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MAIN MEMORY - I



OUTLINE

• Background

• Contiguous Memory Allocation

• Paging

• TLB

• Hashed Page Table

• Inverted Page Table



BACKGROUND
• Program must be brought (from disk)  into memory and placed within 

a process for it to be run

• Main memory and registers are only storage CPU can access directly

• Memory unit only sees a stream of:

• addresses + read requests, or 

• address + data and write requests

• Register access is done in one CPU clock (or less)

• Main memory can take many cycles, causing a stall

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct operation



PROTECTION
• Need to ensure that a process 

can access only those addresses 
in its address space.

• We can provide this protection 
by using  a pair of base and
limit registers define the 
logical address space of a 
process



HARDWARE ADDRESS PROTECTION

• CPU must check every memory access generated in user mode to be sure it is 
between base and limit for that user

• the instructions to loading the base and limit registers are privileged 



ADDRESS BINDING
• Programs on disk, ready to be brought into memory to execute form an input 

queue

• Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at 0000 

• How can it not be?

• Addresses represented in different ways at different stages of a program’s life
• Source code addresses usually symbolic

• Compiled code addresses bind to relocatable addresses

• i.e., “14 bytes from beginning of this module”
• Linker or loader will bind relocatable addresses to absolute addresses

• i.e., 74014

• Each binding maps one address space to another



BINDING OF INSTRUCTIONS AND DATA TO MEMORY

• Address binding of instructions and data to memory addresses can happen at 
three different stages

• Compile time:  If memory location known a priori, absolute code can be 
generated; must recompile code if starting location changes

• Load time:  Must generate relocatable code if memory location is not 
known at compile time

• Execution time:  Binding delayed until run time if the process can be 
moved during its execution from one memory segment to another

• Need hardware support for address maps (e.g., base and limit registers)



MULTISTEP PROCESSING OF A USER PROGRAM 



LOGICAL VS. PHYSICAL ADDRESS SPACE
• The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management

• Logical address – generated by the CPU; also referred to as virtual
address

• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-time and load-time 
address-binding schemes; logical (virtual) and physical addresses differ in 
execution-time address-binding scheme

• Logical address space is the set of all logical addresses generated by a 
program

• Physical address space is the set of all physical addresses generated by a 
program



MEMORY-MANAGEMENT UNIT (MMU)
• Hardware device that at run time maps virtual to physical address

• Many methods possible, covered in the upcoming slides.



MEMORY-MANAGEMENT UNIT (CONT.)

• Consider simple scheme. which is  a generalization of the base-
register scheme.

 The base register now called relocation register

• The value in the relocation register is added to every address 
generated by a user process at the time it is sent to memory

• The user program deals with logical addresses; it never sees the real
physical addresses

• Execution-time binding occurs when reference is made to 
location in memory

• Logical address bound to physical addresses



MEMORY-MANAGEMENT UNIT (CONT.)

• Consider simple scheme. which is  a generalization of the base-register 
scheme.

 The base register now called relocation register

• The value in the relocation register is added to every address 
generated by a user process at the time it is sent to memory



DYNAMIC LOADING
 The entire  program does need to be in memory to execute
 Routine is not loaded until it is called
 Better memory-space utilization; unused routine is never 

loaded
 All routines kept on disk in relocatable load format
 Useful when large amounts of code are needed to handle 

infrequently occurring cases
 No special support from the operating system is required

• Implemented through program design
• OS can help by providing libraries to implement dynamic 

loading



DYNAMIC LINKING

• Static linking – system libraries and program code combined by the loader into 
the binary program image

• Dynamic linking –linking postponed until execution time

• Small piece of code, stub, used to locate the appropriate memory-resident library 
routine

• Stub replaces itself with the address of the routine, and executes the routine

• Operating system checks if routine is in processes’ memory address

• If not in address space, add to address space

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries

• Consider applicability to patching system libraries

• Versioning may be needed



CONTIGUOUS ALLOCATION

• Main memory must support both OS and user processes

• Limited resource, must allocate efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions:

• Resident operating system, usually held in low memory with 
interrupt vector

• User processes then held in high memory

• Each process contained in single contiguous section of memory



CONTIGUOUS ALLOCATION (CONT.)

• Relocation registers used to protect user processes from each 
other, and from changing operating-system code and data

• Base register contains value of smallest physical address
• Limit register contains range of logical addresses – each 

logical address must be less than the limit register 
• MMU maps logical address dynamically
• Can then allow actions such as kernel code being transient

and kernel changing size ( eg. case of rarely used device 
drivers)



HARDWARE SUPPORT FOR RELOCATION AND LIMIT REGISTERS



VARIABLE PARTITION
• Multiple-partition allocation

• Degree of multiprogramming limited by number of partitions

• Variable-partition sizes for efficiency (sized to a given process’ needs)

• Hole – block of available memory; holes of various size are scattered throughout 
memory

• When a process arrives, it is allocated memory from a hole large enough to accommodate 
it

• Process exiting frees its partition, adjacent free partitions combined

• Operating system maintains information about: a) allocated partitions    b) free partitions 
(hole)



DYNAMIC STORAGE-ALLOCATION PROBLEM

• First-fit:  Allocate the first hole that is big enough

• Best-fit:  Allocate the smallest hole that is big enough; must search entire 
list, unless ordered by size  

• Produces the smallest leftover hole

• Worst-fit:  Allocate the largest hole; must also search entire list  
• Produces the largest leftover hole

 How to satisfy a request of size n from a list of free holes?

 First-fit and best-fit better than worst-fit in terms of speed and storage 
utilization



FRAGMENTATION

• External Fragmentation – total memory space exists to satisfy a 
request, but it is not contiguous

• Internal Fragmentation – allocated memory may be slightly larger than 
requested memory; this size difference is memory internal to a partition, 
but not being used

• First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to 
fragmentation

• 1/3 may be unusable -> 50-percent rule

For every N blocks allocated, 0.5N blocks are lost to fragmentation.

Unusable memory = (0.5N)/(N+0.5N)= 1/3



• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together in 

one large block
• Compaction is possible only if relocation is dynamic, and is 

done at execution time
• I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation problems



PAGING
• Physical  address space of a process can be noncontiguous; process is allocated 

physical memory whenever the latter is available

• Avoids external fragmentation

• Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames

• Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames and load program

• Set up a page table to translate logical to physical addresses

• Backing store likewise split into pages

• Still have Internal fragmentation



ADDRESS TRANSLATION SCHEME
• Address generated by CPU is divided into:

• Page number (p) – used as an index into a page table which contains base 
address of each page in physical memory

• Page offset (d) – combined with base address to define the physical memory 
address that is sent to the memory unit

• For given logical address space 2m    and page size 2n

page number page offset

p d

m - n n

When a process is to be executed, its pages are loaded into any available 
memory frames from their source (a file system or the backing store). The 
backing store is divided into fixed-sized blocks that are the same size as the 
memory frames or clusters of multiple frames



PAGING HARDWARE



PAGING MODEL OF 
LOGICAL AND  
PHYSICAL MEMORY

The following outlines the steps taken by the MMU to translate a 
logical address generated by the CPU to a physical address:
1. Extract the page number p and use it as an index into the page 
table.
2. Extract the corresponding frame number f from the page table.
3. Replace the page number p in the logical address with the 
frame number f .
As the offset d does not change, it is not replaced, and the frame 
number and offset now comprise the physical address.
The page size (= the frame size)



PAGING EXAMPLE 

• Logical address:  

• n = 2 and  m = 4. 

• Using a page size of 4 
bytes and a physical 
memory of 32 bytes (8 
pages/frames)

For given logical address 
space 2m and page size 2n

Logical address 0 maps to physical address 20 [= (5 × 4) +0]. 
Logical address 3 (page 0, offset 3) maps to physical address 
23 [= (5 × 4) +3]. 
Logical address 4 is page 1, offset 0; according to the page 
table, page 1 is mapped to frame 6. Thus, logical address 4 
maps to physical address 24 [= (6× 4) + 0]. 

Logical address 13 maps to physical address 9.



PAGING -- CALCULATING INTERNAL FRAGMENTATION

• Page size = 2,048 bytes

• Process size = 72,766 bytes

• Results in ??  35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086 = 962 bytes

• Worst case fragmentation = N frames + 1 byte = (N+1) frames

• On average fragmentation = (1 / 2) frame size

• So small frame sizes desirable?

• But each page table entry takes memory to track;  more disk I/O involved

• Page sizes growing over time; I/O B/W better for larger transfer/access

• Solaris supports two page sizes – 8 KB and 4 MB; see “huge pages”



On a 32-bit CPU, each page-table entry is 4 bytes long, but that
size can vary as well.

A 32-bit entry can point to one of 232 physical page frames. 

If the frame size is 4 KB (212), then a system with 4-byte entries can
address 244 bytes (or 16 TB) of physical memory.

Note here that the size of physical memory in a paged memory 
system is typically different from the maximum logical size of a process.

Other information that must be kept in the page-table entries. That
information reduces the number of bits available to address page 
frames. Thus, a system with 32-bit page-table entries may address less 
physical memory than the possible maximum.

In next slide –

clear separation between the programmer’s view of memory 
and the actual physical memory. The programmer views memory as one 
single space, containing only this one program. In fact, the user 
program is scattered throughout physical memory.



FREE FRAMES – IN FRAME TABLE

Before allocation After allocation



IMPLEMENTATION OF PAGE TABLE

• Page table is kept in main memory
• Page-table base register (PTBR) points to the page table
• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses
• One for the page table and one for the data / instruction

• The two-memory access problem can be solved by the use of a special fast-lookup 
hardware cache called  translation look-aside buffers (TLBs) (also called 
associative memory).

• If a user makes a system call (to do I/O, for example) and provides an 
address as a parameter (a buffer, for instance), that address must be mapped 
to produce the correct physical address. The operating system maintains a 
copy of the page table for each process, just as it maintains a copy of the 
instruction counter and register contents. This copy is used to translate logical 
addresses to physical addresses whenever the operating system must map a 
logical address to a physical address manually. 

• It is also used by the CPU dispatcher to define the hardware page table 
when a process is to be allocated the CPU. Paging therefore increases the 
context-switch time.



TRANSLATION LOOK-ASIDE BUFFER 

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry –
uniquely identifies each process to provide address-space protection for that 
process

• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster access next time

• Replacement policies must be considered

• Some entries can be wired down for permanent fast access



HARDWARE
• Associative memory – parallel search 

• Address translation (p, d)

• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #



PAGING HARDWARE   WITH    TLB



PAGING HARDWARE (RELOOK W/O TLB)



EFFECTIVE ACCESS TIME
 Hit ratio – percentage of times that a page number is found in the  TLB

• An 80% hit ratio means that we find the desired  page number  in the TLB 80% of 
the time.

• Suppose that 10 nanoseconds to access memory.  
• If we find the desired page in TLB then a mapped-memory access take 10 ns
• Otherwise we need two memory access so it is 20 ns

• Effective AccessTime (EAT)

EAT = 0.80 x 10 + 0.20 x 20 = 12 nanoseconds

implying 20% slowdown in access time

• Consider  amore realistic hit ratio of 99%, 
EAT = 0.99 x 10 + 0.01 x 20 = 10.1ns

implying  only 1% slowdown in access time.



MEMORY PROTECTION
• Memory protection implemented by associating protection bit with each frame to 

indicate if read-only or read-write access is allowed

• Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:

• “valid” indicates that the associated page is in the process’ logical address 
space, and is thus a legal page

• “invalid” indicates that the page is not in the process’ logical address space

• Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel



VALID (V) OR INVALID (I) BIT IN A PAGE TABLE
Use a 14-bit address 
space (0 to 16383), we 
have a program that 
should use only 
addresses 0 to 10468.
Page size 2 KB;

Addresses in pages 0, 1, 
2, 3, 4, and 5 are 
mapped normally 
through the page table –
Sure ?? Why 12287 ? ->

Accesses to addresses 
up to 12287 are valid.

Only the addresses from 
12288 to 16383 are 
invalid, but PT says… 

Internal FRAG.. issue – solution using PTLR



SHARED PAGES
• Shared code

• One copy of read-only (reentrant) code shared among processes 
(i.e., text editors, compilers, window systems)

• Similar to multiple threads sharing the same process space

• Also useful for interprocess communication if sharing of read-
write pages is allowed

• Private code and data

• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear anywhere in 
the logical address space



SHARED PAGES EXAMPLE

Thus, to support 40 processes, 
we need only one copy of the 
library, and the total space now 
required is 2 MB instead
of 80 MB—a significant saving.

Reentrant code is non-self-
modifying code: it never 
changes during execution.
Thus, two or more processes 

can execute the same code at 
the same time.



STRUCTURE OF THE PAGE TABLE

• Memory structures for paging can get huge using straight-forward 
methods

• Consider a 32-bit logical address space as on modern computers

• Page size of 4 KB (212)

• Page table would have #entries  ?? - >  1 million entries (232 / 212)

• If each entry is 4 bytes  each process 4 MB of physical address 
space for the  page table alone

• Don’t want to allocate that contiguously in main memory

• One simple solution is to divide the page table into smaller units

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables



HIERARCHICAL PAGE TABLES
• Break up the logical address 

space into multiple page 
tables

• A simple technique is a 
two-level page table

• We then page the page 
table



TWO-LEVEL PAGING EXAMPLE
• A logical address (on 32-bit machine with 4K page size) is divided into:

• a page number consisting of 20 bits
• a page offset consisting of 12 bits

• Since the page table is paged, the page number is further divided into:
• a 10-bit page number 
• a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the displacement within 
the page of the inner page table

• Known as forward-mapped page table



ADDRESS-TRANSLATION SCHEME



64-BIT LOGICAL ADDRESS SPACE
• Even two-level paging scheme not sufficient (say, 64-bit LA space)

• If page size is 4 KB (212)

• Then page table has 252 entries

• If two level scheme, inner page tables could be 210 4-byte entries

• Address would look like

• Outer page table has 242 entries or 244 bytes

• One solution is to add a 2nd outer page table

• But in the following example the 2nd outer page table is still 234 bytes in size

• And possibly 4 memory access to get to one physical memory location



THREE-LEVEL PAGING SCHEME

The outer page table is still 234 bytes (16 GB) in size.



HASHED PAGE TABLES
• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

• This page table contains a chain of elements hashing to the same location

• Each element contains (1) the virtual page number (2) the value of the mapped 
page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain (linked list) searching for a match

• If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables

• Similar to hashed but each entry refers to several pages (such as 16) rather 
than 1

• Especially useful for sparse address spaces (where memory references are 
non-contiguous and scattered) 



HASHED PAGE TABLE



INVERTED PAGE TABLE
• Rather than each process having a page table and keeping track of all possible 

logical pages, track all physical pages

• One entry of page table for each real page (frame) of physical memory

• Entry consists of the virtual address of the page stored in that real memory 
location, with information about the process (ID) that owns that page

• Decreases memory needed to store each page table, but increases time needed 
to search the table when a page reference occurs

• Use hash table to limit the search to one — or at most a few — page-table 
entries

• TLB can accelerate access

• But how to implement shared memory?

• One mapping of a virtual address to the shared physical address





INVERTED PAGE TABLE ARCHITECTURE

i - address-space identifier
(ASID)






