What 1s Statistics?

Definition of Statistics

— Statistics is the science of collecting, organizing, analyzing,
and interpreting data in order to make a decision.

¢ Branches of Statistics

— The study of statistics has two major branches -
descriptive(exploratory) statistics and inferential statistics.

e Descriptive statistics is the branch of statistics that
involves the organization, summarization, and display of
data.

e Inferential statistics is the branch of statistics that
involves using a sample to draw conclusions about
population. A basic tool in the study of inferential statistics
is probability.



Scatterplots and Correlation



Displaying relationships: Scatterplots

Interpreting scatterplots

Adding categorical variables to scatterplots

Measuring linear association: correlation r

Facts about correlation



Response variable measures an outcome of a
study.

An explanatory variable explains, influences or
cause changes in a response variable.

Independent variable and dependent variable.

WARNING: The relationship between two
variables can be strongly influenced by other
variables that are lurking in the background.

Note: There is not necessary to have a cause-and-effect
relationship between explanatory and response
variables.

Example. Sales of personal computers and athletic shoes



Abundance per 10,000 kg of prey

100 1000

10

Example - 1

0.5

1.0 5.0 10.0
Carnivore body mass (kilograms)

50.0 100.0



Definitions

Sample space: the set of all possible outcomes.
We denote S

Event: an outcome or a set of outcomes of a
random phenomenon. An event is a subset of the
sample space.

Probability is the proportion of success of an
event.

Probability model: a mathematical description
of a random phenomenon consisting of two
parts: S and a way of assigning probabilities to
events.



Probability distributions

* Probability distribution of a

random variable X: it tells what values
X can take and how to assign probabilities to
those values.

— Probability of discrete random variable: list
of the possible value of X and their
probabilities

— Probability of continuous random variable:
density curve.



Measuring linear association: correlation r

(The Pearson Product-Moment Correlation Coefficient or Correlation Coefficient)

 The correlation r measures the strength and
direction of the linear association between two
guantitative variables, usually labeled X and Y.
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Facts about correlation

« What kind of variables do we use?
— 1. No distinction between explanatory and response variables.
— 2. Both variables should be quantitative
* Numerical properties
R e ey |
— 2. r>0: positive association between variables
— 3. r<0: negative association between variables
— 4. Ifr=1orr = -1, it indicates perfect linear relationship
— 5. As |r| is getting close to 1, much stronger relationship

< —negative relationship— >< —positive relationship—>
—1 0 1

————stronger stronger ————1D

— 6. Effected by a few outliers > not resistant.
— 7. It doesn’t describe curved relationships

— 8. Not easy to guess the value of r from the appearance of a
scatter plot
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Some necessary elements of

Probability theory and Statistics




The NORMAL DISTRIBUTION

The normal (or Gaussian) distribution, is a very
commonly used (occurring) function in the fields of
probability theory, and has wide applications in the
fields of:

- Pattern Recognition;

- Machine Learning;

- Artificial Neural Networks and Soft computing;

- Digital Signal (image, sound, video etc.) processing
- Vibrations, Graphics etc.



Its also called a BELL function/curve.

The formula for the normal distribution is:

ol Bl 7 L
p(X)—m/EeXp[ 75 ) )]

The parameter M is called the mean or expectation (or
median or mode) of the distribution.

The parameter O is the standard deviation;
and variance is thus 02.



P(x) 2>

https://en.wikipedia.orq/wiki/File:Normal Distribution PDF.svqg

(2013)



The normal distribution p(x), with any mean g and
any positive deviation o0, has the following properties:

e Itis symmetric around the mean (u) of the distribution.

e It is unimodal: its first derivative is positive for x < yu,
negative for x > uy, and zero only at x = p.

e It has two inflection points (where the second
derivative of fis zero and changes signh), located one
standard deviation away from the mean, x =y — oand x =

U + o.
e Itis log-concave.

o It is infinitely differentiable, indeed supersmooth of
order 2.



Also, the standard normal distribution
p (with y = 0 and o = 1) also has the following properties:

o Its first derivative p’(x) is: —x.p(x).
o Its second derivative p’’'(x) is: (x2 — 1).p(x)
e More generally, its n-th derivative :

p"(x) is: (-1)"H,(x)p(x),

where, H, is the Hermite polynomial of order n.



The 68 — 95 - 99.7% Rule:
All normal density curves satisfy the following property
which is often referred to as the Empirical Rule:

- 68% of the observations fall within
1 standard deviation of the mean,

that is, between (,Ll—G) and (,LH-U)

- 959 of the observations fall within
2 standard deviations of the mean,

that is, between (y—ZO‘) and (g+20‘)

- 99.7% of the observations fall within
3 standard deviations of the mean,
that is, between

(u—30)and (u+30)
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A normal distribution:

1. is symmetrical (both halves are identical);

2. 1s asymptotic (its tails never touch the
underlying x-axis; the curve reaches to — «
and + « and thus must be truncated);

3. has fixed and known areas under the curve
(these fixed areas are marked off by units
along the x-axis called z-scores; imposing
truncation, the normal curve ends at + 3.00
z on the right and - 3.00 z on the left).



Areas Under the Normal Curve for Various Z Scores
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Example of the Probability of Observing an OQOutcome in a Standar
Distribution

n(Z)




Conditional Distribution

The conditional probability mass fimetion of Y given X1s:

plyjz)=P(Y =yX=2)= =

PX=2) s
For contiwous randor vartables, we can define the conditional probability densily fimetion:
Conditional probability: P(4|B) = AN ) f(z,)
P(B) flyle) = o)
Multiplication rule: P(AN B) =P(A|B)P(B) =P(B | A)P(A).

Rewriting the above equation yields:

fle,y) = flz) - flyle).

The marginal density of Y can then be obtawned from:




conditional probability wnich 1s

P(AN B)
P(B)

P(A|B) = , When P(B) > 0.

Any other formula regarding conditional probability can be derived from the above formula.
Specifically, if you have two random variables X and Y, you can write

P(Xe(C,Y e D)

PXeClYeD)= , where C,D C R.

the conditional PMF. Specifically, the conditional PMF of X given event A, is defined

Pa(es) = P(X = 2i|4)

P(X =z;and A)
P(4)

Similarly, we define the conditional CDF of X given A as




Two discrete random variables X and Y are independent if

Pxy(z,y) = Px(z)Pr(y), forallz,y.

Equivalently, X and Y are independent if

F}{}-"(ﬂf, y] — FX{E]FF(y]J for Elr]l;l?? Y-

For discrete random variables X and Y, the conditional PMFs of X given Y and
vice versa are defined as

Pxy (zi,y;)
Py(y;)

Pxy (z:,y;)
Px(ﬂ:i)

Pxiy(x:|y;) =

Py x (y;l|z:) =

for any z; € Rx and y; € Ry.




So, if X and Y are independent, we have
Pyiy(z;|y;) = P(X = z;|Y = y;)
B R&’F(-‘l‘nyj}
Py (y;)

_ Px(z:) Py (y;)
Py (y;)
= Px(z;).

As we expect, for independent random variables, the conditional PMF is equal to the marginal PMF.
In other words, knowing the value of ¥ does not provide any information about X.




Expected Value of Random Variables

The expected value of a random variable is the weighted average of all
possible values of the variable. The weight here means the probability
of the random variable taking a specific value.

ElX] = Y Xip(xi)

xi = The valuesthat X takes

p(x) = The probabilitythat X takes the value x;
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Example Let X be a continuous random variable with support Ry = [0.=) and probability density
function

Fyx) = { Aexp(-Ax) Ifx € [0, =)

0 otherwise

where 4 > 0. Its expected value is

BLX] - | fito)e

= I: xA exp(—Ax)ex

E[¥] = Z{:H b o x(x) (by the transformation thearem)




Expectation of g(X)

Let g(X) be a function of X. We can imagine a long-term average of g( X') just
as we can imagine a long-term average of X. This average is written as E(g(X)).
Imagine observing X many times (/N times) to give results xy, 70, ..., xx. Apply
the function ¢ to each of these observations, to give g(x1)....,g(xx). The mean
of g(x1), g(x9), ..., g(xx) approaches K(g(X)) as the number of observations N
tends to infinity.

Definition: Let X be a continuous random variable, and let g be a function. The

expected value of g(X) is /m

E(g(X)) = | g(2)fx(z)de.

— 0

Definition: Let X be a discrete random variable, and let ¢ be a function. The
expected value of g(X) is

( ) ZQ ) fx(z Zg




Let X and Y be independent random variables, and ¢, A be functions. Then

E(XY) = E(X)E(Y)
E(g[X]fz(Y)) — E(Q(X))E(h(‘r’)).

Probability as a conditional expectation

1 if event A occurs,
0 otherwise.

Define the indicator random variable: 14 = {

Then E(I4) = P(I4 = 1) = P(A).




Law of Total Probability:

P(X € A) = Z P(X € AlY =y;)Pyv(y;), forany set A.

Law of Total Expectation:

1. If By, Ba, Ba, ... is a partition of the sample space S,

EX — E E[X|B;]P(B;) (5.3)

2. For a random variable X and a discrete random variable Y,

EX = )  E[X|Y = y;]Pr(y;) (5.4)




Conditional Distribution and Conditional Expectation

The conditional probability mass fimction of Y given X is:

Conditional probahility: P(A|B) = P(]? (;)B) , syle) = PY = y|X = 2) = FY =y,X

Multiplication rule: P(AN B) =P(A| B)P(B) =P(B| A)P(A).

For contimwous random variables, we can define the conditional probability density fimetion

[

The conditional expectation of a random variable ¥ 15 the expected value of ¥ given [X=x], and 15 denoted: E[F|X=x] or E[¥]x]. If the
conditional probability density function 1s known, then the conditional expectation can be found using:

Jooy- flylz)dy HY is continuous

2yl p(yle) if ¥ is discrete (38)

ﬂﬂx:ﬂ:{

To obtain the unconditional expectation of ¥, we can take the expectation of E[Y|X]. The result 15 the theorem of total expectation:

BV = [o E[Y|X = 2]f(z)dz I X is continuous
Y= y.r EY|X = g]ple) if X is discrete.

(39)




Conditional Expectation of X :

Xlﬂ Z EEPIH 3-::}

I!_ EHI

EX|[Y =y;]= )  :Pxy(zily;)

iy

Iterated Expectations:

Let us look again at the law of total probability for expectation. Assuming g(Y) = E[X|Y], we
have

= ) E[X|Y = y;]Pr(y;)

= Elg(Y))
= E[E[X]Y]].




Theorem 1 Let X.Y, Z be random variables, a,0 € R, and g : R — R. Assuming all th{
following expectations exist, we have

(i) Ela]Y] =a

(ii) BElaX +bZ|Y| = aE|X|Y] +bE|Z|Y]

(i) EX|Y] >0if X > 0.

(i) E|(X|Y] = E|X] if X and Y are independent.

(v) EELX|Y]| = E|X]

(i) B[Xg(V)|Y] = g(V)E[X|Y]. In porticular, [E[g(¥)|Y] = g(Y).

(vii) EWXTY, g(V)] = BIX]Y]




Theorem 2 For any function h : R — IR,
E[(X — E[X|Y])?] = E[(X — h(Y))’]
and we have equality if and only if h(Y) = E[X|Y].

This follows immediately from the law of total expectation:

E(X) =Ey{E(X|Y)} = > E(X|Y =y)P(Y =y).

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

) E(X)zEY(E(XW)) Law of Total Expectation.

Note that we can pick any .v. Y. to make the expectation as easy as we cail.

i) B(g(X)) = Ey(E(g(X) | Y)) for any function g.




we can give a proof of (1) in the special case where (X, Y, Z) are jointly continuous
with a pdf f(z,y, 2):

* » dz
BX|Y—yZ—d=3 "}"f{fyi)l
J

E[E[X|Y,Z=z]|Z=z]=f ff;f(m ;y;)dm . #(z,v, 2) dz dy

[ ([=-semaes)

ff:r f(z,vy)dzdy

—EX|Z =7

You can give a similar proof in the case where X, Y, Z are jointly discrete, with a joint probability
mass function f(z,9,2) = P(X =z,Y =y, Z = 2), for (2, y, ) ranging over some countable
support set. Basically, you do this by replacing [ with ) in the proof above.

One thing you can say is that

EIEIX|Y,Z]| Z] = BEIX | Z] (1)




EEX|Y;Z|]Y =y|. E[X|Y;Z]is a random variable. Given that Y = y, its possible
values are E|X|Y = y; Z = 2| where z varies over the range of Z. Given that Y =y, the
probability that E|X|Y: Z]| = E|X|Y =y, Z = 2] is just P(Z = z|Y = y). Hence,

EEX|Y;Z)|Y =y] = ZEm:y, =2]P(Z =2|Y =y)

ZZ&?P =z|Y =y, Z=2)P(Z =

_ Z:IIP(X_IFY_%Z_

PY=y,Z =z

Z PX=2Y=y/71=2)
x
” PY =y)

PX=2Y =y
- L P(Y =y)

T

Z tP(X =zY =vy)
ELX]Y =]




This follows immediately from the law of total expectation:

E(X) = Ey{E(X|Y)} = > E(X|Y = y)P(Y =y).

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

) | E(X) :Ey(E{}{ Y]) Law of Total Expectation.

Note that we can pick any r.v. Y. to make the expectation as easy as we cai.

i) E(g(X)) = Ey(E{g(X} | 1«’)) for any function g.

Var(X) = By (wu-(}{ | Y}) + Vary (E{X Y))

Law of Total Variance.




(1) is a special case of (ii), so we just need to prove (ii). Begin at RHS:

RHS = Ey[ (g (}f)w’)} = Ey [Zg(m}ﬂj’{X=f|}"}}

- y: [y: gz)P(X =z|Y = y)] P(Y =y)

(iii) Wish to prove Var(X) = Eyﬁ‘m(}f 1Y) + Vary|[E(X | Y)]. Begin at RHS:

Ey [Var(X |Y)| + Vary [E(X | V)]
r
2
=By { ECC|Y) - (B(X |Y))*} +{ By { [E(X |Y)]*} — [ Ex(E(X|Y)) |
\ E(X) by part (i)
= Ey{E(X°|Y)} —Ey {[E(X |Y)]*} + Ex {[E(X |YV)]*} — (EX)?
“—-v'—"
E(X?) hy part (i)

—E(X?) — (EX)?

— Var(X)=LHS. O




Theorem 2.4: The Partition Theorem (Law of Total Probability)

Let B, ..., B,, form a partition of ). Then for any event A,

S P(ANB) = 3 P(A| B)B(B)

Proof of partition formula

ZE[X | A;)P(A;) = fo(mjp{dm | A;) - P(A;)
2 I '

_ ZfX{w]P{dwl“lxi;}

_ fo:;mm* (w) P (dew)
- ZE{-XIJEL :]'5

where IA is the indicator function of the set A4;.

IT the partition {A } g |8 finite, then, by linearity, the previous expression becomes

E Z}irﬂi = E({X),




5.2. Expectation and Variance of Standard Normal Distribution. Assume X « A(0,1).
Then

EX:./. ve 1 dg =),

o0

because the function inside the integral is odd. We can also say that X is symmetric with respect
to zero, so EX = 0. Now,

E}'i'?—L +m&:26”“2*’2d$—1
Vo J o I

Why is this? We know that
+00 )
/ e 2 dx = v2r.

Let u=e® /2, y = z. Integrate by parts: note that uv = ze=*"/2 = 0 for £ = +o00. So

+o0 \ +00 +00
f e” ﬁd:ﬂ:f udy = uv|ii§~f v du
—o0 —20 —o

+00 . +00 . +00 o
= —/ rde™ ™2 = —./. a."(—z:)»g_:’:"*‘rg d:n=/ re 12 4.

] =) -0

This is equal to +/2m, which proves EX? = 1. So Var X = EX? — (EX)? = 1. This proves that

X~N(0,1) = EX=0, VaX =1




1 Ji2 6 ,u
N | Density: X)= eXx ]
ormal Density p( ) O_\/— p ( )

Bivariate Normal Density:
1 [(x—,ux )2_2pxy (x_ﬂx)(y_ﬂy)+(y_ﬂy )2
2(1-p3,) O 2505 G

2
270,0,,/(1- p2)
# - Mean; o - S.D.; p,, -Correlation Coefticient

Visualize p as equivalent to the orientation of tilted asymmetric Gaussian
filter.

n
For x as a discrete random variable, o L,
the expected value of x: E()C) Z xiP(xi) lux
E(x) is also called the first moment of the dlstrlbutlon

The kth moment is defined as: E(X ) Z ka(X )

|
e

p(x,y) =

P(x;) is the probability of x = x..



Covariance of x and y, is defined as: ny s E[(x o ,le )(y s ,Lly )]

Covariance indicates how much x and y vary together. The value
depends on how much each variable tends to deviate from its mean, and also
depends on the degree of association between x and y.

O X —
Correlation between x and y: ,Oxy = 2 = [( qu )(

0.0, o o}

Property of correlation coefficient: — 1 < p < 1

ForZ = ax + by ;
97 i e R L) et i)
El(z-u.) |=a"0o, +2abo,,+b°0c
A Zoriin A 9LIES,
If 0,=0, o.=a’0,+b’0C



E{(X — px (Y — py)]
TxOY

PXy —

where:
s 7y and oy are defined as above

covanances and variances based on a sample

pairs, T 15 defined as:
E?—l (2; — ) —9)

\/ Yic (@ 2 \/ Y ica (U

Tmy =

where:

* 7). 15 sample size
e 1;,1; are the individual sample points indexed with /

oI = % Z?_l Z; (the sample mean); and analogously for i

Rearranging gives us this formula for 1y,

“EEM—ZEE%




An equivalent expression gives the formula for 7, as the mean of the products of the standard scores as follow;

e e
Ton-1420\ s 8

where:

* N,I;, ¥, &, Y are defined as above, and s, &, are defined below

o (‘“_m) I5 the standard score (and analogously for the standard score of )

Alternative formulae for 1, are also available. For example, one can use the following formula for 7,

2Ty — Ny

T:L‘LI' —

(n—1)s,8,
where:

e N, ;,Y;, T,y are defined as above and:

.5, = W/ﬁ i (2; — &)* (the sample standard deviation); and analogously for s,




Several sets of (x, y) points, with the correlation coefficient of x and y
for each set.
The correlation reflects the strength and direction of a linear relationship (top
row),
but not the slope of that relationship (middle),
nor many aspects of nonlinear relationships (bottom).




1.0 0.8 0.4 0.0 -0.4 —-0.8 -1.0

1.0 1.0 1.0 0.0 -1.0 -1.0 -1.0

0.0 0.0 0.0 0.0
!"ﬁ,, x” , Y X Qﬁ,‘ o Coa
1. 2N f}«‘s }ir 3“ " e v.r:‘L

)]
E(XY) - E(X)E(Y)
E(X?) — E2(X) \/E(Y?) — EX(Y)

The correlation coefficient can also be viewed as the cosine of the angle
between the two vectors (# P) of samples drawn from the two random variables -

i.e. between the two observed vectors in N-dimensional space (for N observations
of each variable) - http://www.hawaii.edu/powerkills/UC.HTM

y

Pxy =

This method only works with centered data, i.e., data which have been
shifted by the sample mean so as to have an average of zero.



(Une defines also the correlation

Cov[XY]
ol X]o[Y]

Here is a key connection between linear algebra and probability theory:

Corr[ XY | =

If X,Y are two random variables of zero mean, then the covariance Cov[XY| =
E[X - Y] is the dot pr ::n:luct :::f }i and Y. The standard deviation of X is the
length = & ™ ~f the angle between the two vectors.
Positive . egative correlation means an obtuse
angle. |

It correlation ¢ reometric significance of independence’

Two ra [ and only if for any functions f, g the
randor () ated.

https://people '} ath19b_2011/handouts/lecturel2.pdf




1< p <0
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LAPLACE: o B e -
| p=-5,b=4
04 F rl1l
1 | — pf
r\pn,b) = —exp| — = [
flalinb) = gpexp (~54)
=) ifx<p
= — ¢

Read about:

_ : * Central Limit Theorem
Double Exponential Density:

* Uniform Distribution
_|x—a
P(X) s 1 e ‘ 4‘ .  Geometric Distribution
o 9
Zb » Quantile-Quantile (QQ) Plot

* Probability-Probability (P-P) Plot



Name of the probability distribution

Probability distribution function

Variance

Binomial distribution

i

Pr{X=F= (k

)p’“{l -

np(l — p)

Geometric distribution

Pr(X=k)=(1-p)*"p

Mormal distribution

f[:m|.'“*:°'2}:

v ot

Uniform distribution {continuous)

fora <z <b,

L
ftm,m:{ﬁ
0

forz <goraz>Dh

Exponential distribution

FPoisson distribution




The variance of a random variable X is the expected value of the squared deviation from the mean of X, ¢ = B{X]:
Var(X) = B|(X - |
Var(X) = B[(X - E[X])]
= E[X% — 2X E[X] + B[X]']
=E[X*] - 2B[X] E[X] + B[X]
— B[X?] - B[X]?

In other words, the variance of X is equal to the mean of the square of X minus the square of the mean of X

A formula for calculating the variance of an enfire population of size N is:

— N w2 (7Y 2t
0.2 _ (3:3) —:EH _ E'i!=1 i {Zq.:l ﬁ%) /N.

N
Using Bessel's correction to calculate an unbiased estimate of the population variance from a finite sample of n obsernvations




Discrete random variable [edit]

If the generator of random variable X is discrete with probability mass function &, — pq. 29 = Pa, ..., Iy — Py, then

Var(X) = iﬁf @ — #]23

or equivalently,

Var(X) = (Zpﬂ"f) — 2,
=1

where g is the expected value. That is,
1t
= Zﬁi$f~
i=1
(When such a discrete weighted variance is specified by weights whose sum is not 1, then one divides by the sum of the weighis.
The variance of a collection of n equally likely values can be writien as

L 1
Var(X)=— ) (& — )’ = - Y 2} -l
=]

7 ) |

where g is the average value. That is,

1 n
b= EEZ:];.T;




If the random variable X has a probability density function f(z}, and F(z) is the corresponding cumulative distribution function, then

Var(X) =¢° = /(:ﬂ — it)* f(z) dz

k

=/F: g;?f{:ﬂ]d:f:—Eg./r;ﬂ;_f(m}dm_l_“zfmﬂm}dm
=/|:;5’32 dF(*‘?}—ZLLL&:dF(m]+ﬁ3[ dF(z)

R

=/ﬁ:2dF($}—2ﬁ-p+ﬂ2 1
%

- [ #dF(@) - 2,
R

or equivalently,

Var(X) = L z’ f(z)dz — 12,

where i is the expected value of X given by

Ju,:jﬁ; a:_f[m}dm:/";:ch{m}.




: e 2 e o - .
BX =) = E(X*—2Xp+p) ym variable X 1s defined as
= FE(X*) —2E(X)p+ E(i?)

= E(X?) —2p* +p?

/ - B
= E(X*)—u° Var{X) = 0" = [(J' - u)° flz)dz
= E(X?) — E(X)? "‘

? - */:_:f?f(ﬂdr. ?-JILII(I)({I -;F/H/(I)dx
— E(X "“') L E(k /R,_r'.'dF(.r) 2,;[31-,(”:(:} : p'.'/I; dF(z)

On simplification, *

= [ 2 dF(z) = -t g
WL =V(X):--u'-E}(2)-----122 /
X] = E[(X - E[X])"] [ 2 dF(z) - i,
8 =EX’ -2xEIX1+ EX)Y) AP ESEPE)
= EIX’] - 2E[XE[X]] + E[X]*
= E[X"] - 2E[X]E[X] + EIX]* L(X)
= E[X* - E[X1* =




Definition [edi]

Throughout this article, boldfaced unsubscripted X and Y are used to refer fo random vectors, and unboldfaced subscripted X and ¥;
are used fo refer to scalar random variables.

If the eniries in the column vecior
T
X= (-XIJX'Z:* o :-Xﬂ)

are random variables, each with finite variance and expecied valug, then I@wanaﬂce Mmairix KK}{\\Tihe mairix whose {i, j} eniry is the
covariancelkp. 177 N =

¢=§

KXIIJ' = CDV[.XT;,X;,': = E[{X;., - E[.XJ[XE - E[XJ])]

where the operaior E denotes the expecied value (mean) of its argument.

Conilicting nomenclatures and notations [edit]

Nomenclatures differ. Some statisticians, following the probakbilist William Feller in his two-volume book An infroduction to Probability
Theory and fis A;}pﬂcatr'ﬂns,[zl call the mafrix Kyy the variance of the random vector X, because it is the natural generalization to higher
dimensions of the 1-dimensional variance. Others call if the covariance matrix, because it is the matrix of covariances befween the scalar

components of the vector X.
var(X) = cov(X, X) = B[(X - E[X])(X - B[X])"].

% _—

o, = E[(x— ﬂx)( =

Sample points from a bivariate
(3aussian distribution with a standarg
deviation of 3 in roughly the lower [eft
upper right direction and of 1in the
athogaonal direction. Because the ¥
and y components co-vary, the
variances of z and y do not fully
describe the distribution. A2 x 2
covariance matrix is needed; the
directions ofthe arrows correspaond t
the eigenvectors of this covariance
matrix and their lengths to the square
roots ofthe eigenvalues.

N

Both forms are quite standard, and there is no ambiguity between them. The mairix K}(X I5 also ofien called ’[féﬂn”fﬂﬂﬂ&-ﬂﬁ'ﬂﬂﬁﬂﬂﬂ& matrr‘;nys’nte the diagonal ferms are in fac

~

§=

variances. =

By comparison, the notation for the cross-covariance matrix befiveen two vectors is

cov(X, Y) = Kxy = B[(X - BIX])(Y - E[Y))"].




Basic properties

For Kxx = var(X) = E|(X - E[X]) (X - E[X])" | and yx = B[X], where X = (X, ..., X,)" is an-dimensional rancom variable, the
following basic properties apply1*

T T
1. Kxx = B(XX") - pxux
2 Kyy is positive-semidefiniie, ie.a’ Kyx a >0 forallae B
3. Kxy is symmeiric, ie. Ky = Kxx
4. For any consiant (.. non-random) m. X n mairi A and constantm x 1 vector &, one has var(AX +a) = A var(X) A"

5.11'Y i another random vector wih ihe same dimension as X, then var{X + Y) = var(X) + cov(X,Y) + cov(Y, X) + var(Y)
where cov(X, Y) is the cross-covariance matrix of X and Y.

For random veciors X and Y, each coniaining random elemenis whose expecied
value and variance exisi, ihe cross-covariance matrix of X and Y is defined
D}r[“lj:p.ﬁ-ﬂﬁ

Kxy = cov(X,Y)E B[(X — px)(Y — py)?] (EQ1)

where py = E[X] and pv = E[Y]| are veciors containing the expected values of
X and Y. The vectors X and ¥ need not have the same dimension, and either might be a scalar value

The cross-covariance matrix is the matrix whose (4, 7) entry is the covariance

Kx,v; = cov[X;, ¥;] = B[(X; — E[X;|{{Y; — B[Y;])]




For the cross-covariance marix, the following basic properies apply:l

1.eov(X,Y) = BXY") - pxpy”

2. cov(X,Y) = cov(Y,X)T

3. cov(X; + X, Y) =cov(X;, Y} + cov(X,, Y)

4. cov(AX +a,B7Y +b) = 4 cov(X,Y) B

5.1F X and Y are independent (or somewhat less restrictedly, if every random variable in X is uncorrelated with every random
variable in Y), then cov(X,Y) = O,

where X, X; and X are random p x 1 vectors, Y is a random g x 1 vector, aisag % 1 vecior, bisap x L vecior, 4 and B
are ¢ x pmatrices of constants, and Oy, 15 ap % g mafrix of zeroes.

Given a sample consisting of n independent observations xq,..., X, of a p-dimensional random vector X e Re*! (a px1 column-vector), an unbiased estimator of the (pxp)
covariance matrix

% = B|(X - BIX) (X - B[])"

5 the sample covariance matrix

Q= Z{'T'i z){(z; — -ﬁ

n—1

where x; is the Hh observation of the p-dimensional random vector, and the vecior

s the sample mean. This is frue regardless of the distribution of the random variable X, provided of course that the theoretical means and covariances exist. The reason




Which matrices are covarlance matrices?

let b be a (p x 1) real-valued vector, then

var(b?X) = bT var(X)b,

— _—

which must always be nonnegative, since it is the variance of a real-valued random variable, so @vanance matrix is always a positive-semidefinite matriy.
)

E——

The above argument can be expanded as follows:

" B[(X - BIX])(X - E[X))"]w = E[u" (X - E{X])(X - E[X]}"u]
=B [(u"(X-B{X))"] >0,

where the last inequalit folows from the observation that w” (X — B[X]) is a scalar

ES e —1

Conversely(ery symmetric positive semi-definite matrix is a covariance malanc- see this, suppose M is ap X p symmetric positive-semidefinite mafrix. From

=

the finite- dlmensmnal case GfTsp‘i"aIWre‘_t toows Tiat M has 2 nonnegative symmetric square root, which can be denoted by M2 Let X be anyp X 1
column vector-valued random variable whose covariance matnx is the p X p identity matrix. Then

var(MY2X) = MY? var(X) MY? =

E[5(X - ELXT)(X - E[X])73]
BE{(X — E[X])(X — B[X])" 167
BVar[ X5




PROB. & STAT. - Revisited/Contd.

A n n
Sample mean is defined as: X = Z x.P(x.) g l Z X, where,
l l l
' P(x)) = 1/n.
: : 5, A3
Sample Varianceis: O, = — Z (xl. = )C)
nojo

N3 N4
Higher order moments may also be computed: E(xl. 5 x) . E(xl. ¥ x)

Covariance of a bivariate distribution:

o, =El(x—p)y—-u,)l= Z(x 0)(y—)



Second, third,... moments of the distribution p(x) are the expected values of:
X2, x3,...

The kth central moment is defined as: s
E[(x—u,)" 1= (x— 1) P(x;)
i=1

Thus, the second central moment (also called Variance) of a random variable x is

T o= Elix-E@)Y 1= A(x- )]
o= E[{x—E®P]= El(x— )]
= E(x")=2u; +p; = E(x*)— i,
Thus

E(x))=0’+u’

If z is a new variable: z= ax + by; Then E(z) = E(ax + by)=aE(x) + bE(y).



The first four standardized moments can be written as:

Degree
k

Comment

The first standardized moment 1s zero, because the first

moment about the mean is always zero.

3 The second standardized moment is one, because the
B|(X - u)?]

second moment about the mean is equal to the variance

T E(X - p)

a2,

The third standardized moment is a measure of
(E[(X — p)?])3/? skewness.

E[(X — p)*]
(B[(X — p)2])v/?

The fourth standardized moment refers to the kurtosis.




M ( } E[ i_]'_'] fm o E_:QJ.I'E dm
t) = e = e =
The n * z—o0 V2w ion
MI (= /- W (T T ) 2172 y 2/ o0 E—{z—t}‘l /2 .
3 T =g S —
I——00 1,-"2?1’ T——0 '1.,-"2‘?1'

But this last integrand is a normal density with mean # and variance 1, thus integrates to 1. Henese

Mx(2) = ' /2.
We s; x() =e hat

YA A lso. note tha

E[X*] = [—dﬁMﬂt] ] ;

dt‘i':
so let's ealeulate suceessive derivatives:

MY (t) = tet /2

MY(E) = €2 + et 2 — (1 +12)e/2
MY (£) = 2tet 12 + (1 + £2)tet' 2 = (3t + %)t 2
M () = (3+32)e"/2 + (382 + 1982 = (3 + 662 + 1)/,

and it is fairly easy to continue this. Now simply evalnate all of these at £ = 0 to get

E[X]| =0
E[X% =1
E[X* =0
E[X?* =3




MAXIMUM LIKELIHOOD ESTIMATE (MLE)

The ML estimate (MLE) of a parameter is that value which, when substituted
into the probability distribution (or density), produces that distribution for which
the probability of obtaining the entire observed set of samples is maximized.

Problem: Find the maximum likelihood estimate for u in a normal distribution.
1 1 N ,Ll 2

p(x) = exXplr— (=)o

O~N27 2

Assuming all random samples to be independent:

Normal Density:

= : nl2 eXp[— 1 Zn:(x_lu)z]

o (27) o oo
Taking derivative (w.r.t. L) Setting this term = 0, we get:
of the LOG of the above: ¥
Jin 2 (o 1 S
QZ(xi_;u)-zz_z[zxi_nlu] ,U:—Z)Cl- =X
200 o (=" n .,

Also read about MAP estimate - Baye’s is an example.









E[E[X|Y:;Z||Y = y]. E[X|Y;Z] is a random variable. Given that ¥ = v, its possible
values are E|X|Y = y; Z = z|] where z varies over the range of Z. Given that Y = y, the

probability that E|X|Y; Z] = BF|X|Y =y, Z = z] 13 just P(Z = z|Y = y). Hence,
E[EX|Y;ZIlY =y] = ) EIX|Y =y, Z=2P(Z=:z]Y =y)

= Y Y aP(X=z|Y =y, Z=2)P(Z=2zY =y)

5 PX=zY=yZ=2P(Z=2Y =y)
— -
PY =y,Z =2z2) P(Y =y)

Z,T

B PX=zY=y2=2)
=2 P(Y =y)

Z,T

B PX =2zY =y)
- L P(Y =y)

I

= Z xP(X =z|Y =y)

o = EX =y

(v) E[EIX|Y]| = E|X]

(vi) E|Xg(Y)|Y] = g(Y)EX|Y]. In particular, |[E[g(Y)|Y] = g(Y).
(vii) BIX]Y,g(Y)| = E[XY]

tiii) E[EIX|Y. Z||Y] = E[X|Y




EEX|Y:Z]|]Y = y|. E[X|Y;Z|is a random variable. Given that Y = y, its possible
values are B|X|Y =y; Z = 2| where z varies over the range of Z. Given that Y =y, the
probability that E[X|Y;Z] = E|X|Y =y; Z = z] is just P(Z = z|Y = y). Hence,

BIEIX)Y;Z)|Y =y] = ) EIX|Y =y,Z=2P(Z=2]Y =y)

Y Y aP(X=z]Y =y,Z=2)P(Z=2Y =y)

Z PX=zY=yZ=2)P(Z=2
= i

PY =y,Z =2)

Z,T

PX=2Y=y 7=z
L P(Y =y)

Z,T

PX=zY =y
- Le P(Y =y)

I

Y aP(X =alY =y)

EIX]Y =y




Sampling Distributions

http://grid.cs.gsu.edu/~skarmakar/math1070 slides.html



What are the main types of sampling and how is each done?

Simple Random Sampling: A simple random sample (SRS) of size
n is produced by a scheme which ensures that each subgroup of the
population of size n has an equal probability of being chosen as the
sample.

Stratified Random Sampling: Divide the population into "strata".
There can be any number of these. Then choose a simple random
sample from each stratum. Combine those into the overall sample.
That is a stratified random sample. (Example: Church A has 600
women and 400 women as members. One way to get a stratified
random sample of size 30 is to take a SRS of 18 women from the
600 women and another SRS of 12 men from the 400 men.)

Multi-Stage Sampling: Sometimes the population is too large and
scattered for it to be practical to make a list of the entire population
from which to draw a SRS. For instance, when the a polling
organization samples US voters, they do not do a SRS. Since voter
lists are compiled by counties, they might first do a sample of the
counties and then sample within the selected counties. This
illustrates two stages.

<* SRC: WIKI *>



In statistics, a simple random sample is a subset of
individuals (a sample) chosen from a larger set (a population). Each
individual is chosen randomly and entirely by chance, such that
each individual has the same probability of being chosen at any
stage during the sampling process, and each subset of k individuals
has the same probability of being chosen for the sample as any
other subset of k individuals. This process and technique is known
as simple random sampling, and should not be confused with
systematic random sampling. A simple random sample is an
unbiased surveying technique.

Systematic sampling (Sys-S) is a statistical method involving
the selection of elements from an ordered sampling frame. The most
common form of systematic sampling is an equi-probability method. In
this approach, progression through the list 1s treated circularly, with a
return to the top once the end of the list is passed. The sampling starts
by selecting an element from the list at random and then every k-th
element in the frame 1s selected, where £, the sampling interval
(sometimes known as the skip): this 1s calculated as: k&= N/n
where 7 1s the sample size, and N 1s the population size.



Systematic sampling (Sys-S) Example: Suppose a supermarket
wants to study buying habits of their customers, then using systematic
sampling they can choose every 10th or 15th customer entering the
supermarket and conduct the study on this sample.

This 1s random sampling with a system. From the sampling
frame, a starting point is chosen at random, and choices thereafter are at
regular intervals. For example, suppose you want to sample 8 houses
from a street of 120 houses. 120/8=135, so every 15th house 1s chosen
after a random starting point between 1 and 15. If the random starting
point 1s 11, then the houses selected are 11, 26, 41, 56, 71, 86, 101, and

116.



Sampling With Replacement and Sampling Without Replacement

Consider a population of potato sacks, each of which has
either 12, 13, 14, 15, 16, 17, or 18 potatoes, and all the values are
equally likely. Suppose that, in this population, there is exactly one
sack with each number. So the whole population has seven sacks.

Sampling with replacement:

If I sample two with replacement, then I first pick one (say
14). I had a 1/7 probability of choosing that one. Then I replace it.
Then I pick another. Every one of them still has 1/7 probability of
being chosen. And there are exactly 49 different possibilities here.

Sampling without replacement:

If I sample two without replacement, then I first pick one (say
14). I had a 1/7 probability of choosing that one. Then I pick another.
At this point, there are only six possibilities: 12, 13, 15, 16, 17, and
18. So there are only 42 different possibilities here (again assuming
that we distinguish between the first and the second.)



Sampling distribution

* The sampling distribution of a statistic (not
parameter) 1s the distribution of values taken by
the statistic (not parameter) in all possible
samples of the same size from the same
population.







Both equations vou wrote are false in general.

« B[X |Y]# EE|X|Y,Z]. Instead, B|X]| = E|E[X | Y, Z]]. In general, the law of total
expectation says that

E|E[X | anything|] = FX]

« E[E|X|Y]| Z] # E[X|Y]. The two sides are not related at all in general, since E[E[X|Y] | Z]
is a funetion of Z, while E[X|Y] is a funetion of Y.

(One thing vou can say is that
ElEX|Y,Z]| 2] = E|X | Z] (1)
This follows from a general fact that for o-algebras Fgpay and Jyp such that Fopay C Fjg, then

BlEIX | Faman| | Frig] = BEIX | Frig] | Foman] = E|X | Feman]

You use this to prove (1) by letting Fopan = o Z) and Fe = o(Y, Z).




LlEA | Y, 4] | 4] = BIA | 4] 1)
This follows from a general fact that for o-algebras Fagan and Fe such that Fagan C Foga, then
E[B[X | Fenan] | Frig] = E[E[X | Foig] | Feman] = E[X | Feman]
You use this to prove (1) by letting Faman = o(Z) and Fi = o(Y, Z).

Alternatively, we ean give a proof of (1) in the special case where (X, Y, Z) are jointly continuous,
with a pdf f(z, v, 2):

fif[if,ylﬂjdm
[ flz,y,2)dz ’

EX|Y=y,2==z=

i}

E[E[X[Y,z=g]|g=zl=f [z- f(z,y,2)dz

[ iz, y,z)dz - fz, v, 2) dee dy
[ ([enemarm) s

—f/ﬂ?' flz,y) de dy

— E[X|Z =

You can give a similar proof in the case where X, Y, Z are jointly discrete, with a joint probability
mass function f(z,y,z) = P(X =z,Y =y, £ = z), for (z, v, z) ranging over some eountable

support set. Basieally, you do this by replacing [ with % in the proof above.




Sampling Distribution
Introduction

* |n real life calculating parameters of
populations is prohibitive because
populations are very large.

» Rather than investigating the whole
population, we take a sample, calculate a
statistic related to the parameter of interest,
and make an inference.

* The sampling distribution of the statistic is
the tool that tells us how close Is the statistic

to the parameter.



Sample Statistics as Estimators
of Population Parameters

o TN : A
A sample statistic is a A population parameter
numerical measure of a is a numerical measure of
summary characteristic a summary characteristic

of a population.
_ of a sample. ) orapop y

* An estimator of a population parameter is a sample
statistic used to estimate or predict the population
parameter.

* An estimate of a parameter is a particular numerical
value of a sample statistic obtained through
sampling.

* A point estimate is a single value used as an
estimate of a population parameter.




Estimators

The sample mean, x, 1s the most common
estimator of the population mean, .

The sample variance, s°, is the most common
estimator of the population variance, o=.

The sample standard deviation, s, 1s the most
common estimator of the population standard
deviation, O:

The sample proportion, p, 1s the most common
estimator of the population proportion, p.




Sampling Distribution of ¥

* The sampling distribution of X is the
probability distribution of all possible values
the random variable X may assume when a
sample of size n is taken from a specified

population.



Sampling Distribution of the Mean

 An example

— A die is thrown infinitely many times. Let X
represent the number of spots showing on

any throw.
— The probability distribution of X is

E(X)=1(1/6) +
X 11273714576 2(1/6) + 3(1/6)+

p(x) | 1/6|1/6 | 1/6 | 1/6| 1/6| 1/6

V(X) = (1-3.5)2(1/6) +
(2-3.5)2(1/6) +




Throwing a dice twice — sampling
distribution of sample mean

* Suppose we want to estimate u
from the mean x of a sample of
Size n = 2.

« What is the distribution of X ?



Throwing a die twice — sample

mean
Sample Mean |Sample Mean [Sample Mean
1 1,1 1 13 3,1 2 25 5,1 3
2 1,2 1.5 14 3,2 25 26 5,2 3.5
3 1,3 2 15 3,3 3 27 5,3 4
4 1,4 2.5 16 3,4 3.5 28 5,4 4.5
5 1,5 3 17 3,5 4 29 5,5 5
6 1,6 3.5 18 3,6 4.5 30 5,0 9.5
14 2,1 1.5 19 4,1 2.5 31 6,1 3.5
8 2,2 2 20 4,2 3 32 6,2 4
9 2,3 2.5 21 43 3.5 ES 6,3 4.5
10 2,4 3 22 4.4 4 34 6,4 5
11 25 3.5 23 45 45 35 6,5 5.5
12 2,6 4 24 4.6 5 36 6,6 6

-




Sample Mean |[Sample Mean |Sample Mean
1 1 13 31 2 25 5,1 3
m.5 14 32 25 | 26 52 35
3 1,3 / 2 15 33 3 27 53 | 4
¢ 5
o, °
E X .9
Nate U= and O-=-—*7
4
< B 2 5
10 24 3 22 M4/ 4 / 5
11| 25 35 3 5/ 4.5 5.5
12| 26 4 6/ 5 6

6/ Bt / I

1 5(2/36) =35

50, /
\ / V(X) = (1.0-3.5)2(1/36)+

4136 \ / (1.5-3.5)2(2/36)... = 1.46
3/36 .

W
2136 \
1/36 _

1 [15[120] 25| 30| 35 40| 45/ 50 55 60/ X




Sampling Distribution of the

Mean
n=>95 n=10 n=25
i, =3.5 w, =35 i, =3.5

2 2

2 c, o o
oy =.9833 (=) 62 =.2917 (= =) o2 =.1167 (= X)
SR X 10 25




Sampling Distribution of the

Mean
n=>5 n=10 n=25
w, =3.5 Uy =3.9 W, =3.5
2
o2 =.5833 (= G_i) o =.2917 (= =X o: =.1167 (=
o 5 10

Notice that o2 is smaller than o,
The larger the sample size the
smaller o2 . Therefore, X tends
to fall closer to u, as the sample
size increases.



Relationships between Population Parameters and
the Sampling Distribution of the Sample Mean

The expected value of the sample mean is equal to the population mean:

The variance of the sample mean is equal to the population variance divided by
the sample size:

The standard deviation of the sample mean, known as the standard error of
the mean, 1s equal to the population standard deviation divided by the square
root of the sample size:




Law of Large Number

LAW OF LARGE NUMBERS

Draw observations at random from any population with finite mean .
As the number of observations drawn increases, the mean X of the
observed values gets closer and closer to the mean p of the population.




How sample means approach the population mean
(U=25).

Mean of first n observations

1 1 1 1 1 1 1
1 5 10 50 100 500 1000 5000 10,000
Number of observations, n



Example

- what would happen 1n many samples?

The distribution of all
the x's is close to Normal.

Take many SRSs and collect
their means x.

SRS size 10 w

— Xx=2642

SRS size 10

— X =24.28

SRS size 10

—x=25.22

Population,
mean UL =25




Recall Some Features of the Sampling Distribution

e It will approximate a normal curve even 1f the
population you started with does NOT look
normal

« Sampling distribution serves as a bridge between
the sample and the population



Mean of a sample mean x

First Property: The Mean

* The mean of the sampling distribution of
the mean equals the mean of the population




Standard Deviation of a sample mean

Second Property: The Standard
Error

* The standard error of the mean 1s an
approximate measure of the amount by
which sample means deviate from the

population mean

X



Third Property: Sample Size and the
Standard Deviation

» The larger the sample size, the smaller the

standard deviation of the mean X

Or

* As n increases, the standard deviation of the
mean decreases



Example

* Population standard deviation =100
o 100

Forn=10, 0, =—=—==31.62
X =m0
o 100
Forn=100, o, = = =10.00
X n V100

o 100
— = =3.16
~n o +1000

Forn=1000, oy =



Sampling distribution of a sample mean x

e Definition: For a random variable x and a given sample
size n, the distribution of the variable X , that is the
distribution of all possible sample means, 1s called the
sampling distribution of the sample mean.



Sampling distribution of the sample mean

» Case 1. Population follows Normal
distribution
— Draw an SRS of size n from any population.
— Repeat sampling.
— Population follows a Normal distribution with
mean p and standard deviation .

o/ — Sampling distribution of X follows normal
distribution as follows: N(u, 6/\n ).



Example
(The population distribution follow a Normal
distribution, then so does the sample mean)

The distribution of Means x of 10 subjects

sample means is — /

less spread out.




The central limit theorem

CENTRAL LIMIT THEOREM

Draw an SRS of size n from any population with mean & and finite
standard deviation o. When n is large, the sampling distribution of the
sample mean X is approximately Normal:

X is approximately N (u,,

This theorem tells us:

1.

Small samples: Shape of sampling distribution is
less normal

2. Large sample: Shape of sampling distribution is

more normal.



Sampling distribution of the sample mean

* Case 2. Population follows any distribution
(CLT: Central limit theorem)

— Draw an SRS of size n from any population.
— Repeat sampling.

— Population follows a distribution with mean n
and standard deviation o.

— When n is large (n>=30), sampling dist of X
follows approximately Normal distribution as
follows N(u, o/\n ).



The Central Limit Theorem

When sampling from a population
with mean |l and finite standard
deviation ¢, the sampling
distribution of the sample mean will
tend to be a normal distribution };vith
mean |l and standard deviation | as

the sample size becomes large
(n >30).

For “large enough” n: X~M0 /n)

1 §015 T
010 7

00

§01_

00 ~

03 7

01 7
a0 ™




The Central Limit Theorem Applies to
Sampling Distributions from Any Population

Population

Normal

Uniform

Skewed General

A
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Nl ™Y
N
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Student’s f Distribution

If the population standard deviation, G, 1s unknown, replace ¢ with
the sample standard deviation, s. If the population 1s normal, the
resulting statistic: _X-u

s/~/n

has a t distribution with (n - 1) degrees of freedom.

expected value of tis 0.

ariance of t is greater than 1, b
oaches 1 as the number of deg

lom increases.

t distribution approaches a stan
al as the number of degrees of
Jom increases.




Sampling Distributions

Finite Population Correction Factor

If the sample size is more than 5% of the
population size and the sampling is done
without replacement, then a correction needs
to be made to the standard error of the

Mmeans.

o =2 e N—n
“ Jn VN-=-1




Sampling Distribution of

Standard Deviation of

Finite Population Infinite Population

O'=(O-) N—n O_=£
* VN =1 * n

* A finite population is treated as being
infinite if n/N < .05.

e _/(N-n)/(N-1)is the finite correction factor.

* 0. isreferred to as the standard error of the
mean.




The Sampling Distribution of the Sample
Proportion, p

5 1n # binomial trials. It is th ~
f successes, X, divided by t

[ |
=/
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. X 0.3
Sample proportion: p=—
n
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