
OPERATING SYSTEMS
CS3500

PROF. SUKHENDU DAS DEPTT. OF COMPUTER SCIENCE AND ENGG., IIT
MADRAS, CHENNAI – 600036.

Email: sdas@cse.iitm.ac.in
URL: http://www.cse.iitm.ac.in/~vplab/os.html

Aug. – 2022.

CPU SCHEDULING

Basic Concepts
 Maximum CPU utilization obtained with

multiprogramming

 CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and
I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main concern

Histogram of CPU-burst Times

 Large number of short bursts

 Small number of longer bursts

CPU Scheduler
 The CPU scheduler selects from among the processes in ready queue, and allocates a CPU core to one of

them
 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
 Terminates

 For situations 1 and 4, there is no choice in terms of scheduling. A new process (if one exists in the ready
queue) must be selected for execution.

 For situations 2 and 3, however, there is a choice

Preemptive and Nonpreemptive Scheduling
 When scheduling takes place only under circumstances 1 and 4, the

scheduling scheme is nonpreemptive.
 Otherwise, it is preemptive.
 Under Nonpreemptive scheduling, once the CPU has been allocated

to a process, the process keeps the CPU until it releases it either by
terminating or by switching to the waiting state.

 Virtually all modern operating systems including Windows, MacOS,
Linux, and UNIX use preemptive scheduling algorithms.

 Preemptive scheduling can result in race conditions when data are
shared among several processes.

 Consider the case of two processes that share data. While one process
is updating the data, it is preempted so that the second process can
run. The second process then tries to read the data, which are in an
inconsistent state.

Dispatcher
 Dispatcher module gives control of the CPU to

the process selected by the CPU scheduler;
this involves:
 Switching context
 Switching to user mode
 Jumping to the proper location in the user

program to restart that program
 Dispatch latency – time it takes for the

dispatcher to stop one process and start
another running

Scheduling Criteria
 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per
time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the
ready queue

 Response time – amount of time it takes from when a request was
submitted until the first response is produced

Scheduling Algorithm Optimization Criteria

What should be optimization criteria???

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First- Come, First-Served (FCFS) Scheduling
 Process Burst Time

P1 24
P2 3
P3 3

 Suppose that the processes arrive in the order: P1 , P2 ,
P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

FCFS Scheduling (Cont.)
 Suppose that the processes arrive in the order:

P2 , P3 , P1
 The Gantt chart for the schedule is:

 Waiting time for P1 = 6;P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case
 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P1
0 3 6 30

P2 P3

Shortest-Job-First (SJF) Scheduling
 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of
processes

 Preemptive version called shortest-remaining-time-first

 How do we determine the length of the next CPU burst?
 Could ask the user
 Estimate

Example of SJF
Process Burst Time

P1 6
P2 8
P3 7
P4 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2

Determining Length of Next CPU Burst
 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using
exponential averaging

 Commonly, α set to ½

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging
 α =0

 τn+1 = τn
 Recent history does not count

 α =1
 τn+1 = α tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:
 τn+1 = α tn+(1 - α)α tn -1 + …
 +(1 - α)j α tn -j + …
 +(1 - α)n +1 τ0

 Since both α and (1 - α) are less than or equal to 1,
each successor predecessor term has less weight than
its predecessor

Shortest Remaining Time First Scheduling
 Preemptive version of SJN

 Whenever a new process arrives in the ready queue,
the decision on which process to schedule next is
redone using the SJN algorithm.

 Is SRT more “optimal” than SJN in terms of the
minimum average waiting time for a given set of
processes?

Example of Shortest-remaining-time-first
 Now we add the concepts of varying arrival times and preemption to the analysis
 Process Burst Time Arrival Time

P1 8 0
P2 4 1
P3 9 2

P4 5 3
 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5

P4
0 1 26

P1 P2
10

P3P1
5 17

Round Robin (RR)
 Each process gets a small unit of CPU time (time quantum q), usually 10-100

milliseconds. After this time has elapsed, the process is preempted and added to
the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each
process gets 1/n of the CPU time in chunks of at most q time units at once. No
process waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance
 q large  FIFO (FCFS)
 q small  RR

 Note that q must be large with respect to context switch, otherwise overhead is
too high

Example of RR with Time Quantum = 4

 Process Burst Time
P1 24
P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

 q should be large compared to context switch time
 q usually 10 milliseconds to 100 milliseconds,
 Context switch < 10 microseconds

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

80% of CPU burst should be shorter than qs

Priority Scheduling
 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest
integer ≡ highest priority)
 Preemptive
 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time

 Problem ≡ Starvation – low priority processes may never execute

 Solution ≡ Aging – as time progresses increase the priority of the process

Example of Priority Scheduling

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Priority scheduling Gantt Chart

Average waiting time = 8.2

Priority Scheduling w/ Round-Robin
 Run the process with the highest priority. Processes

with the same priority run round-robin
 Example:

Process Burst Time Priority
P1 4 3
P2 5 2
P3 8 2
P4 7 1
P5 3 3

 Gantt Chart with time quantum = 2

Multilevel Queue
 The ready queue consists of multiple queues

 Multilevel queue scheduler defined by the following
parameters:
 Number of queues
 Scheduling algorithms for each queue
 Method used to determine which queue a process

will enter when that process needs service
 Scheduling among the queues

 With priority scheduling, have separate queues for each
priority. Then use Round-robin

 Schedule the processes in the highest-priority queue!

Multilevel Queue
 Prioritization based upon process type; eg Foreground vs background

The foreground queue might be scheduled by an RR algorithm, for example, while the
background queue is scheduled by an FCFS algorithm.

There must be scheduling among the queues, which is commonly implemented as fixed-
priority preemptive scheduling. For example, the real-time queue may have absolute priority
over the interactive queue.

An example of a multilevel queue scheduling algorithm with four queues, listed below in
order of priority:

1. Real-time processes
2. System processes
3. Interactive processes
4. Batch processes

No process in the batch queue, for example, could run unless the queues for real-time
processes, system processes, and interactive processes were all empty. If an interactive process
entered the ready queue while a batch process was running, the batch process would be preempted.

Time-slice among the queues: each queue gets a certain portion of the CPU time, which it
can then schedule among its various processes. For instance, in the foreground–background
queue example, the foreground queue can be given 80 percent of the CPU time for RR
scheduling, among its processes, while the background queue receives 20 percent of the CPU to
give to its processes on an FCFS basis.

Multilevel Feedback Queue
 A process can move between the various queues. The idea is to separate

processes according to the characteristics of their bursts. If a process
uses too much CPU time, it will be moved to a lower-priority queue

 Multilevel-feedback-queue scheduler defined by the following parameters:
 Number of queues
 Scheduling algorithms for each queue
 Method used to determine when to upgrade a process
 Method used to determine when to demote a process
 Method used to determine which queue a process will enter when that

process needs service

 Aging can be implemented using multilevel feedback Q. To prevent
starvation, a process that waits too long in a lower-priority Q may
gradually be moved to a higher-priority Q.

Example of Multilevel Feedback Queue
 Three queues:

 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS

 Scheduling
 A new process enters queue Q0 which is served

in RR
 When it gains CPU, the process receives 8

milliseconds
 If it does not finish in 8 milliseconds, the

process is moved to queue Q1
 At Q1 job is again served in RR and receives 16

additional milliseconds
 If it still does not complete, it is preempted

and moved to queue Q2

