
OperAting Systems
Cs3500 – CH - 7

Prof. Sukhendu Das Deptt. of Computer Science and Engg., IIT 
Madras, Chennai – 600036.

Email: sdas@cse.iitm.ac.in
URL: http://www.cse.iitm.ac.in/~vplab/os.html

Sept. – 2022.



Synchronization  Tools



Outline

 Mutex Locks

 Semaphores

 Monitors

 Liveness

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem



Mutex Locks
 Hardware based solutions are complicated and generally inaccessible to application programmers

 OS designers build software tools to solve critical section problem

 Simplest is mutex lock
 Boolean variable indicating if lock is available or not

 Protect a critical section  by 
 First acquire() a lock 
 Then release() the lock

 Calls to acquire() and release() must be atomic
 Usually implemented via hardware atomic instructions such as compare-and-swap.

 But this solution requires busy waiting
 This lock therefore called a spinlock

In software engineering, a spinlock is a 
lock that causes a thread trying to acquire it to 
simply wait in a loop while repeatedly checking 
whether the lock is available. Since the thread 
remains active but is not performing a useful task, 
the use of such a lock is a kind of busy waiting



Solution to CS Problem Using Mutex Locks

while (true) { 
acquire lock 

critical section 

release lock 

remainder section 
} 



The definition of acquire() is as follows:
acquire()  {
while (!available)

; /* busy wait */
available = false;

}

The definition of  release()  is as follows:
release()
{
available = true;

}
Calls to either acquire(),  or release() must be performed atomically.

Exercise:  mutex locks can be implemented using the CAS  operation



monitor class Account {

private int balance := 0

invariant balance >= 0

public method boolean withdraw(int amount)

precondition amount >= 0

{

if balance < amount {

return false

} else {

balance := balance - amount

return true

}

}

public method deposit(int amount)

precondition amount >= 0

{

balance := balance + amount
}

}

class Account {

private lock myLock

private int balance := 0

invariant balance >= 0

public method boolean withdraw(int amount)

precondition amount >= 0

{

myLock.acquire()

try {

if balance < amount {

return false

} else {

balance := balance - amount

return true

}

} finally {

myLock.release()
}

}

public method deposit(int amount)

precondition amount >= 0

{

myLock.acquire()

try {

balance := balance + amount

}    finally {

myLock.release()

}

}



Semaphore
 Synchronization tool that provides more sophisticated ways (than Mutex locks)  for processes to 

synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations
 wait() and signal()

 Originally called P() and V()

 Definition of  the wait() operation
wait(S) { 

while (S <= 0)
; // busy wait

S--;
}

 Definition of  the signal() operation
signal(S) { 

S++;
}



Semaphore Types
 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock

 Can implement a counting semaphore S as a binary semaphore   Exercise

 With semaphores we can solve various synchronization problems



Semaphore Usage Example
 Solution to the CS Problem

 Create a semaphore “mutex” initialized to 1
wait(mutex);

CS
signal(mutex);

 Consider P1 and P2 that with two statements S1 and S2    and 
the requirement that S1 to happen before S2

 Create a semaphore “synch” initialized to 0 
P1:

S1;
signal(synch);

P2:
wait(synch);
S2;



Semaphore Implementation
 Must guarantee that no two processes can execute  the wait() and 

signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem where the 
wait and signal code are placed in the critical section

 Could now have busy waiting in critical section implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and 
therefore this is not a good solution



Semaphore Implementation with no Busy waiting 
 With each semaphore there is an associated waiting 

queue
 Each entry in a waiting queue has two data items:

 Value (of type integer)
 Pointer to next record in the list

 Two operations:
 block – place the process invoking the operation 

on the appropriate waiting queue
 wakeup – remove one of processes in the waiting 

queue and place it in the ready queue  Waiting queue
typedef struct { 

int value; 
struct process *list; 

} semaphore; 



Semaphore Implementation with no Busy waiting (Cont) 

wait(semaphore *S) 
{ 

S->value--; 
if (S->value < 0) {

add this process to S->list; 
sleep(); 

} 
}

signal(semaphore *S) 
{ 

S->value++; 
if (S->value <= 0) {

remove a process P from S->list; 
wakeup(P); 

} 
} 

The sleep() operation suspends the 
process that invokes it. 

The wakeup(P) operation resumes 
(waiting to ready state) the execution of a 
suspended process P. 

These two operations are provided by 
the operating system as basic system calls.



Problems with Semaphores 
 Incorrect use of semaphore operations:

 signal(mutex)  ….  wait(mutex)

 wait(mutex)  …  wait(mutex)

 Omitting  of wait (mutex) and/or signal (mutex)

 These – and others – are examples of what can occur when semaphores 
and other synchronization tools are used incorrectly.

 Difficult to debug

 Threads could communicate using semaphores too.



Monitors 
 A high-level abstraction that provides a 

convenient and effective mechanism for 
process synchronization

 Abstract data type, internal variables only 
accessible by code within the procedure

 Only one process may be active within the 
monitor at a time

 Pseudocode syntax of a monitor:

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

procedure P2 (…) { …. }

procedure Pn (…) {……}

initialization code (…) { … }
}

Schematic view of a Monitor



Schematic view of a Monitor

Types of Wait Queues 

Two types of Wait Qs in a monitor

- Entry to monitor; a Q of threads waiting to 
obtain Mutex so that they can enter;

- CVs – each condition variable has a Q of 
threads, waiting in the associated condition

Monitor EventTracker { // Trivial Monitor example only
int numburgers = 0;
condition hungrycustomer;

void customerenter() {
while (numburgers == 0)
hungrycustomer.wait();
numburgers -= 1
}

void produceburger() {
++numburgers;
hungrycustomer.signal();
}



Condition Variables 
 condition x, y;

 Two operations are allowed on a 
condition variable:

 x.wait() – a process that 
invokes the operation is 
suspended until x.signal()

 x.signal() – resumes one of 
processes (if any) that invoked
x.wait()

 If no x.wait() on the 
variable, then it has no 
effect on the variable

Monitor with Condition Variables



Usage of Condition Variable  Example
 Consider P1 and P2 that that need to execute two statements S1 and S2

and the requirement that S1 to happen before S2

 Create a monitor with two procedures F1 and F2 that are invoked by 
P1 and P2 respectively

 One condition variable “x” initialized to 0 

 One Boolean variable “done”
 F1:

S1;
done = true;
x.signal();

 F2:
if done = false

x.wait()
S2;

acquire(m); // Acquire this monitor's lock.
while (!p) { // While the condition/predicate/assertion 
that we are waiting for is not true...

wait(m, cv); // Wait on this monitor's lock and 
condition variable.

}
// ... Critical section of code goes here ...

signal(cv2); 
// cv2 might be the same as cv or different.

release(m); // Release this monitor's lock.



Monitor Implementation Using Semaphores 
 Variables 

semaphore mutex 
mutex = 1

 Each procedure P is replaced by

wait(mutex);
…

body of P;
…     

signal(mutex);

 Mutual exclusion within a monitor is 
ensured



Monitor Implementation Using Semaphores - II 
 Variables 

semaphore mutex;  // (initially  = 1)
semaphore next;   // (initially  = 0)  - signaling processes can use “next” 

to suspend themselves
int next_count = 0; // number of processes waiting inside the monitor

 Each function P will be replaced by

wait(mutex);
…

body of P;
…

if (next_count > 0)
signal(next)

else 
signal(mutex);

 Mutual exclusion within a monitor is ensured.

 Use of the signal-and-wait scheme in implementation. Since a signalling process must wait until the 
resumed process either leaves or waits, an additional binary semaphore, next, is introduced, 
initialized to 0.

Logic: A process must execute wait(mutex)
before entering the monitor,
and must execute signal(mutex) after leaving
the monitor



Implementation (Mon + Semaph)   – Condition Variables 

 For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)
int x_count = 0; // Monitor based count

 The operation x.wait() can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

 The operation x.signal() can be 
implemented as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}

a significant improvement in efficiency is possible – left as exercise

semaphore mutex;  // (initially  = 1)
semaphore next;   // (initially  = 0)
int next_count = 0; 



Resuming Processes within a Monitor
 If several processes queued on condition variable x, and x.signal() is executed, 

which process should be resumed?

 FCFS frequently not adequate 

 Use the conditional-wait construct of the form   
x.wait(c)

where:
 c is an integer (called the priority number) expression; evaluated on “wait” call;

 The process with lowest number (highest priority) is scheduled next, on x.signal



Single Resource allocation 
 Allocate a single resource among competing processes using priority numbers that 

specifies  the maximum time a process  plans to use the resource

 The process with the shortest time is allocated the resource first

R.acquire(t);
...

access the resource;
...

R.release;

 Where, R is an instance of  type ResourceAllocator

 Where, t is the maximum time a process plans to use the resource



A Monitor to Allocate 
A Single Resource

monitor ResourceAllocator
{ 

boolean busy; 
condition x; 

void acquire(int time) { 
if (busy) 

x.wait(time); 
busy = true; 

} 

void release() { 
busy = false; 
x.signal(); 

} 

initialization code() {
busy = false; 
}

}



Single Resource Monitor (Cont.) 
 Usage:

acquire
...

release

 Incorrect use of monitor operations (more hazards in next slide)
release()  …  acquire()
acquire()  …  acquire())
Omitting  of acquire() and/or release()

Must inspect all the programs that make use of the ResourceAllocator
monitor and its managed resource. We must check two conditions to establish the 
correctness of this system. 

First, user processes must always make their calls on the monitor in a 
correct sequence. Second, we must be sure that an uncooperative process does not 
simply ignore the mutual-exclusion gateway provided by the monitor and try to 
access the shared resource directly, without using the access protocols.



Unfortunately, the monitor concept cannot guarantee that the preceding
access sequence will be observed. In particular, the following problems can
occur:

• A process might access a resource without first gaining access permission to the 
resource.

• A process might never release a resource once it has been granted access to the 
resource.

• A process might attempt to release a resource that it never requested.

• A process might request the same resource twice (without first releasing the 
resource).

 Usage:
acquire
...

release



Liveness
 Processes may have to wait indefinitely while trying to acquire a synchronization tool such 

as a mutex lock or semaphore.
 Waiting indefinitely violates the progress and bounded-waiting criteria discussed at the 

beginning of this chapter.
 Liveness refers to a set of properties that a system must satisfy to ensure processes 

make progress.
 Indefinite waiting is an example of a liveness failure

 Deadlock – two or more processes are waiting indefinitely for an event that can be 
caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

... ...
signal(S);                 signal(Q);
signal(Q);                 signal(S);

 Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes wait(Q), it must wait 
until P1 executes signal(Q)

 However, P1 is waiting until P0 execute signal(S).
 Since these signal() operations will never be executed, P0 and P1 are deadlocked.



Liveness
 Other forms of deadlock:
 Starvation – indefinite blocking  
 A process may never be removed from the semaphore queue in which it is suspended

 Priority Inversion – Scheduling problem when lower-priority process holds a lock needed 
by higher-priority process
 Solved via priority-inheritance protocol: all processes that are accessing resources 

needed by a higher-priority process inherit the higher priority until they are finished 
with the resources involved/used.

A set of processes is in a deadlocked state when every process in the set is 
waiting for an event that can be caused only by another process in the set. The “events” 
with which we are mainly concerned here are the acquisition and release of resources 
such as mutex locks and semaphores.



Classical Problems of Synchronization 

 Classical problems used to test newly-proposed synchronization schemes:

1. Bounded-Buffer Problem

2. Readers and Writers Problem

3. Dining-Philosophers Problem



Bounded-Buffer Problem 

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n



Bounded Buffer Problem (Cont.) 
 The structure of the producer process

while (true) { 
...

/* produce an item in next_produced
*/ 

... 
wait(empty); 
wait(mutex); 

...
/* add next produced to the buffer 

*/ 
... 

signal(mutex); 
signal(full); 

}

 The structure of the consumer process

while (true) { 
wait(full); 
wait(mutex); 

...
/* remove an item from buffer to 

next_consumed */ 
... 

signal(mutex); 
signal(empty); 

...
/* consume the item in next 

consumed */ 
...

}



Readers-Writers Problem 
 A data set (D/B) is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates
 Writers – can both read and write

 Problem – allow multiple readers (only) to read at the same time; no issues
 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered  – all involve some form of priorities

 Shared Data
Data set                                               Semaphore rw_mutex initialized to 1
Semaphore mutex initialized to 1          Integer read_count initialized to 0

 The structure of a writer process
while (true) {

wait(rw_mutex); 
...

/* writing is performed */ 
... 

signal(rw_mutex); 
}



Readers-Writers Problem (Cont.) 
 The structure of a reader process

while (true){
wait(mutex);

read_count++;
if (read_count == 1) /* first reader */ 

wait(rw_mutex); 
signal(mutex); 

...
/* reading is performed */ 

... 
wait(mutex);

read_count--;
if (read_count == 0) /* last reader */

signal(rw_mutex); 
signal(mutex); 

}



Readers-Writers Problem Variations 
 The solution in previous slide can result in a situation where a writer  process never writes.  It is 

referred to as the “First reader-writer” problem.

 The “Second reader-writer” problem is  a variation the first reader-writer problem that state:
 Once a writer is ready to write, no “newly arrived reader” is allowed  to read.

 Both the first and second may result in starvation. leading to even more variations

 Problem is solved on some systems by kernel providing reader-writer locks



Dining-Philosophers Problem 
 N philosophers’ sit at a round table with a bowel of rice in the 

middle.

 They spend their lives alternating thinking and eating.

 They do not interact with their neighbors.

 Occasionally try to pick up 2 chopsticks (one at a time) to eat 
from bowl
 Need both to eat, then release both when done

 In the case of 5 philosophers, the shared data 
 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1



Dining-Philosophers Problem Algorithm 
Semaphore Solution:
 The structure of Philosopher i :

while (true){ 
wait (chopstick[i] );
wait (chopStick[ (i + 1) % 5] );

/* eat for awhile */

signal (chopstick[i] );
signal (chopstick[ (i + 1) % 5] );

/* think for awhile */

}
 What is the problem with this algorithm? – MUTEX OK ?

Phil – 1, 2,…,5 
All concurrently operate

Who gets a chance ??



Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{ 

enum {THINKING; HUNGRY, EATING} state [5];
condition self [5]; //Monitor usage

void pickup (int i) { 
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}



Solution to Dining Philosophers (Cont.)
void test (int i) { 

if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) 

{ 
state[i] = EATING ;
self[i].signal () ;

}
}

initialization_code() { 
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

Philosopher i can set the variable state[i] = EATING only if her two neighbors are not eating:

(state[(i+4) % 5] != EATING) and (state[(i+1) % 5] != EATING).



Solution to Dining Philosophers (Cont.)

 Each philosopher “i” invokes the operations pickup() and putdown() in the following 
sequence:

DiningPhilosophers.pickup(i);

/** EAT **/

DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible  << -- proof is left as exercise – Soln later 

Each philosopher, before starting to eat, must invoke the operation pickup().
This act may result in the suspension of the philosopher process. After the successful 
completion of the operation, the philosopher may eat. Following this, the philosopher 
invokes the putdown() operation.

This solution ensures that no two neighbours are eating simultaneously and that no 
deadlocks will occur. However, it is possible for a philosopher to starve to death. Left as an 
exercise for you.



Self – study;

- POSIX synchronization (kernel level)

- Transactional memory (STM, HTM);

- OpenMP criticial constructs

- Functional Prog. Languages (Erlang, Scala)

-




