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Maximum Likelihood Estimation (MLE)

Basic Idea:

Maximum likelihood estimation is a method that determines values for the parameters of a model. The
parameter values are found such that they maximise the likelihood that the process described by the
model produced the data that were actually observed.

Example: Suppose there are 10 data points. For example, each data point could represent the
length of time in seconds that it takes a student to answer a specific exam question. These 10 data
points are shown in the figure below:

First task: which model best describes the observed
data?

For given data, the data generation process can be
adequately described by a Gaussian (normal)
distribution

Gaussian distribution parameters: mean p and
standard deviation o. Different values of these
parameters result in different curves.
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The true distribution from which the data were generated was
f1 ~ N(10, 2.25), which is the (f1) curve in the figure above.

Intuitive definition: Maximum likelihood estimation is a method that will find the
values of p and o that result in the curve that best fits the data.



Definition of the MLE

The ML estimate of a parameter is that value which, when substituted into the probability

distribution (or density), produces that distribution for which the probability of obtaining
the entire observed set of samples is maximized.

i.e., By, is the value of parameter 6 that maximizes the “Likelihood Function” p(X|8) for the specific measured
data X

p(X| 6) 6,,, maximizes the likelihood function
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Note: Because In(z) is a monotonically increasing function...

éML maximizes the log likelihood function In{p(X|8)}




General Analytical Procedure to Find the MLE

1. Find log-likelihood function: In p(X|8)
2. Differentiate w.rt 8 andsetto0: dlnp(X|0)/30 =0

3. Solve for 8 value that satisfies the equation.

Some examples of model and their unknown parameters:

“ Distribution Unknown parameters
(0s)

1 Binomial distribution n, p
2 Poisson distribution A
3 Geometric distribution p

4 Normal distribution u o



MLE for Gaussian Distribution

For the case of a single real-valued variable x, the Gaussian distribution is defined as:
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Suppose we have a data set of observations x = (xq, - -+ xy)T, representing N observations of the scalar variable x.

Data set xis i.i.d., Note: Data points that are

drawn independently from the
same distribution are said to be
independent and identically
distributed (i.i.d.)

Thus, we can write the probability of the data set, given u
and &2, in the form:

N
p(X|p, 0%) = H\ (.1',,[/1.0"’)
n=1

Likelihood function for the Gaussian



The log likelihood function can be written in the form:

Similarly, maximizing with respect to a2, we obtain the maximum likelihood solution for the variance in the
form




Example : Suppose that X is a discrete random variable with the following probability
mass function: where 0 < # <1 is a parameter. The following 10 independent observations

| X 1 2 3 |
P(X) [20/3]6/3[20-0)/3|(1-0)/3

were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1). What is the maximum likelihood
estimate of 6.

Solution: Since the sample is (3,0,2,1,3,2,1,0,2,1), the likelihood is

L(8) = P(X =3)P(X =0)P(X =2)P(X = 1)P(X = 3)
x P(X=2)P(X=1)P(X =0)P(X =2)P(X =1)

Substituting from the probability distribution given above, we have

L(9) = ﬂp(ma) _ (ﬁf) (g) (2(13—4’:’))" (1%6)

Clearly, the likelihood function L(#) is not easy to maximize.




Let us look at the log likelihood function

I(6) = logL Zlnn (X;]6)

- 2
2 (Iug% + log 8) + 3 (h]g% + log 9) + 3 (lug 3 + log(1 - 9)) + 2 (log% + log(1 — 9))
C' +5logt+ 5log(1 - 0)

where (' is a constant which does not depend on 6. It can be seen that the log likelihood
function is easier to maximize compared to the likelihood function.

Let the derivative of [(f) with respect to 6 be zero:

and the solution gives us the MLE, which is # = (.5.




Example : Suppose Xp, Xo, -+, X, are i.i.d. random variables with density function

f(z|o) = 5-exp (— ﬂ), please find the maximum likelihood estimate of o.

a

Solution: The log-likelihood function is

mn

GEDY l— log2 —log o —

i=1

Let the derivative with respect to 6 be zero:
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and this gives us the MLE for ¢ as
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