
OPERATING SYSTEMS
CS3500

PROF. SUKHENDU DAS DEPTT. OF COMPUTER SCIENCE AND ENGG., IIT
MADRAS, CHENNAI – 600036.

Email: sdas@cse.iitm.ac.in
URL: http://www.cse.iitm.ac.in/~vplab/os.html

Aug. – 2022.

CPU SCHEDULING

Basic Concepts
 Maximum CPU utilization obtained with

multiprogramming

 CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and
I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main concern

Histogram of CPU-burst Times

 Large number of short bursts

 Small number of longer bursts

CPU Scheduler
 The CPU scheduler selects from among the processes in ready queue, and allocates a CPU core to one of

them
 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
 Terminates

 For situations 1 and 4, there is no choice in terms of scheduling. A new process (if one exists in the ready
queue) must be selected for execution.

 For situations 2 and 3, however, there is a choice

Preemptive and Nonpreemptive Scheduling
 When scheduling takes place only under circumstances 1 and 4, the

scheduling scheme is nonpreemptive.
 Otherwise, it is preemptive.
 Under Nonpreemptive scheduling, once the CPU has been allocated

to a process, the process keeps the CPU until it releases it either by
terminating or by switching to the waiting state.

 Virtually all modern operating systems including Windows, MacOS,
Linux, and UNIX use preemptive scheduling algorithms.

 Preemptive scheduling can result in race conditions when data are
shared among several processes.

 Consider the case of two processes that share data. While one process
is updating the data, it is preempted so that the second process can
run. The second process then tries to read the data, which are in an
inconsistent state.

Dispatcher
 Dispatcher module gives control of the CPU to

the process selected by the CPU scheduler;
this involves:
 Switching context
 Switching to user mode
 Jumping to the proper location in the user

program to restart that program
 Dispatch latency – time it takes for the

dispatcher to stop one process and start
another running

Scheduling Criteria
 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per
time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the
ready queue

 Response time – amount of time it takes from when a request was
submitted until the first response is produced

Scheduling Algorithm Optimization Criteria

What should be optimization criteria???

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First- Come, First-Served (FCFS) Scheduling
 Process Burst Time

P1 24
P2 3
P3 3

 Suppose that the processes arrive in the order: P1 , P2 ,
P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

FCFS Scheduling (Cont.)
 Suppose that the processes arrive in the order:

P2 , P3 , P1
 The Gantt chart for the schedule is:

 Waiting time for P1 = 6;P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case
 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P1
0 3 6 30

P2 P3

Shortest-Job-First (SJF) Scheduling
 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of
processes

 Preemptive version called shortest-remaining-time-first

 How do we determine the length of the next CPU burst?
 Could ask the user
 Estimate

Example of SJF
Process Burst Time

P1 6
P2 8
P3 7
P4 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2

Determining Length of Next CPU Burst
 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using
exponential averaging

 Commonly, α set to ½

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging
 α =0

 τn+1 = τn
 Recent history does not count

 α =1
 τn+1 = α tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:
 τn+1 = α tn+(1 - α)α tn -1 + …
 +(1 - α)j α tn -j + …
 +(1 - α)n +1 τ0

 Since both α and (1 - α) are less than or equal to 1,
each successor predecessor term has less weight than
its predecessor

Shortest Remaining Time First Scheduling
 Preemptive version of SJN

 Whenever a new process arrives in the ready queue,
the decision on which process to schedule next is
redone using the SJN algorithm.

 Is SRT more “optimal” than SJN in terms of the
minimum average waiting time for a given set of
processes?

Example of Shortest-remaining-time-first
 Now we add the concepts of varying arrival times and preemption to the analysis
 Process Burst Time Arrival Time

P1 8 0
P2 4 1
P3 9 2

P4 5 3
 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5

P4
0 1 26

P1 P2
10

P3P1
5 17

Round Robin (RR)
 Each process gets a small unit of CPU time (time quantum q), usually 10-100

milliseconds. After this time has elapsed, the process is preempted and added to
the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each
process gets 1/n of the CPU time in chunks of at most q time units at once. No
process waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance
 q large FIFO (FCFS)
 q small RR

 Note that q must be large with respect to context switch, otherwise overhead is
too high

Example of RR with Time Quantum = 4

 Process Burst Time
P1 24
P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

 q should be large compared to context switch time
 q usually 10 milliseconds to 100 milliseconds,
 Context switch < 10 microseconds

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

80% of CPU burst should be shorter than qs

Priority Scheduling
 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest
integer ≡ highest priority)
 Preemptive
 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time

 Problem ≡ Starvation – low priority processes may never execute

 Solution ≡ Aging – as time progresses increase the priority of the process

Example of Priority Scheduling

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Priority scheduling Gantt Chart

Average waiting time = 8.2

Priority Scheduling w/ Round-Robin
 Run the process with the highest priority. Processes

with the same priority run round-robin
 Example:

Process Burst Time Priority
P1 4 3
P2 5 2
P3 8 2
P4 7 1
P5 3 3

 Gantt Chart with time quantum = 2

Multilevel Queue
 The ready queue consists of multiple queues

 Multilevel queue scheduler defined by the following
parameters:
 Number of queues
 Scheduling algorithms for each queue
 Method used to determine which queue a process

will enter when that process needs service
 Scheduling among the queues

 With priority scheduling, have separate queues for each
priority. Then use Round-robin

 Schedule the processes in the highest-priority queue!

Multilevel Queue
 Prioritization based upon process type; eg Foreground vs background

The foreground queue might be scheduled by an RR algorithm, for example, while the
background queue is scheduled by an FCFS algorithm.

There must be scheduling among the queues, which is commonly implemented as fixed-
priority preemptive scheduling. For example, the real-time queue may have absolute priority
over the interactive queue.

An example of a multilevel queue scheduling algorithm with four queues, listed below in
order of priority:

1. Real-time processes
2. System processes
3. Interactive processes
4. Batch processes

No process in the batch queue, for example, could run unless the queues for real-time
processes, system processes, and interactive processes were all empty. If an interactive process
entered the ready queue while a batch process was running, the batch process would be preempted.

Time-slice among the queues: each queue gets a certain portion of the CPU time, which it
can then schedule among its various processes. For instance, in the foreground–background
queue example, the foreground queue can be given 80 percent of the CPU time for RR
scheduling, among its processes, while the background queue receives 20 percent of the CPU to
give to its processes on an FCFS basis.

Multilevel Feedback Queue
 A process can move between the various queues. The idea is to separate

processes according to the characteristics of their bursts. If a process
uses too much CPU time, it will be moved to a lower-priority queue

 Multilevel-feedback-queue scheduler defined by the following parameters:
 Number of queues
 Scheduling algorithms for each queue
 Method used to determine when to upgrade a process
 Method used to determine when to demote a process
 Method used to determine which queue a process will enter when that

process needs service

 Aging can be implemented using multilevel feedback Q. To prevent
starvation, a process that waits too long in a lower-priority Q may
gradually be moved to a higher-priority Q.

Example of Multilevel Feedback Queue
 Three queues:

 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS

 Scheduling
 A new process enters queue Q0 which is served

in RR
 When it gains CPU, the process receives 8

milliseconds
 If it does not finish in 8 milliseconds, the

process is moved to queue Q1
 At Q1 job is again served in RR and receives 16

additional milliseconds
 If it still does not complete, it is preempted

and moved to queue Q2

