
OPERATING SYSTEMS
CS3500 – CHAP - 3

PROF. SUKHENDU DAS,

DEPTT. OF COMPUTER SCIENCE AND ENGG., IIT MADRAS, CHENNAI – 600036.

Email: sdas@cse.iitm.ac.in
URL: //www.cse.iitm.ac.in/~vplab/os.html

https://sites.google.com/smail.iitm.ac.in/3500-os/

Aug. – 2022.

PROCESS MANAGEMENT

Outline

 Process Concept
 Process Scheduling
Operations on Processes
 Interprocess Communication
 IPC in Shared-Memory Systems
 IPC in Message-Passing Systems
Communication in Client-Server Systems
Remote Procedure Call

What is A PROCESS?
 An operating system executes a variety of programs that run as a

process.
 Process – a program in execution; process execution must

progress in sequential fashion. No parallel execution of
instructions of a single process

 Multiple parts
 The program code, also called text section
 Current activity including program counter, processor

registers
 Stack containing temporary data
 Function parameters, return addresses, local variables

 Data section containing global variables
 Heap containing memory dynamically allocated during run

time Process In Memory

What is A PROCESS? (Cont.)

Program ≠ Process

 Program is passive entity stored on disk (executable file); process is active
 Program becomes process when an executable file is loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its
name, etc.

 One program can be several processes
 Consider multiple users executing the same program

Memory Layout of a C Program

Process State
 As a process executes, it changes state
 New: The process is being created
 Running: Instructions are being executed
 Waiting: The process is waiting for some

event to occur
 Ready: The process is waiting to be

assigned to a processor
 Terminated: The process has finished

execution 5 State Process Chart

7 State Process Transition Diagram

Diagram Courtesy :https://www.geeksforgeeks.org/states-of-a-process-in-operating-systems/

Process Control Block (PCB)
Information associated with each process (also called task control block -TCB)

 Process state
 Process number
 Program counter
 CPU registers
 CPU scheduling information
 Memory-management information
 Accounting information
 I/O status information

What is a Thread*?

 So far, process has a single thread of execution

 Consider having multiple program counters per
process
 Multiple locations can execute at once
 Multiple threads of control -> threads

 Must then have storage for thread details, multiple
program counters in PCB

*To be covered in detail in later chapters.

Process Scheduling

 Process scheduler selects among available
processes for next execution on CPU core

 Goal -- Maximize CPU use, quickly switch
processes onto CPU core

 Maintains scheduling queues of processes
 Ready queue – set of all processes

residing in main memory, ready and
waiting to execute

 Wait queues – set of processes waiting
for an event (i.e., I/O)

 Processes migrate among the various
queues

CPU Switch From Process to Process
A context switch occurs when the CPU switches from one process to
another.

Operations on Processes

 System must provide mechanisms for:
 Process creation

 Process termination

Process Creation

 Parent process create children processes, which, in turn create other processes,
forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)
 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

Process Creation (Cont)

 Address space
 Child duplicate of parent
 Child has a program loaded into it

 UNIX examples
 fork() system call creates new process
 exec() system call used after a fork() to replace the process’ memory space

with a new program
 Parent process calls wait()waiting for the child to terminate

A Tree of Processes in Linux

Process Termination
 Process executes last statement and then asks the operating system to delete it using

the exit() system call.
 Returns status data from child to parent (via wait())
 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes using the abort() system
call. Some reasons for doing so:
 Child has exceeded allocated resources
 Task assigned to child is no longer required
 The parent is exiting, and the operating systems does not allow a child to continue if

its parent terminates

 If no parent waiting (did not invoke wait()) process is a zombie
 If parent terminated without invoking wait(), process is an orphan

Interprocess Communication
 Processes within a system
 independent or cooperating

 Cooperating process can affect or be affected by other
processes, including sharing data

 Reasons for cooperating processes:
 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need interprocess
communication (IPC)

 Two models of IPC
 Shared memory
 Message passing

(a) Shared memory. (b) Message passing.

Producer-Consumer Problem

 Paradigm for cooperating processes:
 producer process produces information that is consumed by a consumer process

 Two variations:
 unbounded-buffer places no practical limit on the size of the buffer:

 Producer never waits
 Consumer waits if there is no buffer to consume

 bounded-buffer assumes that there is a fixed buffer size
 Producer must wait if all buffers are full
 Consumer waits if there is no buffer to consume

IPC- Shared Memory
 An area of memory shared among the processes that

wish to communicate

 The communication is under the control of the users
processes not the operating system.

 Major issues is to provide mechanism that will allow
the user processes to synchronize their actions when
they access shared memory.

 Synchronization to be covered in detail later.

Bounded-Buffer – Shared-Memory Solution
 Shared data

#define BUFFER_SIZE 10
typedef struct {
. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

 Solution is correct, but can only use (BUFFER_SIZE-1) elements.
 The shared buffer is implemented as a circular array with two logical pointers: in

and out.
 The buffer is empty when in == out; the buffer is full when

((in + 1) % BUFFER SIZE) == out

Producer Process – Shared Memory

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */

buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

Consumer Process – Shared Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed
*/
}

What about Filling all the Buffers?
 Suppose that we wanted to provide a solution to the consumer-producer

problem that fills all the buffers.

 We can do so by having an integer counter that keeps track of the
number of full buffers.

 Initially, counter is set to 0.

 The integer counter is incremented by the producer after it produces a
new buffer.

 The integer counter is and is decremented by the consumer after it
consumes a buffer.

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE)
; /* do nothing */

buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Consumer

while (true) {
while (counter == 0)

; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

counter--;
/* consume the item in next consumed

*/
}

Race Condition

 counter++ could be implemented
as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

Question – why was there no
race condition in the first
solution (where at most N – 1)
buffers can be filled?

 Consider this execution interleaving with “count = 5”;
 initially:

 S0: producer execute register1 = counter
{register1 = 5}

S1: producer execute register1 = register1 + 1
{register1 = 6}

S2: consumer execute register2 = counter
{register2 = 5}

S3: consumer execute register2 = register2 – 1
{register2 = 4}

S4: producer execute counter = register1
{counter = 6 }

S5: consumer execute counter = register2
{counter = 4}

IPC – Message Passing

 Processes communicate with each other without
resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 The message size is either fixed or variable

Message Passing
 If processes P and Q wish to communicate, they need

to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two

processes?
 How many links can there be between every pair

of communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can

accommodate fixed or variable?
 Is a link unidirectional or bi-directional?

 Physical:
 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering

Pipes
 Acts as a conduit allowing two processes to communicate

 Issues:
 Is communication unidirectional or bidirectional?
 In the case of two-way communication, is it half or full-duplex?
 Must there exist a relationship (i.e., parent-child) between the communicating

processes?
 Can the pipes be used over a network?

 Ordinary pipes – cannot be accessed from outside the process that created it.
Typically, a parent process creates a pipe and uses it to communicate with a child process
that it created.

Named pipes – can be accessed without a parent-child
relationship. Communication is bidirectional

 Producer writes to one end (the write-end of the pipe)
 Consumer reads from the other end (the read-end of the pipe)

Communications in Client-Server Systems
 Sockets
 Remote Procedure Calls

Sockets
 A socket is defined as an endpoint for communication
 Concatenation of IP address and port – a number

included at start of message packet to differentiate
network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on
host 161.25.19.8

 Communication consists between a pair of sockets
 All ports below 1024 are well known, used for

standard services
 Special IP address 127.0.0.1 (loopback) to refer to

system on which process is running Socket Communication

Remote Procedure Calls
 Remote procedure call (RPC) abstracts procedure calls between processes on

networked systems
 Again uses ports for service differentiation

 Stubs – client-side proxy for the actual procedure on the server
 The client-side stub locates the server and marshalls the parameters
 The server-side stub receives this message, unpacks the marshalled parameters, and

performs the procedure on the server

 Data representation handled via External Data Representation (XDL) format to
account for different architectures
 Big-endian and little-endian

 Remote communication has more failure scenarios than local
 Messages can be delivered exactly once rather than at most once

 OS typically provides a rendezvous (or matchmaker) service to connect client and
server

Execution of RPC

