
OPERATING SYSTEMS
CS3500

PROF. SUKHENDU DAS;

DEPTT. OF COMPUTER SCIENCE AND ENGG., IIT MADRAS,
CHENNAI – 600036.

Email: sdas@cse.iitm.ac.in
URL: http://www.cse.iitm.ac.in/~vplab/os.html

Aug. – 2022.

THREADS & CONCURRENCY

OUTLINE

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Threading Issues

MOTIVATION

• Most modern applications are multithreaded

• Threads run within application

• Multiple tasks with the application can be implemented by separate threads

• Update display

• Fetch data

• Spell checking

• Answer a network request

• Process creation is heavy-weight while thread creation is light-weight

• Can simplify code, increase efficiency

• Kernels are generally multithreaded

SINGLE AND MULTITHREADED PROCESSES

MULTITHREADED SERVER ARCHITECTURE

BENEFITS

• Responsiveness – may allow continued execution if part of
process is blocked, especially important for user interfaces

• Resource Sharing – threads share resources of process, easier
than shared memory or message passing

• Economy – cheaper than process creation, thread switching
lower overhead than context switching

• Scalability – process can take advantage of multicore
architectures

MULTICORE PROGRAMMING
• Multicore or multiprocessor systems puts pressure on programmers,

challenges include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

• Parallelism implies a system can perform more than one task simultaneously

• Concurrency supports more than one task making progress

• Single processor / core, scheduler providing concurrency

CONCURRENCY VS. PARALLELISM
 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

MULTICORE PROGRAMMING

• Types of parallelism

• Data parallelism – distributes subsets of the same
data across multiple cores, same operation on each

• Task parallelism – distributing threads across cores,
each thread performing unique operation

DATA AND TASK PARALLELISM

USER THREADS AND KERNEL THREADS
• User threads - management done by user-level threads

library

• Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general-purpose operating systems,
including:

• Windows

• Linux

• Mac OS X

• iOS

• Android

MULTITHREADING MODELS

• Many-to-One

• One-to-One

• Many-to-Many

MANY-TO-ONE
• Many user-level threads mapped to single kernel thread

• One thread blocking causes all to block

• Multiple threads may not run in parallel on multicore system because only one
may be in kernel at a time

• Few systems currently use this model

• Examples:

• Solaris Green Threads

• GNU Portable Threads

ONE-TO-ONE
• Each user-level thread maps to kernel thread

• Creating a user-level thread creates a kernel thread

• More concurrency than many-to-one

• Number of threads per process sometimes restricted due to
overhead

• Examples

• Windows

• Linux

MANY-TO-MANY MODEL
• Allows many user level threads to be mapped to many kernel threads

• Allows the operating system to create a sufficient number of kernel
threads

• Windows with the ThreadFiber package

• Otherwise not very common

TWO-LEVEL MODEL
• Similar to M:M, except that it allows a user thread to be bound to

kernel thread

THREAD LIBRARIES

• Thread library provides programmer with API for
creating and managing threads

• Two primary ways of implementing

• Library entirely in user space

• Kernel-level library supported by the OS

PTHREADS
• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

• Specification, not implementation

• API specifies behavior of the thread library, implementation is up to
development of the library

• Common in UNIX operating systems (Linux & Mac OS X)

PTHREADS EXAMPLE

PTHREADS EXAMPLE (CONT.)

 Try Pthreads Code for Joining 10 Threads!! (/** See fig. 4.12)

All Pthreads programs must include the pthread.h header file. The
statement pthread_t tid declares the identifier for the thread we will create.
Each thread has a set of attributes, including stack size and scheduling
information. The pthread attr_t attr declaration represents the attributes for
the thread.

We set the attributes in the function call pthread_attr_init(&attr).

A separate thread is created with the pthread_create() function call.
In addition to passing the thread identifier and the attributes for the thread,
we also pass the name of the function where the new thread will begin
execution – the runner function (in this case).

This program follows the thread create/join strategy, whereby after
creating the summation thread, the parent thread will wait for it to
terminate by calling the function pthread_join() function.

The summation thread will terminate when it calls the function
pthread _exit(). Once the summation thread has returned, the parent
thread will output the value of the shared data sum.

Implicit Threading
With the continued growth of multicore processing, applications

containing hundreds—or even thousands—of threads are looming on the
horizon.

A better support for the design of concurrent and parallel applications is
to transfer the creation and management of threading from application
developers to compilers and run-time libraries. This strategy is termed
implicit threading, is an increasingly popular trend.

These strategies generally require application developers to identify
tasks—not threads—that can run in parallel. A task is usually written as a
function, which the run-time library then maps to a separate thread,
typically using the many-to-many model.

The general idea behind a thread pool is to create a number of threads
at start-up and place them into a pool, where they sit and wait for work.

The strategy for thread creation as the fork-join model - the main
parent thread creates (forks) one or more child threads and then waits for
the children to terminate and join with it, at which point it can retrieve and
combine their results.

OpenMP is a set of compiler directives as well as an API for programs
written in C, C++, or FORTRAN that provides support for parallel
programming in shared memory environments. OpenMP identifies parallel
regions as blocks of code that may run in parallel.

Like OpenMP, GCD (Grand Central Dispatch - a technology developed by
Apple for its macOS and iOS) manages most of the details of threading.
GCD schedules tasks for run-time execution by placing them on a dispatch
queue. GCD identifies two types of dispatch queues: serial and concurrent.

Tasks placed on a serial queue are removed in FIFO order. Once a task
has been removed from the queue, it must complete execution before
another task is removed. Each process has its own serial queue (known as its
main queue), serial Qs are called private dispatch queues.

THREADING ISSUES

• Semantics of fork() and exec() system calls

• Signal handling

• Synchronous and asynchronous

• Thread cancellation of target thread

• Asynchronous or deferred

• Thread-local storage

• Scheduler Activations

SEMANTICS OF FORK() AND EXEC()

• Does fork()duplicate only the calling thread or all threads?

• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the running process including all threads

If exec() is called immediately after forking, then duplicating all threads is
unnecessary, as the program specified in the parameters to exec() will replace the
process.

In this instance, duplicating only the calling thread is appropriate.

If, however, the separate process does not call exec() after forking, the separate
process should duplicate all threads.

SIGNAL HANDLING
• Signals are used in UNIX systems to notify a process that a particular event

has occurred.

• A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

• Every signal has default handler that kernel runs when handling signal

• User-defined signal handler can override default

• For single-threaded, signal delivered to process

SIGNAL HANDLING (CONT.)
• Where should a signal be delivered for multi-threaded?

• Deliver the signal to the thread to which the signal applies
• Deliver the signal to every thread in the process
• Deliver the signal to certain threads in the process
• Assign a specific thread to receive all signals for the process

Synchronous signals are delivered to the same process that performed the
operation that caused the signal;

When a signal is generated by an event external to a running process, that

process receives the signal asynchronously.

kill(pid_t pid, int signal); Signals may be blocked by a process/thread.

Pthreads provides the following function, which allows a signal to be delivered to
a specified thread (tid):

pthread_kill(pthread_t tid, int signal)

THREAD CANCELLATION
• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:
• Asynchronous cancellation terminates the target thread

immediately
• Deferred cancellation allows the target thread to periodically check if

it should be cancelled

• Pthread code to create and cancel a thread:

Difficulty with cancellation occurs in

situations where resources have been

allocated to a cancelled thread or

where a thread is cancelled while in the

midst of updating data it is sharing with

other threads.

THREAD CANCELLATION (CONT.)
• Invoking thread cancellation requests cancellation, but actual cancellation depends on

thread state

• If thread has cancellation disabled, cancellation remains pending until thread enables it

• Default type is deferred

• Cancellation only occurs when thread reaches cancellation point

• i.e., pthread_testcancel()

• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals

THREAD-LOCAL STORAGE
• Thread-local storage (TLS) allows each thread to have its own copy

of data

• Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

• Different from local variables

• Local variables visible only during single function invocation

• TLS visible across function invocations

• Similar to static data

• TLS is unique to each thread

SCHEDULER ACTIVATIONS
• Both M:M and Two-level models require communication to

maintain the appropriate number of kernel threads allocated
to the application

• Typically use an intermediate data structure between user
and kernel threads – lightweight process (LWP)

• Appears to be a virtual processor on which process can
schedule user thread to run

• Each LWP attached to kernel thread

• How many LWPs to create?

• Scheduler activations provide upcalls - a communication
mechanism from the kernel to the upcall handler in the
thread library

• This communication allows an application to maintain the
correct number kernel threads

PCB VS TCB

PCB vs TCB
S.No PCB TCB

1 Process Control Block Thread Control Block

2 The PCB stores information about the kernel
process.
A process can include different kernel threads

The TCB includes thread specific information.

3 Some notable fields that the PCB could contain are
the process id, process group id, the parent process
and child processes, the heap pointer, program
counter, scheduling state (running, ready, blocked),
permissions (what system resources the process is
allowed to access), content of the general purpose
registers, and open files.

TCB has a few of the same fields as the PCB
(register values, stack pointer, program counter,
scheduling state), in addition to a few specific
values like the

.

4 PCB describes an environment context (eg. memory
segments and permissions)

TCB describes an execution context, (eg. stack
pointer)

