
OPERATING SYSTEMS
CS3500 – CHAP - 3

PROF. SUKHENDU DAS,

DEPTT. OF COMPUTER SCIENCE AND ENGG., IIT MADRAS, CHENNAI – 600036.

Email: sdas@cse.iitm.ac.in
URL: //www.cse.iitm.ac.in/~vplab/os.html

https://sites.google.com/smail.iitm.ac.in/3500-os/

Aug. – 2022.

PROCESS MANAGEMENT

Outline

 Process Concept
 Process Scheduling
Operations on Processes
 Interprocess Communication
 IPC in Shared-Memory Systems
 IPC in Message-Passing Systems
Communication in Client-Server Systems
Remote Procedure Call

What is A PROCESS?
 An operating system executes a variety of programs that run as a

process.
 Process – a program in execution; process execution must

progress in sequential fashion. No parallel execution of
instructions of a single process

 Multiple parts
 The program code, also called text section
 Current activity including program counter, processor

registers
 Stack containing temporary data
 Function parameters, return addresses, local variables

 Data section containing global variables
 Heap containing memory dynamically allocated during run

time Process In Memory

What is A PROCESS? (Cont.)

Program ≠ Process

 Program is passive entity stored on disk (executable file); process is active
 Program becomes process when an executable file is loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its
name, etc.

 One program can be several processes
 Consider multiple users executing the same program

Memory Layout of a C Program

Process State
 As a process executes, it changes state
 New: The process is being created
 Running: Instructions are being executed
 Waiting: The process is waiting for some

event to occur
 Ready: The process is waiting to be

assigned to a processor
 Terminated: The process has finished

execution 5 State Process Chart

7 State Process Transition Diagram

Diagram Courtesy :https://www.geeksforgeeks.org/states-of-a-process-in-operating-systems/

Process Control Block (PCB)
Information associated with each process (also called task control block -TCB)

 Process state
 Process number
 Program counter
 CPU registers
 CPU scheduling information
 Memory-management information
 Accounting information
 I/O status information

What is a Thread*?

 So far, process has a single thread of execution

 Consider having multiple program counters per
process
 Multiple locations can execute at once
 Multiple threads of control -> threads

 Must then have storage for thread details, multiple
program counters in PCB

*To be covered in detail in later chapters.

Process Scheduling

 Process scheduler selects among available
processes for next execution on CPU core

 Goal -- Maximize CPU use, quickly switch
processes onto CPU core

 Maintains scheduling queues of processes
 Ready queue – set of all processes

residing in main memory, ready and
waiting to execute

 Wait queues – set of processes waiting
for an event (i.e., I/O)

 Processes migrate among the various
queues

CPU Switch From Process to Process
A context switch occurs when the CPU switches from one process to
another.

Operations on Processes

 System must provide mechanisms for:
 Process creation

 Process termination

Process Creation

 Parent process create children processes, which, in turn create other processes,
forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)
 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

Process Creation (Cont)

 Address space
 Child duplicate of parent
 Child has a program loaded into it

 UNIX examples
 fork() system call creates new process
 exec() system call used after a fork() to replace the process’ memory space

with a new program
 Parent process calls wait()waiting for the child to terminate

A Tree of Processes in Linux

Process Termination
 Process executes last statement and then asks the operating system to delete it using

the exit() system call.
 Returns status data from child to parent (via wait())
 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes using the abort() system
call. Some reasons for doing so:
 Child has exceeded allocated resources
 Task assigned to child is no longer required
 The parent is exiting, and the operating systems does not allow a child to continue if

its parent terminates

 If no parent waiting (did not invoke wait()) process is a zombie
 If parent terminated without invoking wait(), process is an orphan

Interprocess Communication
 Processes within a system
 independent or cooperating

 Cooperating process can affect or be affected by other
processes, including sharing data

 Reasons for cooperating processes:
 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need interprocess
communication (IPC)

 Two models of IPC
 Shared memory
 Message passing

(a) Shared memory. (b) Message passing.

Producer-Consumer Problem

 Paradigm for cooperating processes:
 producer process produces information that is consumed by a consumer process

 Two variations:
 unbounded-buffer places no practical limit on the size of the buffer:

 Producer never waits
 Consumer waits if there is no buffer to consume

 bounded-buffer assumes that there is a fixed buffer size
 Producer must wait if all buffers are full
 Consumer waits if there is no buffer to consume

IPC- Shared Memory
 An area of memory shared among the processes that

wish to communicate

 The communication is under the control of the users
processes not the operating system.

 Major issues is to provide mechanism that will allow
the user processes to synchronize their actions when
they access shared memory.

 Synchronization to be covered in detail later.

Bounded-Buffer – Shared-Memory Solution
 Shared data

#define BUFFER_SIZE 10
typedef struct {
. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

 Solution is correct, but can only use (BUFFER_SIZE-1) elements.
 The shared buffer is implemented as a circular array with two logical pointers: in

and out.
 The buffer is empty when in == out; the buffer is full when

((in + 1) % BUFFER SIZE) == out

Producer Process – Shared Memory

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */

buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

Consumer Process – Shared Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed
*/
}

What about Filling all the Buffers?
 Suppose that we wanted to provide a solution to the consumer-producer

problem that fills all the buffers.

 We can do so by having an integer counter that keeps track of the
number of full buffers.

 Initially, counter is set to 0.

 The integer counter is incremented by the producer after it produces a
new buffer.

 The integer counter is and is decremented by the consumer after it
consumes a buffer.

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE)
; /* do nothing */

buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Consumer

while (true) {
while (counter == 0)

; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

counter--;
/* consume the item in next consumed

*/
}

Race Condition

 counter++ could be implemented
as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

Question – why was there no
race condition in the first
solution (where at most N – 1)
buffers can be filled?

 Consider this execution interleaving with “count = 5”;
 initially:

 S0: producer execute register1 = counter
{register1 = 5}

S1: producer execute register1 = register1 + 1
{register1 = 6}

S2: consumer execute register2 = counter
{register2 = 5}

S3: consumer execute register2 = register2 – 1
{register2 = 4}

S4: producer execute counter = register1
{counter = 6 }

S5: consumer execute counter = register2
{counter = 4}

IPC – Message Passing

 Processes communicate with each other without
resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 The message size is either fixed or variable

Message Passing
 If processes P and Q wish to communicate, they need

to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two

processes?
 How many links can there be between every pair

of communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can

accommodate fixed or variable?
 Is a link unidirectional or bi-directional?

 Physical:
 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering

Pipes
 Acts as a conduit allowing two processes to communicate

 Issues:
 Is communication unidirectional or bidirectional?
 In the case of two-way communication, is it half or full-duplex?
 Must there exist a relationship (i.e., parent-child) between the communicating

processes?
 Can the pipes be used over a network?

 Ordinary pipes – cannot be accessed from outside the process that created it.
Typically, a parent process creates a pipe and uses it to communicate with a child process
that it created.

Named pipes – can be accessed without a parent-child
relationship. Communication is bidirectional

 Producer writes to one end (the write-end of the pipe)
 Consumer reads from the other end (the read-end of the pipe)

Communications in Client-Server Systems
 Sockets
 Remote Procedure Calls

Sockets
 A socket is defined as an endpoint for communication
 Concatenation of IP address and port – a number

included at start of message packet to differentiate
network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on
host 161.25.19.8

 Communication consists between a pair of sockets
 All ports below 1024 are well known, used for

standard services
 Special IP address 127.0.0.1 (loopback) to refer to

system on which process is running Socket Communication

Remote Procedure Calls
 Remote procedure call (RPC) abstracts procedure calls between processes on

networked systems
 Again uses ports for service differentiation

 Stubs – client-side proxy for the actual procedure on the server
 The client-side stub locates the server and marshalls the parameters
 The server-side stub receives this message, unpacks the marshalled parameters, and

performs the procedure on the server

 Data representation handled via External Data Representation (XDL) format to
account for different architectures
 Big-endian and little-endian

 Remote communication has more failure scenarios than local
 Messages can be delivered exactly once rather than at most once

 OS typically provides a rendezvous (or matchmaker) service to connect client and
server

Execution of RPC

