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OPERATING-SYSTEM SERVICES



2.3

OUTLINE

• Operating System Services

• User and Operating System-Interface

• System Calls

• Linkers and Loaders

• Why Applications are Operating System Specific

• Design and Implementation



2.4

OPERATING SYSTEM SERVICES
• Operating systems provide an environment for execution of programs and services 

to programs and users

• One set of operating-system services provides functions that are helpful to the user:

• User interface - Almost all operating systems have a user interface (UI).

• Varies between Command-Line (CLI), Graphics User Interface
(GUI), touch-screen,  Batch

• Program execution - The system must be able to load a program into 
memory and to run that program, end execution, either normally or abnormally 
(indicating error)

• I/O operations - A running program may require I/O, which may involve a file 
or an I/O device

• File-system manipulation - The file system is of particular interest. Programs 
need to read and write files and directories, create and delete them, search 
them, list file Information, permission management.
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OPERATING SYSTEM SERVICES (CONT.)
• One set of operating-system services provides functions that are helpful to the user 

(Cont.):

• Communications – Processes may exchange information, on the same 
computer or between computers over a network

• Communications may be via shared memory or through message passing 
(packets moved by the OS)

• Error detection – OS needs to be constantly aware of possible errors

• May occur in the CPU and memory hardware, in I/O devices, in user 
program

• For each type of error, OS should take the appropriate action to ensure 
correct and consistent computing

• Debugging facilities can greatly enhance the user’s and programmer’s 
abilities to efficiently use the system
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OPERATING SYSTEM SERVICES (CONT.)
• Another set of OS functions exists for ensuring the efficient operation of the system 

itself via resource sharing
• Resource allocation - When  multiple users or multiple jobs running 

concurrently, resources must be allocated to each of them
• Many types of resources - CPU cycles, main memory, file storage, I/O 

devices.
• Logging - To keep track of which users use how much and what kinds of 

computer resources
• Protection and security - The owners of information stored in a multiuser 

or networked computer system may want to control use of that information, 
concurrent processes should not interfere with each other
• Protection involves ensuring that all access to system resources is 

controlled
• Security of the system from outsiders requires user authentication, 

extends to defending external I/O devices from invalid access attempts
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A VIEW OF OPERATING SYSTEM SERVICES
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COMMAND LINE INTERPRETER 
• CLI allows direct command entry

• Sometimes implemented in kernel, 
sometimes by systems program

• Sometimes multiple flavors 
implemented – shells

• Primarily fetches a command from 
user and executes it

• Sometimes commands built-in, 
sometimes just names of 
programs

• If the latter, adding new 
features doesn’t require shell 
modification

Bourne Shell Command Interpreter
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df -kh
df : used to display information related to file systems about total space and available 
space
The '-h' option displays the disc space in human-readable format. It will display the size 
in powers of 1024, appending G for gigabytes, M for megabytes, and B for bytes.
-k: equivalent to --block-size=1K ; scale sizes by SIZE here 1K before printing them.

ps aux:
To monitor processes running on your Linux system.

sort -nrk 3,3
-n : to sort according to string numerical value

-r : reverses your results
-k : to sort according to particular columns

head -n 5
show the specified number of lines from the output

ls -l : The -l option signifies the long list format ; displays the file permissions, the 
number of links, owner name, owner group, file size, time of last modification, and the 
file or directory name
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COMMON UBUNTU Commands 
cat

lp
ls
df
sudo
firewall-cmd
dig/nslookup
chmod, chown
id, ip, du, lsof, netstat
top, env, ps, grep, tail, curl, dm

find, awk, traceroute, tar, history, sestatus

rsync, strace, tac, rev, sed, awk, cut, watch, diff
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USER OPERATING SYSTEM INTERFACE - GUI

• User-friendly desktop metaphor interface

• Usually mouse, keyboard, and monitor

• Icons represent files, programs, actions, etc

• Various mouse buttons over objects in the interface cause various 
actions (provide information, options, execute function, open directory 
(known as a folder)

• Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces

• Microsoft Windows is GUI with CLI “command” shell

• Apple Mac OS X is “Aqua” GUI interface with UNIX kernel 
underneath and shells available

• Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, 
GNOME)
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TOUCHSCREEN INTERFACES

• Touchscreen devices require new 
interfaces

• Mouse not possible or not 
desired

• Actions and selection based on 
gestures

• Virtual keyboard for text entry

• Voice commands
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THE MAC OS X GUI
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SYSTEM CALLS

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX API for 
POSIX-based systems (including virtually all versions of UNIX, Linux, 
and Mac OS X), and Java API for the Java virtual machine (JVM)

*Note that the system-call names used throughout this text are generic



2.16

EXAMPLE OF SYSTEM CALLS
• System call sequence to copy the contents of one file to another file
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EXAMPLE OF STANDARD API
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SYSTEM CALL IMPLEMENTATION

• Typically, a number is  associated with each system call

• System-call interface maintains a table indexed according to these 
numbers

• The system call interface invokes  the intended system call in OS kernel and 
returns status of the system call and any return values

• The caller need know nothing about how the system call is implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of  OS interface hidden (eg encapsulation in object class) from 
programmer by API  

• Managed by run-time support library (set of functions built into libraries 
included with compiler)
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API – SYSTEM CALL – OS RELATIONSHIP
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SYSTEM CALL PARAMETER PASSING

• Often, more information is required than simply identity of desired system call
• Exact type and amount of information vary according to OS and call

• Three general methods used to pass parameters to the OS
• Simplest:  pass the parameters in registers

• In some cases, may be more parameters than registers
• Parameters stored in a block, or table, in memory, and address of block 

passed as a parameter in a register 
• This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the stack by the program and 
popped off the stack by the operating system

• Block and stack methods do not limit the number or length of parameters 
being passed
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PARAMETER PASSING VIA TABLE
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TYPES OF SYSTEM CALLS
• Process control

• create process, terminate process

• end, abort

• load, execute

• get process attributes, set process

attributes

• wait for time

• wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, 
single step execution

• Locks for managing access to 
shared data between processes

• File management

• create file, delete file

• open, close file

• read, write, reposition

• get and set file attributes

• Device management

• request device, release device

• read, write, reposition

• get device attributes, set 
device

attributes

• logically attach or detach 
devices
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TYPES OF SYSTEM CALLS (CONT.)

• Information maintenance

• get time or date, set time or 
date

• get system data, set system 
data

• get and set process, file, or 
device attributes

• Communications
• create, delete communication 

connection
• send, receive messages if 

message passing model to 
host name or process
name
• From client to server

• Shared-memory model
create and gain access to 
memory regions

• transfer status information
• attach and detach remote 

devices

• Protection
• Control access to resources
• Get and set permissions
• Allow and deny user access
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EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS
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STANDARD C LIBRARY EXAMPLE
• C program invoking printf() library call, which calls write() system call
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LINKERS AND LOADERS
• Source code compiled into object files designed to be loaded into any physical 

memory location – relocatable object file

• Linker combines these into single binary executable file

• Also brings in libraries

• Program resides on secondary storage as binary executable

• Must be brought into memory by loader to be executed

• Relocation assigns final addresses to program parts and adjusts code and data 
in program to match those addresses

• Modern general purpose systems don’t link libraries into executables

• Rather, dynamically linked libraries (in Windows, DLLs) are loaded as 
needed, shared by all that use the same version of that same library (loaded 
once)

• Object, executable files have standard formats, so operating system knows how to 
load and start them
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THE ROLE OF THE LINKER AND LOADER
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WHY APPLICATIONS ARE OPERATING SYSTEM SPECIFIC
• Apps compiled on one system usually not executable on other operating systems

• Each operating system provides its own unique system calls

• Own file formats, etc.

• Apps can be multi-operating system

• Written in interpreted language like Python, Ruby, and interpreter available 
on multiple operating systems

• App written in language that includes a VM containing the running app (like 
Java)

• Use standard language (like C), compile separately on each operating system 
to run on each

• Application Binary Interface (ABI) is architecture equivalent of API, defines 
how different components of binary code can interface for a given operating 
system on a given architecture, CPU, etc. 
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DESIGN AND IMPLEMENTATION
• Design and Implementation of OS is not “solvable”, but some 

approaches have proven successful

• Internal structure of different Operating Systems  can vary widely

• Start the design by defining goals and specifications 

• Affected by choice of hardware, type of system

• User goals and System goals
• User goals – operating system should be convenient to use, easy to learn, 

reliable, safe, and fast

• System goals – operating system should be easy to design, implement, and 
maintain, as well as flexible, reliable, error-free, and efficient

• Specifying and designing an OS is highly creative task of software
engineering
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IMPLEMENTATION
• Much variation

• Early OSes in assembly language

• Then system programming languages like Algol, PL/1

• Now C, C++

• Actually usually a mix of languages

• Lowest levels in assembly

• Main body in C

• Systems programs in C, C++, scripting languages like PERL, Python, shell 
scripts

• More high-level language easier to port to other hardware

• But slower

• Emulation can allow an OS to run on non-native hardware
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