Linear Least Square Regression of a line
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A simple and trivial looking problem, but a good illustration
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Assume X to be the independent variable with no errors.
Errors are only with Y.

Reduce deviations, d = AY.



METHOD - 1



Cost Function: E = Zd? — Z(y, —Y,-)Z

Minimize using derivatives: i=1
oF _ —2i(y —mX, - C)(=X,) = 0;
Im o i i i ’
oE A
= 2(Y,—mX, - C)=0;
5C ZIZ (Y, i —C)

N N
NC  +(QX)m = D ¥;
i=1 ]

Re-arranging,
we get Normal
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Solving, we get: NZ(XiYi)_ZXiZYi
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DEN = Nﬁ: X; —(i X,)

In parametric form:
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In parametric 2 2
form: N Oxy — N HxHy Oxy— HxHy

m = NZO-Z _Nzﬂf( e 0-)2( _ﬂg{
> HY X =Y XY (X )
C= i=1 = 1 ,
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N HyO x N .uX XY ﬂYO-X — HxO xy
2 2
N* O-X N* ﬂX Ox —Hx
Check from above that the LSQ-line passes through the point:
(Wx, Ly). Thus shift the origin to the point: (L, Lly).

The equation of the line 1 Oyy v
in the transformed space: m = A.z ;C'=0.
X




METHOD - II



Solving the same, Y=mX+C =mX+C=Y;

using matrix concepts: -
m
[X 1{ =Y;
C

Any two points on the line, can give us the parameters:

x, 11" |=v; [x, 11" |=v;
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If this:
you use this [X1 1{
_Xl -
_XZ 1_

NC, lines may be obtained for each pair.

In case of best fit:

We are basically
trying to solve

an ill-posed problem,
where:
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Xl 1 Yl Take this as: A} =B,
X2 11 _ Y2 where A is a non-square _
m (or even singular square) matrix.
cl”| T
- Use Pseudo-inverse in this case:
Xy 1 Yv] 4p=B= A"Ap=A"B;
A"ADB=4A"B = [=(4"A)"'A"B;
[ =A"B,;

where, A" =(A" A)" A"; is the Pseudo - inverse.

(ATA) is square and assumed to be non-singular (generally).
If not, look for alternative formula (hang on, for now)

A*A or AA* is not equal to I (except non-singular square A), but I..



Ie

AB=B= A"AB=A"B;
L=(A"4)" A" B;
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A'B =

Thus:
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where, D= O'x — ﬂx

i=1 — N O-XY
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The solution is same as in
LSQ-FIT.

Pseudo-inverse satisfies the
Least-square criteria.



So we have seen the relation between
LSQ and Pseudo-inverse.

Where and how does the
eigen-space (PCA)
help us?

- Solve that analytical mystery yourselves.

Next:
Ref: Chap. 2 of Hastie — ESL book,
for "HAT matrix” in regression;



Notations in ESLT — Hastie:

X11 X1p
x=|i b |eb =[x X
le coe pr-

I-th Observation (row-vector).
T __ C ] —
X; = [xl-l "'Xip],l =1,..,N

All observations of j-th variable (e.g. sensor):

X]: [le XN]]T,]= 1,,p
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X, 1 Y,
(A" AHX =A4"B X, 1 Y,
= f=(4"A)"A"B; [c] ]
B=A"B; X, 1 Y,

where, A" =(A"A)" A"; is the Pseudo - inverse.

B — (_XTX)_IXT‘Y'

B
y=XA=X(X"X)""X"y
where 7; = f (2;). The matrix H = X(X7X)~!X” appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.






Observed Y

/A Residuals
e=Y- Q




Now see chap. 2 of Hastie — ESL book,
for "HAT matrix” in regression;

And come back for related concepts.






The vector of observed y does not liein the plane X.

OLS swaps out y for avector that ISIN THE PLANE,

but as close as possible to y. This vector is selected

through “projection”, not unlike shining a light from above
y onto the plane This calculation is achieved through the
matrix H, or fitted-value maker.

-
B ——

xz ‘/ .\‘al

e is the "error” between observed vector y and
projected vector h that we planto swapfor y.
Goal: choose h to make e as small as possible
We want to minimize the error betweenh and y.
Choose h pcrpondxculm.: 1O error vector e.

\

\

\
\

-when fitis good, angleissmall. b islong

-when fitis poor, angle Jarge, and h isshort

-leverage points will have HIGH FIT:

-leverage points mean that given

an extreme X, fitted y will predictobserved y
\

Column space of X (flat plane) (our mathematical model): \

Columns of X are vectors x,,X, (in 3-space) ..x;...Xx;, (in n-space)
(The plane represents all possibie linearcombinations of the vectors x, and x,.)



B=X"X)"X"y;

var(B)=E(BB")=E[(X"X)" X" »)(X X)X y)"]
=(X"X)"XTEQy"HX (X X)
=(X'X)"'0° or (X' X)"



In statistics and machine learning, the bias—-variance
tradeoff (or dilemma) is the problem of simultaneously minimizing
two sources of error that prevent supervised learning algorithms
from generalizing beyond their training set:

The bias is error from erroneous assumptions in the learning
algorithm. High bias can cause an algorithm to miss the relevant
relations between features and target outputs (underfitting).

The variance is error from sensitivity to small fluctuations in
the training set. High variance can cause overfitting: modeling the
random noise in the training data, rather than the intended
outputs.

The bias-variance decomposition is a way of analyzing a
learning algorithm's expected generalization error with respect to a
particular problem as a sum of three terms, the bias, variance, and
a quantity called the irreducible error, resulting from noise in the
problem itself.

This tradeoff applies to all forms of supervised learning:
classification, regression (function fitting), and structured output
learning. It has also been invoked to explain the effectiveness of
heuristics in human learning. <Src: WIKI>



Motivation (WIKI):

The bias—variance tradeoff is a central problem in supervised
learning. Ideally, one wants to choose a model that both accurately
captures the regularities in its training data, but also generalizes
well to unseen data. Unfortunately, it is typically impossible to do
both simultaneously.

High-variance learning methods may be able to represent
their training set well, but are at risk of overfitting to noisy or
unrepresentative training data. In contrast, algorithms with high
bias typically produce simpler models that don't tend to overfit, but
may underfit their training data, failing to capture important
regularities.

Models with low bias are usually more complex (e.g. higher-
order regression polynomials), enabling them to represent the
training set more accurately. In the process, however, they may
also represent a large noise component in the training set, making
their predictions less accurate - despite their added complexity.

In contrast, models with higher bias (low variance) tend to
be relatively simple (low-order or even linear regression
polynomials), but may produce lower variance predictions when
applied beyond the training set.




1.5

~A function is approximated using I
‘radial basis functions (RBF). Several trials
are shown in each graph. I

For each trial; a few noisy data 4 E\%
points are provided as training set. For a N/
wide sigma (top-right image) the bias is
high: the RBFs cannot fully approximate
the function (especially the central dip), .
but the variance between different trials is

£ low. As S|9ma decreases (images at bottom |
row) the bias decreases: the yellow curves
more closely approximate the blue one

0.8 0.8 1

However, depending on the noise in -
\ different trials the variance between trials ' .
increases. In the lower-right image the | "/
approximated values for x=0 varies wildly
depending on where the data points were

located. SRC: WIKI
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FIGURE 2.11. Test and training error as a function of model complexity.



2.3.1 Linear Models and Least Squares

The linear model has been a mainstay of statistics for the past 30 years
and remains one of our most important tools. Given a vector of inputs
XT = (X1,Xa,...,X,), we predict the output Y via the model

Y =B+ ijﬁj- (2.1)

The term Ay is the intercept, also known as thin machine learning.
Often it 1s convenient to include the constant variable 1 in X, include 5y in
the vector of coefficients 3, and then write the linear model in vector form

as an inner product

Y = X753, (2.2)

Lets examine two learning techniques for prediction: the
stable but biased linear model and the less stable but apparently
less biased class of k-nearest-neighbor estimates.



—=—1r

.2. The same classification example in two dimensions as in Fig-
classes are coded as a binary variable (BLUE = 0, 0RANGE = 1) and
-nearest-neighbor averaging as in (2.8). The predicted class is hence
yority vote amongst the 15-nearest neighbors.

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, 0RANGE = 1), and
then predicted by 1-nearest-neighbor classification.



The linear decision boundary from least squares is very smooth,
and apparently stable to fit. It does appear to rely heavily on the
assumption that a linear decision boundary is appropriate. It has low
variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not
appear to rely on any stringent assumptions about the underlying data, and
can adapt to any situation. However, any particular sub-region of the
decision boundary depends on a handful of input points and their particular
positions, and is thus wiggly and unstable—high variance and low
bias.

The MSE is generally broken into two components that will become
familiar as we proceed: variance and squared bias. Such a decomposition is
always possible and often useful, and is known as the bias—variance

decomposition.
MSE(zo) = Er[f(zo0) — fo]’

E7 (g0 — E7(90)]° + [E7 (o) — f(z0)]?
Varr(jo) + Bias®(jjo).

REFER : ELT - HASTIE BOOK (2.25) PP ( 24, 239, 242)






B|(y- £(2))*| = Bias[f (2)]" + Var[f (2)] + *
Where:

Bias|f (z)] = E[f (z) — f(z)]
and
Var[f ()] = E[f ()] - E[f ()]
The expectation ranges over different choices of the training set 1,...,2n,¥1,...,¥Ys , all sampled from
the same (conditional) distribution. The three terms represent:

+ the square of the bias of the leaming method, which can be thought of the error caused by the
simplifying assumptions built into the method. E.g., when approximating a non-linear function f(:c)

using a learning method for linear models, there will be error in the estimates f (:c) due to this
assumption;

 the variance of the learning method, or, intuitively, how much the leaming method f (&) will move
around its mean;

+ the ireducible error o . Since all three terms are non-negative, this forms a lower bound on the expected error on unseen samples,.m:34

- — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — - — S

((The more complex the model f (m) is, the more data points it will capture, and the lower the bias will be. However, complexity will make the]|

||model "move" more to capture the data points, and hence its variance will be larger.



Derivation [edit]

The derivation of the bias-variance decomposition for squared error proceeds as follows.Il%! For notational convenience, abbreviate f = f(z)

and f = f (.'c) First, note that for any random variable X, we have
Var[X] = E[X?] - E[X]’
Rearranging, we get:
E[X?] = Var[X] + E[X]’
Since f is deterministic
Elf]=7.
This, given y = f + ¢ and E[¢e] = 0, implies E[y] = E[f + ¢] = E[f] = f.
Also, since Var[e] = o*
Varly] = E[(y - E[y])’] = El(y - f)*] = E[(f + ¢ - f)*] = E[¢’] = Var[e] + E[¢]* = o*
Thus, since € and f are independent, we can write
B[y~ ] =B +f - 2f)
= Ey?] + E[f ] - El2u)
= Varly] +E{y]’ + Varlf] + E[f]* - 2/E[f]
= Varly] + Var[f] + (£ - E[f])"
= Varly] + Var[f] + E[f - ]
= o* + Var[f] + Bias[f]*




Approaches [edi]

Dimensionality reduction and feature selecfion can decrease vanance by simplifying models. Similarly, a larger training set tends o decrease
variance. Adding features (predictors) fends to decrease bias, at the expense of infroducing additional vanance. Leaming algorithms typically
have some tunable parameters that control bias and variance, e.g.:

s (Generalized) linear models can be regularized to decrease their variance at the cost of increasing their bias.[1"]

« In arfificial neural networks, the variance increases and the bias decreases with the number of hidden units.['] Like in GLMs, regularization is
typically applied.

» In k-nearest neighbor models, a high value of & leads to high bias and low variance (see below).

o In Instance-based learning, regularization can be achieved varying the mixture of prototypes and exemplars.[!]

» In decision trees, the depth of the tree determines the variance. Decision trees are commonly pruned to control variance. 31307

One way of resolving the trade-off is to use mixture models and ensemble leaming.l'2l'3] For example, boosting combines many "weak” (high
bias) models in an ensemble that has lower bias than the individual models, while bagging combines "strong” learners in a way that reduces thel

variance.

K-nearest neighbors [edit]

In the case of &-nearest neighbors regression, a closed-form expression exists that relates the bias—variance decomposition to the parameter
1437, 223

9
k 2
. 1 o
2 2
Blly- £ (@)= | fla) = £ D_fNi(e)) | +—+o
i=1

where Nl(:c), ooy N (m) are the & nearest neighbors of x in the training set. The bias (first term) is a monotone rising function of &, while the
variance (second term) drops off as & is increased. In fact, under "reasonable assumptions” the bias of the first-nearest neighbor (1-NN)

estimator vanishes entirely as the size of the training set approaches infinity.['l




Bias, variance and mean squared error [edit]

Main article: Bias—variance tradeoff For Parameter set,

See also: Accuracy (frueness and precision) say using LSQ

While bias quantifies the average difference to be expected between an estimator and an underlying
parameter, an estimator based on a finite sample can additionally be expected to differ from the
parameter due to the randomness in the sample.

One measure which is used to try to reflect both types of difference is the mean square error,
MSE(4) = E [(0 — 6)*].
This can be shown to be equal to the square of the bias, plus the variance:
MSE(6) =(E[6] — 6)* + E[(6 — E[6])’]
=(Bias(4,6)) + Var(6)
When the parameter is a vector, an analogous decomposition applies:[13]
MSE(#) = trace(Var(d)) + "Bias(é, 0)”2
where
trace(Var(6))

IS the trace of the covanance matnx of the estimator.

An estimator that minimises the bias will not necessarily minimise the mean square error.




Predictor [edit]

If Y is a vector of n predictions, and Y is the vector of observed values corresponding to the inputs to the function which generated the
predictions, then the MSE of the predictor can be estimated by

n
MSE = = Y (7 - ¥
i=1

n

)

|

l.e., the MSE is the mean | — Z of the square of the errors ((Y,: - Y,;) ). This is an easily computable quantity for a particular sample (and
n 4

1=1

hence is sample-dependent).

Estimator [edit]

The MSE of an estimator 9 with respect to an unknown parameter & is defined as

MSE(f) = E [(é - 0) ] .

SRC - WIKI




The MSE can be written as the sum of the variance of the estimator and the squared bias of the estimator, providing a useful way to calculate the
MSE and implying that in the case of unbiased estimators, the MSE and variance are equiva[ent.lz]

MSE(6) = Var(f) + Bias(6, 6)*.

Proof of variance and bias relationship [ edit]

A

MSE(§) =E |
; i1+ B _0)2]

i g (é ~ E[g]) (E[é] - 9) + (IE[é] - 9)2]

| +2[a (5 ) (1) 2 |(m61-0)

| +2 (E[é] - e) E [é - E[é]] + (E[éj - 9)2 E[6] - 0 = const.

| 42 (]E[é] - 9) (E[é] - ]E[é]) + (E[é] - 9)2 E[§] = const.

-+@M-@2




MSE(z0) = E7[f(20) — o]’

= E7[fo — E7(9o)I” + [E7 (o) — f(z0)]"

= Vary(fjo) + Bias® (). (2.25)
EPE(z0) = B, z0E7 (%0 — f0)° Y =XTB+e €~ N(0,07

= Var(yo|zo) + E7[do — E790]® + [E7do — 20 8]°
= Var(yo|zo) + Vars (i) + Bias®(4o)
= o2+ Erzd (XTX)tzgo? 4+ 02 (2.27)

E. EPE(zy) ~ E, ziCov(X) l2go?/N +0°
= trace[Cov(X ) 'Cov(zg)]o” /N + o?
= o*(p/N)+o°. (2.28)
E(X) =0, then XTX — NCov(X)



MSE(z0) = E7[f(z0) — fo]?
= E7[fo — E7(@0)]® + [E7 () — f(z0)]*
= Vary(fo) + Bias® (fo)- (2.25)

NN - scenario - Sec. 2.5: local methods in High Dimension

EPE(z0) = EypjesB7(y0 — f0)’ Y =X"B+e e~ NO.0?)
Var(yo|zo) + E7 [fo — ETdo]” + [E7do — 25 B
Var(yo|zo) + Vary (3o) + Bias®(fo)
= o2+ Erzd (XTX) 1200? + 02 (2.27)
LSQ - linear model being fit
E. EPE(zy) ~ E, ziCov(X) lzy0?/N +o°
trace[Cov(X ) 'Cov(zo)]c* /N + o°

o*(p/N)+ 0% ) (2.28)
E(X) =0, then XTX — NCov(X )



Equation 2.25 Derivation; £,

MSE (xo) = E.([f (x0) — F 1%)
= E. [ fGo)? - 2FGeo)o + 92

= E; [)A’g] — 2E,|f (xo)IE;|Y0] + E, [f(xo)z]

Add and subtract (£ [§,])*
RHS =
Ez- (951 — (ET [FoD)* + (Ez- [Fo)? — ZET [f(xo)]Ez- [Jol + ET [f (x0)?]
Since, f is deterministic (given a particular input, will always

provide the same output), £_[f(x,)] = f(x,) and
Var(4) = E[(A — E[A]D?] = E[A?] — (E[A])?

LHS = E,[9o — E,[9]]" + (E,[90] — f(x0))"
= Var, (§,) + Bias?(9,)

is expectation over training set

MSE (xo) = Var, (5,) + Bias?(§,) (2.25)



Equation 2.27 and 2.28 Derivation

Suppose the relation between Y and X 1s linear,
Y =XTp +¢€
where € ~ N(0,0%) and we fit a model by least squares to the training
data.
For an arbitrary point x,, we have 9, = x} 8, which can be
written as o = xJ B + Xiwq L;(xo)€;, where [;(x,) is the i-th element
of X(X"X) 1x,. Since under this model the least squares estimates are

unbiased, we find that:
EPE(xO) = Ey0|x0Ez- o — 5;0)2

= Eyoixo V6 — 2y090 + 5]
— yolxo[yg_ZYOET(}/}O)-FEZ'(S;(%)]
— YolXo [yg] o ZET(yO)EnyO(yO) + Ez'(j;g)



EPE(xq) = Ey0|x0 ET o — 570)2
= Ey 1x, £ [v§ — 2y0F0 + J§ ]
= Eyx[Y6 = 2v0E; Do) + £ (95)]
= y0|x0[J’o] 2E_(90)Ey, 1x, Vo) + £, ( 95)

Using E(A%) = Var(A) + [E(A)]? on above, we have, EPE(x,)

= Var(yolxo) + (E Yolxo LYo ) —2F; ()’o) volzo Vo) + £ (95)

‘

-

EPE (x,) v' " N

= Var(yolxo) + £,(35) — (£ [oD? + (£, [Fo]D? — ZT’OE (YO) 5
= Var(yolxo) + Var,(9o) + (£ [Jo] — ¥0)*
= Var(yolxo) + Var,(§o) + (£,[Po] — x¢B)°
= Var(yolxo) + Var;(3o) + Bias*(Jo)




EPE (x,)

= Var(yolxe) + E£,(55) — (£, [$o1)* + (£, [Fo])? — 2y0E(Po) + ¥§

= Var(yolxo) + Var,(§,) + (£, [Jol — ¥0)*
= Var(yolxe) + Var,(Py) + (E.[Po] — x§ B)?
— Var(yolxo) + Varr(yo) + Biasz(j?())

Using Var(yy|xy) = 0% and substituting the expansion for ¥,

N [ N ]
EPE(x,) = 02 + Var; (xgﬁ + z li(xo)ei) + (ET x B+ z L (x0)€;

=1

N _
=¢? + Var, (xgﬁ + 2 li(xo)ei) + (xgﬁ + E 2 Li(xp)ei| — xf
i=1 '

Since E[e] =0, £, XY L(xg)el =0 _

N
EPE(xy) = o? + Var, | x}p + z L;(xg)e; | +0
i=1




Since, Ele] =0, £, [Z’ivzl li(xo)ei] =0

N
EPE(xy) = a? + Var, | x}p + 2 L;(xg)e; | +0
i=1

N
EPE(xy) = 0% + Var,(x} B) + Var, Z L;(x)€;
i=1

Since Var,(x) ) = 0,
EPE(xy,) =02+ Y, l#(xy)0?
l;(xo) is the i-th element of X (X' X) 1x,
=% +x(XTX)"IXTX(XTX) 1xy 02

Since XX is symmetric:

EPE(xy) = 02 + x) (XTX) 1x, 0 (2.27)




Since X' X is symmetric
EPE(xy) = 02 +x) (XTX) 1x, 02 (2.27)

Here, we have incurred an additional variance ¢? in the

prediction error, since our target 1s not deterministic. There 1s no bias,
and the variance depends on Xx.

If N 1s large and T were selected at random, and
assuming E(X) = 0, then X' X - N Cov (X) and

E, (xl(Cov(X) “x,) 02
Ey EPE(xy) ~ x (<8 - ) %) + o2

Using property, E(UTVU) = E(tT(VUUT)) =1tr (V (E(UUT)))

_ trace[Cov(X) ™ Cov(xy)]o?
- N

Ex,EPE(xo) ~ 02 (2) + 02 (2.28)

+ o2




trace[Cov(X)1Cov(xy)]o?
N

Ey EPE (%) ~ 0 (%) + o2 (2.28)

Ey,EPE(xq) = + 0*

Here we see that the expected EPE increases linearly as a
function of p, with slope 0%/N. If N is large and/or ¢ is small, this
growth 1n variance is negligible (0 in the deterministic case).

By imposing some heavy restrictions on the class of models
being fitted, we have avoided the curse of dimensionality.






model Y = f(X) + ¢, with E() = 0 and Var(c) = o2

EPEL(zg) = E[(Y — fk(:cﬂ}ﬁx = 2g]
= crz+[Biasﬂifk{mun+v3rrr(fk(mnm (2.46)

E

JE+[f(:cg}— Zf' ] +— (2.47)

k-NN - scenario - Sec. 2.9: Model Sel. & B-V-D

Err(zp) = E[(Y — f{TDHE|X = g
= 02 +[Ef(20) — f(z0)]” + Elf(20) — Ef(20))”
— a:rf + Biasz{f(ﬁn)J + Vﬂr{f{fﬂﬂ}]
— Irreducible Error + Bias® + Variance. (7.9)



Equation 2.47 Derivation

The k-nearest-neighbor regression fit fi(x,) usually illustrates
the competing forces that effect the predictive ability of such
approximation. Suppose the data arise from a model Y = f(X) + ¢,

with E(€) = 0 and Var(e) = o2.

For simplicity here we assume that the values of x; 1n the
samples are fixed in advance (nonrandom). For an input x,

~ . 1 i 1 X
Yo = fr(xp) = Ez Yo = Ez[f(x(l)) + E(l)]
=1 =1

The subscript in the parentheses-(l) indicate the sequence of
nearest neighbors to x,. The expected prediction error at xg, also known
as test or generation error, can be decomposed:

EPE,(x,) = E (Y — fk(xo))z

X=x0]



EPE o) = E (¥ = b)) [x =]
Using EPE(x,)

= Var(yolxo) T Er(y(%) o (ET[S;O])Z + (ET[S;O])Z R ZyOET(j;O) + yg
= Var(yolxo) + Var,(Po) + (E;[Fo] — ¥0)?
= Var(yolxo) + Var,(§y) + (E;[9o] — x{B)?
= Var(yolxo) + Var,(§5) + Bias*(Jo)
EPE(xo) = 02 + |Bias? (fi(xo) ) + Var; (fi(xo) )] (2.46)

= 0%+ (yo — Er[fk(xo)])z + Var| i (xo)]

=0-2+(YO_ET
[

| =
1~

Il
[N

. 2 - _
1
[ (xw) + €] ) +Var, E;[f(xa)ﬂea)]




=O-2+(YO_ET

Since,

i1 f(xp) is a constant:

EPE(x,) = 0% + [BiaS2 (fk(xo)) + Var; (fk(xo))] (2.46)
= 0% + (yo — Er[fk(xo)])z + Varr[fk(xO)]
o N\ 2 -k 7
1 1
EZ[f(xa)) + e ) +Var ;Z[f(x@) +eol
| =1 . -_l=1 - 2
1
=0%+ (f(xo) _E(Er zf(x(l)) + Er %D
=1 1 =t
1 <& | :
+ =) Var; %l)) + Var; (Z e(l)>
A= | =1
1< I ko?
EPE(xo) = 0% + | f(xo) —EZf(x(w) Tz
=1
1% I o’
EPEk(x()) — g% + f(xO) — EE f(x(l)) + ? (2.47)
=1




7.3 The Bias—Variance Decomposition

As in Chapter 2, if we assume that ¥ = f(X) + ¢ where E(¢) = 0 and

Var(s) = 02, we can derive an expression for the expected prediction error

of a regression fit f (X') at an input point X = ¢, using squared-error loss:

Err(zo) = E[Y — f(20))?|X = 0]

o2 + [Ef(z0) — f(z0)]* + E[f(x0) — Ef(z0)]?

= o2 + Bias?(f(z0)) + Var(f(z0))

= Irreducible Error + Bias® + Variance. (7.9)

The first term is the variance of the target around its true mean f(zq), and
cannot be avoided no matter how well we estimate f(zg), unless 02 = 0.
The second term is the squared bias, the amount by which the average of
our estimate differs from the true mean; the last term is the variance; the
expected squared deviation of f(zg) around its mean. Typically the more
complex we make the model f, the lower the (squared) bias but the higher
the variance.

For the k-nearest-neighbor regression fit, these expressions have the sim-
ple form

Err(xo) E[(Y — fr(x0))?| X = ]

2
oz

k
oz + [f(ro) = %Zf(-’l’(e)) + 7 (7.10)
£f=1




EPE(zo)

Err(zp)

Compare:

EynlIu B (yo — 'ﬁﬂjz

Var(yolzo) + Erljo — Brdol” + [Brdo — 2 )
Var(yo|zo) + Varr (fio) + Bias” (i)

o + Erz (XTX) zoo? + 0%,

E((Y = f(zo)"|X =20 h
oc + [Ef(z0) — f(zo)]" + E[f (z0) — Ef(20)]"
o, + Bias®(f(zo)) + Var(f(zo))

Irreducible Error + Bias® + Variance.

(2.27)

(7.9)



In statistics, the bias of an estimator (or bias function) is the difference between
this estimator's expected value and the true value of the parameter being estimated.

An estimator or decision rule with zero bias is called Unbiased.

statistical model, parametenzed by a real number 8, giving rise to a probability distnbution far

observed data, P :IT:] = P[::n | H:]_, and a statistic !—7 which serves as an estimator of & based on any observed data

x. That is, we assume that our data follow some unknown distribution P ':-IL' | 9:] (where 815 a fixed, unknown constant
that is part of this distribution), and then we construct some estimator A that maps observed data to values that we

hope are close to 8. The bias ::uf{:j relative to # is defined as:

A

Bias(0,60) = Biasg[0] = E,4[0] — 0 = E, 5[0 — 0],

An estimator is said to be unbiased if its bias is equal to zero for
all values of parameter 0, or equivalently, if the expected value of the
estimator matches that of the parameter.

In statistical theory, unbiased estimation of a standard deviation is the
calculation from a statistical sample of an estimated value of the standard deviation (a
measure of statistical dispersion) of a population of values, in such a way that the
expected value of the calculation equals the true value.

_ 1 <& 9
X—EZ;X,; 52:—Z(Xi—X) vs

The expected value of the uncorrected sample variance does not equal the
population variance o2, unless multiplied by a normalization factor. The sample
mean, on the other hand, is an unbiased estimator of the population mean p.



-n i=1

=D - P = X - ) D )+ (K ]
- i=1 i=1

:E_%i{j{i—ﬂ}g —%(X—m-ﬂ-{"f—u)ﬂx—mz}
- i=1 ’

=B 230 - - 2(X - 0+ (X - )
L™ =1

=E % i{Xi -’ = (X~ M]E]
L=

=E_—Z(X } {(x p)]




T2 - T 1 . 3_1 -
> Ke—w? =3 (K- X+ (X)) =Y K- X)

1=

1
=D (K= XP +23 (K- X)X —p) + D (X —p)?

i

_ Z{xi _X)P X —p}Z{Jﬂ —X) 4+ n(X —p)*

=% (X. — XV 1+n(X —pnp

P i

— B EZ{J{}—J{}E] | — , 1o 7 7
i EZ(E;—I}' =EZ{Xf_P"] — (X —p)
1 _ i=1 i=1

=5 Ezwﬂ—ﬁ}z—{-}f—#}zl

1< 3 7 2
= HZ E[(X; — p)| — E[(X — )]

= 13" Var(X,) — Var(X)
T =1

1 1 r r-t'_J- 2
= —II.CI'E — —{J = —EE :i_ .
TL Tl TL




see that it ix bitased downwards.

Note that the bias ix equal to —Var(X). In addition, because

nn—1 n—1 11— 1

E' TL 5’2} __" = [ SE] __n

-I_ TL

1 Z{X” I X}E

a—1

_ 1 i(xﬁ- — X )2

n—14

is an unbiased estimator for o>

1

n—144

- (l—l)ﬂgzcrg,
n—1 !

where the transition to the second line uses the result derived above for the biased estimator. Thus E[SE] = JE, and
1 " —

Z[Xf - X )2 IS an unbiased estimator of the population vanance, a2
i=1

E[S?] = E[

therefore §% = _
mn—1

https://www.statlect.com/glossary/unbiased-estimator.



Bias and Unbias Estimator
If the following holds:

E[‘U{le_}fg?...,xﬁ_)] =@

then the statistic u(X;, Xs, ..., X, ) is an unbiased estimator of the parameter 6.
Otherwise, u(X;, Xs, ..., X,,) is a biased estimator of £.

If X; are normally distributed random variables with mean p and variance ¢?, then:

X, o X, — X)?
f:czzn':Xand&E:Z[ )
TL

are the maximum likelihood estimators of u and o2, respectively. Are the MLEs
unbiased for their respective parameters?

E(X;) = p and Var(X;) = o Therefore:

E(X)=E (% i}l qu> = 2 3 B(X,)

n i




i=1 =1
_____"__"_____"__5__u___"_"_“";r_z""_:_]""“:
Var(X) = ¢* = E(X?) — p® and Var(X) = e E(X?) - p®
:l ﬂ:?—fz
Tl i—1
25— gl s x2_ z2| - | LN moxn| _ moxe
E(6°) =E E ;5’{1 X | = |n ;E{Xﬂ E(X7)




the maximum likelihood estimator of o is a biased estimator.




OLS is linear and unbiased

First of all, note that B is linear in y. In fact, B is the product between the X x ¥ matrix (X"X)™x" and »
and matrix multiplication is a linear operation.

[t can easily be proved that § is unbiased, both conditional on %, and unconditionally, that is,

E[AlX =8
We can use the definition of ¥ to re-write the QLS estimator as follows:

B=@x"xy
= (X)X (XB+e)
= (X X)X X+ (X X)X e
= f+ (X X)'Xe

When we condition on X, we can treat X as a constant matrix. Therefore, the conditional expectation
of B is
E[BX ] = B+ (X X)X E[eX]
=+ (X" X)X -0
=p

The Law of Iterated Expectations implies that

B[P ] =E[E[B ]| = ELp1- £
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Definition 14.1. For observations X = (X1, Xa,..., Xy.) based on a distribution having parameter value 0, and for
d(X) an estimator for h{(f), the bias is the mean of the difference d(X) — h(#), e,

ha(f) = Egd(X) — h(8).

Ifb4(8) = 0 for all values of the parameter, then d(X) is called an unbiased estimator. Any estimator that is not
unbiased is called biased,

In the case of N Bernoulli trials having x successes,
that Ap = x/n is an unbiased estimator for the parameter p

Example 14.2. Let Xy, Xs,..., Xy, be Bernoulli trials with success parameter p and set the estimator for p to be
d(X) = X, the sample mean. Then,

1 ]
EFXﬁ;(EX] +EXs+- -+ Exﬂ}ﬁﬁ(?j+p+“.+p)_p

Thus, X is an unbiased estimator for p. In this circumstance, we generally write p instead of X. In addition, we can
use the fact that for independent random variables, the variance of the sum is the sum of the variances to see that

1
Var(p) = E{Var(f‘fl) + Var(Xs) + - - - + Var(X,,))
1
12

= @1 -p)+p(l—p)+---+p(1-p)) %’P[I‘?"‘}‘




ot . N . 1
Ep* = (Ep)* + Var(p) = p* + HP[I — p}
Thus, the bias b(p) = p(1 — p)/n and the estimator {* is biased upward.

Exercise 14.7. For Bernoulli trials X, ..., X,,,

/

_]_ T
=) (X —p)* =51 —p).
i=1 /

/
Based on this exercise, and the computation above yielding an unbiased estimtiior, Sﬁ, for the variance,
-
/

/

T J- e o l . J. s 3 l —— l J. .

)
I

In other words, | !
p(1 - p)
I

is an unbigsed estimator of p(1 — p) /n. Refurning to (14.5),

n—1

L 1 . . . 1 1 .
E {P'ﬂ — mi—”“ —P:'] — (P'g + HPU —F}) — HPU — p) = p*

Thus,
1

n—1

1

pgtt =P — 'ﬁ(] _ﬁ}

= 15 - .-J
15 an unbiased estimator of p©.
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