
OPERATING SYSTEMS
CS3500

PROF. SUKHENDU DAS DEPTT. OF COMPUTER SCIENCE AND ENGG., IIT
MADRAS, CHENNAI – 600036.

Email: sdas@cse.iitm.ac.in
URL: http://www.cse.iitm.ac.in/~vplab/os.html

Aug. – 2022.

SYNCHRONIZATION TOOLS

OUTLINE

 Problem to be addressed

 Race Condition

 The Critical-Section Problem

 Interrupt Based Solution

 Peterson’s Solution

 Hardware Support for Synchronization

Problem to be addressed
 Processes can execute concurrently

 May be interrupted at any time, partially completing execution

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating
processes

 As illustrated earlier in the problem when we considered the Bounded Buffer problem with use of a
counter that is updated concurrently by the producer and consumer which lead to race condition.

Race Condition

 Processes P0 and P1 are creating child
processes using the fork() system call

 Race condition on kernel variable
next_available_pid which
represents the next available process
identifier (pid)

 Unless there is a mechanism to prevent P0
and P1 from accessing the variable
next_available_pid the same pid
could be assigned to two different
processes!

Critical Section Problem
 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code
 Process may be changing common variables, updating

table, writing file, etc.
 When one process in critical section, no other may be in

its critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

General structure of process Pi

Critical-Section Problem

 Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be
executing in their critical sections

 Progress - If no process is executing in its critical section and there exist some processes that wish to
enter their critical section, then the selection of the process that will enter the critical section next cannot
be postponed indefinitely

 Bounded Waiting - A bound must exist on the number of times that other processes are allowed to
enter their critical sections after a process has made a request to enter its critical section and before that
request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes

Requirements for solution to critical-section problem

Interrupt-based Solution
 Entry section: disable interrupts

 Exit section: enable interrupts

 Will this solve the problem?

What if the critical section is code that runs for an hour?
Can some processes starve – never enter their critical section.
What if there are two CPUs?

Software Solution 1
 Two process solution

 Assume that the load and store machine-language instructions are
atomic; that is, cannot be interrupted

 The two processes share one variable:
int turn;

 The variable turn indicates whose turn it is to enter the critical section

 initially, the value of turn is set to i

Algorithm for Process Pi

while (true){

while (turn = = j);

/* critical section */

turn = j;

/* remainder section */

}

Correctness of the Software Solution

 Mutual exclusion is preserved
Pi enters critical section only if:

turn = i
and turn cannot be both 0 and 1 at the same time

 What about the Progress requirement?

 What about the Bounded-waiting requirement?

Peterson’s Solution
 Two process solution

 Assume that the load and store machine-language instructions are atomic;
that is, cannot be interrupted

 The two processes share two variables:
 int turn;
 boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section

 The flag array is used to indicate if a process is ready to enter the critical
section.
 flag[i] = true implies that process Pi is ready!

Algorithm for Process Pi
while (true){

flag[i] = true;
turn = j;
while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

P0: flag[0] = true;
P0_gate: turn = 1;

while (flag[1] == true && turn == 1)
{ // busy wait }

// critical section ...

// end of critical section

flag[0] = false;

P1: flag[1] = true;
P1_gate: turn = 0;

while (flag[0] == true && turn == 0)
{ // busy wait }

// critical section ...

// end of critical section

flag[1] = false;

Correctness of Peterson’s Solution
 Provable that the three CS requirement are met:

1. Mutual exclusion is preserved
Pi enters CS only if:

either flag[j] = false or turn = I

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

MUTEX: So if both processes are in their critical sections,
then we conclude that the state must satisfy flag[0] and flag[1] and turn = 0 and turn = 1.
No state can satisfy both turn = 0 and turn = 1, so there can be no state where both processes are in their
critical sections.

P0 and P1 could not have successfully executed their while statements at about the same time.

Progress and Bound waiting:
A process cannot immediately re-enter the critical section if the other process has set its flag to say

that it would like to enter its critical section.

A process Pi can be prevented from entering the critical section only if it is stuck in the while loop
with the condition
flag[j] == true and turn == j, this loop is the only one possible.

Since Pi does not change the value of the variable turn while executing the while statement, Pi will
enter the critical section (progress) after at most one entry by Pj (bounded waiting).

Peterson’s Solution and Modern Architecture
 Although useful for demonstrating an algorithm, Peterson’s Solution is not

guaranteed to work on modern architectures.
 To improve performance, processors and/or compilers may reorder

operations that have no dependencies

 Understanding why it will not work is useful for better understanding race
conditions.

 For single-threaded this is ok as the result will always be the same.

 For multithreaded the reordering may produce inconsistent or unexpected
results!

Modern Architecture Example
 Two threads share the data:

boolean flag = false;
int x = 0;

 Thread 1 performs
while (!flag)
;
print x

 Thread 2 performs
x = 100;
flag = true

 What is the expected output?
100

 However, since the variables flag and x are independent of each other, the instructions:
flag = true;
x = 100;

for Thread 2 may be reordered; If this occurs, the output may be
0!

Peterson’s Solution Revisited
 The effects of instruction reordering in Peterson’s Solution

 This allows both processes to be in their critical section at the same
time!

 To ensure that Peterson’s solution will work correctly on modern
computer architecture we must use Memory Barrier.

P0_gate: turn = 1;
P0: flag[0] = true;

while (flag[1] == true && turn == 1)
{ // busy wait }

// critical section ...

// end of critical section
flag[0] = false;

P1_gate: turn = 0;
P1: flag[1] = true;

while (flag[0] == true && turn == 0)
{ // busy wait }

// critical section ...

// end of critical section
flag[1] = false;

Synchronization Hardware
 Many systems provide hardware support for implementing the critical section code.

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 We will look at two forms of hardware support:
1. Memory Barriers
2. Hardware instructions:

Special hardware instructions that allow us to either test-and-modify the content of a word, or to swap the
contents of two words atomically (uninterruptedly.)
Test-and-Set instruction
Compare-and-Swap instruction

3. Atomic variables

Memory Barrier
 Memory model are the memory guarantees a computer architecture makes to application programs.

 Memory models may be either:
 Strongly ordered – where a memory modification of one processor is immediately visible to all other

processors.
 Weakly ordered – where a memory modification of one processor may not be immediately visible to

all other processors.

 A memory barrier is an instruction that forces any change in memory to be propagated (made visible) to all
other processors.

 When a memory barrier instruction is performed, the system ensures that all loads and stores are
completed before any subsequent load or store operations are performed.

 Therefore, even if instructions were reordered, the memory barrier ensures that the store operations are
completed in memory and visible to other processors before future load or store operations are performed.

Memory Barrier Example
 Returning to the example of slide 18

 We could add a memory barrier to the following instructions to ensure Thread 1 outputs 100:

 Thread 1 now performs
while (!flag)

memory_barrier();
print x

 Thread 2 now performs
x = 100;
memory_barrier();
flag = true

 For Thread 1 we are guaranteed that that the value of flag is loaded before the value of x.

 For Thread 2 we ensure that the assignment to x occurs before the assignment flag.

boolean flag = false;
int x = 0;
where Thread 1 performs the statements
while (!flag)
;
print x;

and Thread 2 performs
x = 100;
flag = true;

The test_and_set Instruction (Hardware instruction)

 Definition
boolean test_and_set (boolean *target)
{

boolean rv = *target;
*target = true;
return rv:

}
 Properties

 Executed atomically
 Returns the original value of passed parameter
 Set the new value of passed parameter to true

executed atomically -

If two test and set() instructions are
executed simultaneously (each on a different
core), they will be executed sequentially in
some arbitrary order.

Thread executing an atomic instruction
can’t be preempted or interrupted while it’s
doing it.

Atomic operations on same memory value
are serialized

Solution Using test_and_set()
 Shared boolean variable lock, initialized to false

Solution:
do {

while (test_and_set(&lock))
; /* do nothing */

/* critical section */

lock = false;
/* remainder section */

} while (true);

 Does it solve the critical-section problem?

boolean rv = *target;

*target = true;

return rv:

The compare_and_swap Instruction (Hardware instruction)

 Definition
int compare_and_swap(int *value, int expected, int new_value)
{
int temp = *value;
if (*value == expected)

*value = new_value;
return temp;
}

 Properties
 Executed atomically
 Returns the original value of passed parameter value
 Set the variable value the value of the passed parameter new_value

but only if *value == expected is true. That is, the swap takes place
only under this condition.

Solution using compare_and_swap
 Shared integer lock initialized to 0;
Solution:

while (true){
while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */
}

 Does it solve the critical-section problem? –
 Check bound-waiting Condn.

int temp = *value;
if (*value == expected)

*value = new_value;
return temp;

Bounded-waiting with compare-and-swap
while (true) {

waiting[i] = true;
key = 1;
while (waiting[i] && key == 1)

key = compare_and_swap(&lock,0,1);

waiting[i] = false;

/* critical section */
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;
if (j == i)

lock = 0;
else

waiting[j] = false;
/* remainder section */

}

common data structures are
boolean waiting[n];
int lock;

The elements in the waiting array
are initialized to false, and
Lock is initialized to 0.

 Does it solve the critical-section problem? –
 Check bound-waiting Condn.

To prove that the progress requirement is met, we note that
the arguments presented for mutual exclusion also apply here,
since a process exiting the critical section either sets lock to 0 or
sets to false. Both allow a process that is waiting to enter its
critical section to proceed.

To prove that the bounded-waiting requirement is met, we note
that, when a process leaves its critical section, it scans the array
waiting in the cyclic ordering (i + 1, i + 2, ..., n-1, 1, 0, ..., i-1).
It designates the first process in this ordering that is in the entry
section (waiting[j]== true) as the next one to enter the critical
section. Any process waiting to enter its critical section will
thus do so within n-1 turns.

Also - Acquire, Release; DPRAM in H/W

Atomic Variables
 Typically, instructions such as compare-and-swap are used as building blocks for other synchronization tools.
 One tool is an atomic variable that provides atomic (uninterruptible) updates on basic data types such as integers and

booleans.
 For example:

 Let sequence be an atomic variable
 Let increment() be operation on the atomic variable sequence
 The Command:

increment(&sequence);
ensures sequence is incremented without interruption.

 The increment() function can be implemented as follows:

void increment(atomic_int *v)
{

int temp;
do {

temp = *v;
}
while (temp != (compare_and_swap(v,temp,temp+1));

}

