OPERATING SYSTEMS
CS3500 — CHAP - 3

PROF. SUKHENDU DAS,
DEPTT. OF COMPUTER SCIENCE AND ENGG,, IIT MADRAS, CHENNAI - 600036.

Email: sdas@cse.iitm.ac.in
URL: //lwww.cse.iitm.ac.in/~vplab/os.html

https://sites.google.com/smail.iitm.ac.in/3500-0s/

Aug. — 2022.

PROCESS MANAGEMENT

QOutline

» Process Concept

» Process Scheduling

» Operations on Processes

» Interprocess Communication

» |IPC in Shared-Memory Systems

» |IPC in Message-Passing Systems

» Communication in Client-Server Systems
» Remote Procedure Call

What is A PROCESS?

» An operating system executes a variety of programs that run as a

process. max

» Process — a program in execution; process execution must stack
progress in sequential fashion. No parallel execution of
instructions of a single process 1

» Multiple parts
» The program code, also called text section

» Current activity including program counter, processor |
registers heap
» Stack containing temporary data
» Function parameters, return addresses, local variables L

» Data section containing global variables

» Heap containing memory dynamically allocated during run
time

text

Process In Memory

What is A PROCESS? (Cont.)

Program # Process

» Program is passive entity stored on disk (executable file); process is active
» Program becomes process when an executable file is loaded into memory

» Execution of program started via GUI mouse clicks, command line entry of its
name, etc.

» One program can be several processes
» Consider multiple users executing the same program

Memory Layout of a C Program

high
memory

low
memory

argc, agrv

heap

#include <stdio.h>
#include <stdlib.h>

int x;
r(int y = 15;
|

int main(int argc, char *argv(])
{

L I:int *values;
int i;

uninitialized
data

initialized
data

text

N

I |
4_,/’/// values = (int *)malloc (sizeof (int) *5) ;

for(i = 0; 1 < 5; 1++)
values[i] = 1;

return 0;

}

Process State

» As a process executes, it changes state

» New: The process is being created sdmited intemipt

» Running: Instructions are being executed

»> Waiting: The process is waiting for some
event to occur

terminated

> Ready: The process is waiting to be I/O or event completion scheduler dispatch /), o ovent wait

assigned to a processor @

» Terminated: The process has finished
execution

5 State Process Chart

1 State Process Transition Diagram

I"--_-—_

~ # Dispatch o

Suspended
ready
<

%
N %

'h.- #

‘S-écondary Memory

Diagram Courtesy :https://www.geeksforgeeks.org/states-of-a-process-in-operating-systems/

Process Control Block (PCB)

Information associated with each process (also called task control block - TCB)

> Process state process state
» Process number process number
» Program counter
» CPU registers registers
» CPU scheduling information

» Memory-management information
» Accounting information

» 1/O status information

program counter

memory limits

list of open files

What is a Thread*?

» So far, process has a single thread of execution

» Consider having multiple program counters per
process

» Multiple locations can execute at once
» Multiple threads of control -> threads

» Must then have storage for thread details, multiple
program counters in PCB

*To be covered in detail in later chapters.

Process Scheduling

» Process scheduler selects among available

processes for next execution on CPU core _
» Goal -- Maximize CPU use, quickly switch - W
processes onto CPU core
» Maintains scheduling queues of processes . Owetatee 1 O T
» Ready queue — set of all processes time slice
residing in main memory, ready and pree
waiting to execute e create child
» Wait queues — set of processes waiting — it
for an event (i.e., I/O) interrupt | waitforan |
occurs wait queue interrupt

» Processes migrate among the various
queues

CPU Switch From Process to Process

A context switch occurs when the CPU switches from one process to
another.

process P, operating system process P,

interrupt or system call

executing u /—
Y

3 save state into PCB,
° idle
reload state from PCB, 1
-idle interrupt or system call executing
\ 4 \ i
save state into PCB;
idle
[]
) reload state from PCB,,

executing | —‘¥
\ 4

Operations on Processes

» System must provide mechanisms for:
» Process creation

> Process termination

Process Creation

» Parent process create children processes, which, in turn create other processes,
forming a tree of processes
» Generally, process identified and managed via a process identifier (pid)
» Resource sharing options
» Parent and children share all resources
» Children share subset of parent’s resources
» Parent and child share no resources

» Execution options
» Parent and children execute concurrently
» Parent waits until children terminate

Process Creation (Cont)

» Address space
» Child duplicate of parent
» Child has a program loaded into it
» UNIX examples
» fork () system call creates new process
> exec () system call used after a fork () to replace the process’ memory space
with a new program
» Parent process calls wait () waiting for the child to terminate

parent (pid > 0)
> parent resumes

parent

child (pid = 0)

A Tree of Processes in Linux

systemd
pid=1

python
pid = 2808

bash
pid = 8416

vim
pid = 9204

sshd
pid = 3610

tcsh
pid = 4005

Process Termination

» Process executes last statement and then asks the operating system to delete it using
the exit () system call.
» Returns status data from child to parent (via wait ())
> Process’ resources are deallocated by operating system
» Parent may terminate the execution of children processes using the abort () system
call. Some reasons for doing so:
» Child has exceeded allocated resources
» Task assigned to child is no longer required
» The parent is exiting, and the operating systems does not allow a child to continue if
its parent terminates

> If no parent waiting (did not invoke wait ()) process is a zombie
> If parent terminated without invoking wait (), process is an orphan

Interprocess Communication

» Processes within a system
- independent or cooperating
» Cooperating process can affect or be affected by other
processes, including sharing data
» Reasons for cooperating processes:
» Information sharing process B
» Computation speedup
» Modularity
» Convenience

process A process A

> shared memory

process B

message queue
» Cooperating processes need interprocess > Mg [mq|my ms| ... |my,

communication (IPC) L kernel

» Two models of IPC
» Shared memory
> Message passing

(a) (b)

(a) Shared memory. (b) Message passing.

Producer-Consumer Problem

» Paradigm for cooperating processes:
» producer process produces information that is consumed by a consumer process

» Two variations:
» unbounded-buffer places no practical limit on the size of the buffer:
» Producer never waits
» Consumer waits if there is no buffer to consume
» bounded-buffer assumes that there is a fixed buffer size
» Producer must wait if all buffers are full
» Consumer waits if there is no buffer to consume

IPC- Shared Memory

>

An area of memory shared among the processes that
wish to communicate

The communication is under the control of the users
processes not the operating system.

Major issues is to provide mechanism that will allow
the user processes to synchronize their actions when
they access shared memory.

Synchronization to be covered in detail later.

Bounded-Buffer - Shared-Memory Solution

> Shared data
#define BUFFER_SIZE 10

typedef struct {

} item;

item buffer [BUFFER SIZE];
int in = 0;
int out = 0;

» Solution is correct, but can only use (BUFFER SIZE-1) elements.

» The shared buffer is implemented as a circular array with two logical pointers:in
and out.

» The buffer is empty when in == out; the buffer is full when

in + 1) % BUFFER SIZE) == out

Producer Process - Shared Memory

item next produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE)
; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

== out)

Consumer Process - Shared Memory

item next consumed;

while (true) {
while (in == out)
; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed

*/
}

What about Filling all the Buffers?

>

Suppose that we wanted to provide a solution to the consumer-producer
problem that fills all the buffers.

We can do so by having an integer counter that keeps track of the
number of full buffers.

Initially, counter is set to 0.

The integer counter is incremented by the producer after it produces a
new buffer.

The integer counter is and is decremented by the consumer after it
consumes a buffer.

Producer

while (true) {
/* produce an item in next produced

while (counter BUFFER SIZE)
; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

counter++;

Consumer

while (true) {

*/
}

while (counte 0)
; /* do nothing */
next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;
counter--;

/* consume the item in next consumed

Race Condition

> counter++ could be implemented
as

registerl = counter
registerl = registerl + 1
counter = registerl

» counter-- could be implemented as
register2 = counter

register2 = register2 - 1
counter = register2

Question — why was there no
race condition in the first
solution (where at most N - 1)
buffers can be filled?

» Consider this execution interleaving with “count = 57;
> initially:

» S0:producer execute registerl = counter
{register| = 5}

Sl:producer execute registerl = registerl + 1
{register| = 6}

S2: consumer execute register2 = counter
{register2 = 5}
S3:consumer execute register2 = register2 - 1

{register2 = 4}

S4: producer execute counter = registerl
{counter = 6}

S5: consumer execute counter = register?2
{counter = 4}

IPC - Message Passing

> Processes communicate with each other without
resorting to shared variables

» |IPC facility provides two operations:
> send(message)
> receive(message)

» The message size is either fixed or variable

Message Passing

> If processes P and Q wish to communicate, they need

to:
» Establish a communication link between them
» Exchange messages via send/receive
» Implementation issues:
» How are links established?

> Can a link be associated with more than two

processes!

» How many links can there be between every pair
of communicating processes?

» What is the capacity of a link?

» Is the size of a message that the link can
accommodate fixed or variable!?

» s a link unidirectional or bi-directional?

A 4

» Physical:
» Shared memory
» Hardware bus
»> Network
> Logical:
» Direct or indirect
» Synchronous or asynchronous
» Automatic or explicit buffering

Pipes

» Acts as a conduit allowing two processes to communicate

> lIssues:
» |Is communication unidirectional or bidirectional?
> In the case of two-way communication, is it half or full-duplex?
» Must there exist a relationship (i.e., parent-child) between the communicating
processes!
» Can the pipes be used over a network!?

» Ordinary pipes — cannot be accessed from outside the process that created it.
Typically, a parent process creates a pipe and uses it to communicate with a child process

that it created.

Parent Child » Producer writes to one end (the write-end of the pipe)

» Consumer reads from the other end (the read-end of the pipe)
fd [0] fal [0]

Named pipes — can be accessed without a parent-child
relationship. Communication is bidirectional

el

Communications in Client-Server Systems

> Sockets
> Remote Procedure Calls

Sockets host X
(146.86.5.20)

» A socket is defined as an endpoint for communication

» Concatenation of IP address and port —a number
included at start of message packet to differentiate
network services on a host

» The socket 161.25.19.8:1625 refers to port 1625 on
host 161.25.19.8

» Communication consists between a pair of sockets

» All ports below 1024 are well known, used for
standard services

» Special IP address 127.0.0.1 (loopback) to refer to
system on which process is running

socket
(146.86.5.20:1625)
web server
(161.25.19.8)

socket
(161.25.19.8:80)

Socket Communication

Remote Procedure Calls

>

Y V V

Remote procedure call (RPC) abstracts procedure calls between processes on
networked systems

» Again uses ports for service differentiation
Stubs — client-side proxy for the actual procedure on the server
The client-side stub locates the server and marshalls the parameters
The server-side stub receives this message, unpacks the marshalled parameters, and
performs the procedure on the server

Data representation handled via External Data Representation (XDL) format to
account for different architectures
> Big-endian and little-endian
Remote communication has more failure scenarios than local
» Messages can be delivered exactly once rather than at most once
OS typically provides a rendezvous (or matchmalker) service to connect client and

server

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

messages

From: client
To: server
Port: matchmaker

kernel places
port P in user
RPC message

server

matchmaker
receives

Re: address
for RPC X

From: server
To: client

kernel sends
RPC

message, looks
up answer

Y

matchmaker

Port: kernel
Re: RPC X
Port: P

From: client
To: server

kernel receives
reply, passes
it to user

replies to client
with port P

daemon
listening to

Port: port P
<contents>

From: RPC
Port: P

port P receives
message

Y

daemon
processes

To: client
Port: kernel

<output>

request and
processes send
output

