and the
file or directory name

2.11

COMMON UBUNTU Commands
cat

lp
ls
df
sudo
firewall-cmd
dig/nslookup
chmod, chown
id, ip, du, lsof, netstat
top, env, ps, grep, tail, curl, dm

find, awk, traceroute, tar, history, sestatus

rsync, strace, tac, rev, sed, awk, cut, watch, diff

2.12

USER OPERATING SYSTEM INTERFACE - GUI

• User-friendly desktop metaphor interface

• Usually mouse, keyboard, and monitor

• Icons represent files, programs, actions, etc

• Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

• Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces

• Microsoft Windows is GUI with CLI “command” shell

• Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

• Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

2.13

TOUCHSCREEN INTERFACES

• Touchscreen devices require new
interfaces

• Mouse not possible or not
desired

• Actions and selection based on
gestures

• Virtual keyboard for text entry

• Voice commands

2.14

THE MAC OS X GUI

2.15

SYSTEM CALLS

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux,
and Mac OS X), and Java API for the Java virtual machine (JVM)

*Note that the system-call names used throughout this text are generic

2.16

EXAMPLE OF SYSTEM CALLS
• System call sequence to copy the contents of one file to another file

2.17

EXAMPLE OF STANDARD API

2.18

SYSTEM CALL IMPLEMENTATION

• Typically, a number is associated with each system call

• System-call interface maintains a table indexed according to these
numbers

• The system call interface invokes the intended system call in OS kernel and
returns status of the system call and any return values

• The caller need know nothing about how the system call is implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of OS interface hidden (eg encapsulation in object class) from
programmer by API

• Managed by run-time support library (set of functions built into libraries
included with compiler)

2.19

API – SYSTEM CALL – OS RELATIONSHIP

2.20

SYSTEM CALL PARAMETER PASSING

• Often, more information is required than simply identity of desired system call
• Exact type and amount of information vary according to OS and call

• Three general methods used to pass parameters to the OS
• Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers
• Parameters stored in a block, or table, in memory, and address of block

passed as a parameter in a register
• This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

• Block and stack methods do not limit the number or length of parameters
being passed

2.21

PARAMETER PASSING VIA TABLE

2.22

TYPES OF SYSTEM CALLS
• Process control

• create process, terminate process

• end, abort

• load, execute

• get process attributes, set process

attributes

• wait for time

• wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs,
single step execution

• Locks for managing access to
shared data between processes

• File management

• create file, delete file

• open, close file

• read, write, reposition

• get and set file attributes

• Device management

• request device, release device

• read, write, reposition

• get device attributes, set
device

attributes

• logically attach or detach
devices

2.23

TYPES OF SYSTEM CALLS (CONT.)

• Information maintenance

• get time or date, set time or
date

• get system data, set system
data

• get and set process, file, or
device attributes

• Communications
• create, delete communication

connection
• send, receive messages if

message passing model to
host name or process
name
• From client to server

• Shared-memory model
create and gain access to
memory regions

• transfer status information
• attach and detach remote

devices

• Protection
• Control access to resources
• Get and set permissions
• Allow and deny user access

2.24

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

2.25

STANDARD C LIBRARY EXAMPLE
• C program invoking printf() library call, which calls write() system call

2.26

LINKERS AND LOADERS
• Source code compiled into object files designed to be loaded into any physical

memory location – relocatable object file

• Linker combines these into single binary executable file

• Also brings in libraries

• Program resides on secondary storage as binary executable

• Must be brought into memory by loader to be executed

• Relocation assigns final addresses to program parts and adjusts code and data
in program to match those addresses

• Modern general purpose systems don’t link libraries into executables

• Rather, dynamically linked libraries (in Windows, DLLs) are loaded as
needed, shared by all that use the same version of that same library (loaded
once)

• Object, executable files have standard formats, so operating system knows how to
load and start them

2.27

THE ROLE OF THE LINKER AND LOADER

2.28

WHY APPLICATIONS ARE OPERATING SYSTEM SPECIFIC
• Apps compiled on one system usually not executable on other operating systems

• Each operating system provides its own unique system calls

• Own file formats, etc.

• Apps can be multi-operating system

• Written in interpreted language like Python, Ruby, and interpreter available
on multiple operating systems

• App written in language that includes a VM containing the running app (like
Java)

• Use standard language (like C), compile separately on each operating system
to run on each

• Application Binary Interface (ABI) is architecture equivalent of API, defines
how different components of binary code can interface for a given operating
system on a given architecture, CPU, etc.

2.29

DESIGN AND IMPLEMENTATION
• Design and Implementation of OS is not “solvable”, but some

approaches have proven successful

• Internal structure of different Operating Systems can vary widely

• Start the design by defining goals and specifications

• Affected by choice of hardware, type of system

• User goals and System goals
• User goals – operating system should be convenient to use, easy to learn,

reliable, safe, and fast

• System goals – operating system should be easy to design, implement, and
maintain, as well as flexible, reliable, error-free, and efficient

• Specifying and designing an OS is highly creative task of software
engineering

2.30

IMPLEMENTATION
• Much variation

• Early OSes in assembly language

• Then system programming languages like Algol, PL/1

• Now C, C++

• Actually usually a mix of languages

• Lowest levels in assembly

• Main body in C

• Systems programs in C, C++, scripting languages like PERL, Python, shell
scripts

• More high-level language easier to port to other hardware

• But slower

• Emulation can allow an OS to run on non-native hardware

2.31

