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CLASSIFICATION AND REGRESSION TREES

* In the example given in previous slide, the first step
divides the whole of the input space into two regions
according to whether x; < 64 or x; > 0; where 8, is a
parameter of the model.

* This creates two sub regions, each of which can then be
subdivided independently.

* For instance, the region x; < 6, is further subdivided
according to whether x, < 8, or x, > 0,, giving rise to
the regions denoted A and B.

* For any new input x, we determine which region it falls
into by starting at the top of the tree at the root node
and following a path down to a specific leaf node
according to the decision criteria at each node.



CLASSIFICATION AND REGRESSION TREES

* Within each region, there is a separate model to predict
the target variable.

* For instance, in regression we might simply predict a
constant over each region, or in classification we might
assign each region to a specific class.

* EXAMPLE: For instance, to predict a patient’s disease, we
might
* first ask “is their temperature greater than some threshold?”. If
the answer is yes, then

* we might next ask “is their blood pressure less than some
threshold?”.

Each leaf of the tree is then associated with a specific
diagnosis.



CLASSIFICATION AND REGRESSION TREES

* Consider first a regression problem in which the goal is
to predict a single target variable t from a D-dimensional
vector X = (x4,...,xp)! of input variables.

* The training data consists of input vectors
{X41,...,Xy} along with the corresponding continuous

labels {t{,..., ty}.

* If the partitioning of the input space is given, and we
minimize the sum-of-squares error function, then the
optimal value of the predictive variable within any given
region is just given by the average of the values of t,, for
those data points that fall in that region.



Hastie Sec. 9.2 - Also Murphy Sec. 16.2




Regression Trees — popular method for tree-based
regression and classification called CART

We choose the variable and split-point to achieve the best fit. Then one
or hoth of these regions are split into two more regions, and this process
is continued, until some stopping rule is applied. For example, in the top
right panel of Figure 9.2, we first split at Xy = #1. Then the region X; <t
is split at X5 = f5 and the region X > #; is split at X; = f3. Finally, the
region X > f3 is split at X, = f4. The result of this process is a partition
into the five regions Hy, Hs, ..., Hs shown in the figure. The corresponding
regression model predicts ¥ with a constant e, in region H,,, that is,

=

LS|

f{X} — Z ’f-mf{[xl-.xi} = Hm}- (9.9)

m=1

This same model can be represented by the binary tree in the bottom left
panel of Figure 9.2, The full dataset sits at the top of the tree. Observations
satisfying the condition at each junction are assigned to the left branch,
and the others to the right branch. The terminal nodes or leaves of the
tree correspond to the regions FHy, Hs, ..., 5. The bottom right panel of
Figure 9.2 is a perspective plot of the regression surface from this model.




Ry Hg

FIGURE 9.2, Partitions and CART. Top right panel shows a partition of a
two-dimensionel feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top lefi panel shows a general partition that cannot

be obtained from recursive binary splitting. Bottom left panel shows the tree cor
responding to the partition in the top right panel, and a perspective plot of the
prediction surfoce appears tn the bottom right panel




(a)

Figure 16.1 A simple regression tree on two inputs. Based on Figure 9.2 of (Hastie et al. 2009)



9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of NV observations: that is,
(zi,y:) for ¢ = 1,2,...,N, with z; = (241,%42,...,24p). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that we

have a partition into M regions Ri, Ha, ..., Ry, and we model the response
as a constant ¢, in each region:

N
f(z)=) enl(z € Rp). (9.10)




Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable 7 and
split point s, and define the pair of half-planes

1(7,8) = {X|X; <s} and Ry(j,s)={X|X; > s}. (9.12)

Then we seek the splitting variable § and split point s that solve

'[mcin Z (y; — ¢1)* + min Z {:y{.—ﬂg]g]. (9.13)

o

s 8 _ :
zi S Ra(7,5) TsERa(7,s)




Having found the best split, we partition the data into the two resulting
regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.

Tree size is a tuning parameter governing the model’s complexity,
and the optimal tree size should be adaptively chosen from the data. One
approach would be to split tree nodes only if the decrease in sum-of-
squares due to the split exceeds some threshold. This strategy is too
short-sighted, however, since a seemingly worthless split might lead to a
very good split below it.

The preferred strategy is to grow a large tree TO, stopping the
splitting process only when some minimum node size (say 5) is reached.
Then this large tree is pruned using cost-complexity pruning, which we
describe later



9.2.3  Classification Trees

If the target is a classification outcome taking values 1,2,..., K, the only

hanges needed in the tree algorithm pertain to the criteria for splitting

classification. In a node m, representing a region A, with NV, observations,
let

.1 n
Pk =5~ ), 10 =F),

EﬁERm

the proportion of class & observations in node m. We classify the obser-
vations in node m to class k(m) = arg maxy, Pr,;, the majority class in
node m. Different measures J,,(1') of node impurity include the following:

Misclassification error: ﬁ > icr, LW # k(M) =1 — Prak(m).

" " o. M, ) .FI:- My M,
(zini index: Eﬁ;;’:ﬁ;f PmkPmkr = Eﬁ.::l pmk(l — P'.Ink,)'

. K \
Cross-entropy or deviance: —> 1 Dmk 10g Dk

(9.17)



ations in node m to class k(m) = argmaxy Ppp, the majority class in
10de m. Different measures ¢),,(1") of node impurity include the following:

Misclassification error: ﬁ Y icr. LW Fk(m)) =1 — Prk(m)-
Gini index: > et Dk Dbt = D g Proke(1 — D).

Cross-entropy or deviance: — Ele Dk 108 Dk

(9.17)
or two classes, 1f p is the proportion in the second class, these thres mes-
sures are 1 — max(p,1 - p), 2p(1 — p) and —plogp — (1 - p)log (1 - p),

%’ .

PLOT THEM




Algorithm Recursive procedure to grow a classification/ regression tree

| function ftTree(node, D, depth) ;

2 node.prediction = mean(y; : i € 1) // or class label distribution ;
s (5°,7.D,, D) <GP
4 if@ujurf!z%@ﬁp 1, cost, Dy, Dg) then

return node

Ise

node.test = Ax.z;. < t*

node.left = fitTree(node, Dy, depth+l);
node.right = fitTree(node, D, depth+l);
return node;

Node - Pointer to Root of sub-tree;

D - Tree




The split function chooses the best feature, and the best value for that teature, as follows

(j°,f7)=arg min  mincost({X;,y; : 2ij < t})+ cost({X;,Y; 1 zij > t})
JE{1,.... D} EET;
The function that checks if a node is worth splitting can use several stopping heuristics, such
as the following:

¢ is the reduction in cost too small? Typically we define the gain of using a feature to be a
normalized measure of the reduction in cost:

A cost{ D) — (Mcnst{’ﬂ | + |DR||:DE’E[E'R}) (16.6)

[ D)

has the tree exceeded the maximum desired depth?

is the distribution of the response in either T?;, or Pg sufficiently homogeneous (e.g., all
labels are the same, so the distribution is pure)?

is the number of examples in either T, or D'p too small?




Regression cost

In the regression setting, we define the cost as follows:

cost(D) = 3 (3 — 7)°

il

Classification cost

In the classification setting, there are several ways fo measure the quality of a split. First, we

fit a multinoulli model to the data in the leaf satisfying the test X; < t by estimating the
class-conditional probabilities as follows:

e = D] Z]I - (16.8)

=T

where T} is the data in the leaf. Given this, there are several common error measures for

evaluating a proposed partition:

» Misclassification rate. We define the most probable class label as §j, = argmax, .. The
corresponding error rate is then

m'Z I(y: #9) =11 (16.9)




* Entropy, or deviance:
H(#)=— ) felogh (16.10)

Note that minimizing the entropy is equivalent to maximizing the information gain (Quinlan
1986) between test X; < £ and the class label ¥, defined by

infoGain(X; <¢,Y) £ H({Y)-H(Y|X; <t) 16.11)
- (— > ply=c}logply = E}) 16.12)
+ (Zp{y = c|X; < t)logp(e]X; < r}) (16.13)

since #. is an MLE for the distribution p{c|X; < ).
o Gini index

i
Y oddl i) =) de— Yy di=1- @7 (16.14)
c=1 s s

c

This is the expected error rate. To see this, note that # . is the probability a random entry in
the leaf belongs to class ¢, and (1 — %, is the probability it would be misclassified.




s Error rate
mm e = Gin




4 4 =
Students = 20
GRCLE _ Gini impurity = 1 - Gini
— a4 =| Play Cricket=10
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Do niotplay =6 Do notplay=4 Gini Impurity: sub-node Above Average:

Prob. play = 0.57
Prob. Not play = 0.43

Prob. play = 0.33
Prob. Not play = 0.67

Weighted Gini Impurity: Performance in Class:
14/20)*0.49 + (6/20)*0.44 = 0.475

Split on Class

Gini Impurity: sub-node Class IX:

1-[(0.8)*(0.8) + (0.2)%(0.2)] = 0.32 A=0.5-0.475 0.5 -0.32

Weighted Gini Impurity: Class:
Gini Impurity: sub-node Class X: " &
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Criteria for Splitting nodes - revisited
anode s split into child nodes.
2
) (X —p)
N

Variance is used for calculating the homogeneity of a node. If a node is entirely homogeneous, then the

Variance =

Variance is Zero.

Here are the steps to split a decision tree using the reduction in variance method:

1. For each split, individually calculate the variance of each child node
2. Calculate the variance of each split as the weighted average variance of child nodes

3. Select the split with the lowest variance

4. Perform steps 1-3 until completely homogeneous nodes are achieved




Information Gain =1 — Entropy

Entropy is used for calculating the purity of a node. The lower the value of entropy, the higher the purity of
the node. The entropy of a homogeneous node is zero. Since we subtract entropy from 1, the Information
Gain is higher for the purer nodes with a maximum value of 1. Now, let's take a look at the formula for

calculating the entropy:

Entropy = — Z p; logs pi
i=1

Steps to split a decision tree using Information Gain:

1. For each split, individually calculate the entropy of each child node
2. Calculate the entropy of each split as the weighted average entropy of child nodes

3. 5elect the split with the lowest entropy or highest information gain

4. Until you achieve homogeneous nodes, repeat steps 1-3




Gene Impurity = 1 — G

Wait — what is Gini?

Giini is the probability of correctly labeling a randomly chosen element if it is randomly

labeled according to the distribution of labels in the node. The formula for Gini is:

I
Gint = E P
i=1

And Gini lmpurity is: e lower the Gini
" Impurity, the higher

Gint Im,pugr*ﬁfy = 1 — pr the homogeneity of
, the node. The Gini
i=] Impurity of a pure

Steps to split a decision tree using Gini Impurity: node is zero.

1. Similar to what we did in information gain. For each split,

individually calculate the Gini Impurity of each child node

2. Calculate the Gini Impurity of each split as the weighted
average Gini Impurity of child nodes

3. Select the split with the lowest value of Gini Impurity

4. Until you achieve homogeneous nodes, repeat steps 1-3
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Figure 16.5 (a) Unpruned decision tree for Iris data. (b) Plot of misclassification error rate vs depth of
tree. Figure generated by dtreeDemoIris.




WHEN TO STOP ADDING NODES

* A simple approach would be to stop when the reduction in
residual error falls below some threshold.

* The most common stopping procedure is to use a minimum
count on the number of training instances assigned to each leaf
node. If the count is less than some minimum then the split is not
accepted and the node is taken as a final leaf node.

 However, it is found empirically that often none of the available
splits produces a significant reduction in error, and yet after
several more splits a substantial error reduction is found.

* For this reason, it is common practice to grow a large tree, using
a stopping criterion based on the number of data points
associated with the leaf nodes, and then prune back the
resulting tree.

* The pruning is based on a criterion that balances residual error
against a measure of model complexity.



WHEN TO STOP ADDING NODES

* If we denote the starting tree for pruning by T,, then we
define T < T, to be a subtree of Ty if it can be obtained
by pruning nodes from T, (in other words, by collapsing
internal nodes by combining the corresponding regions).

e Suppose the leaf nodes are indexed by
T =1,...,|T|, with leaf node T representing a region R
of input space having N, data points, and |T'| denoting
the total number of leaf nodes.

* The optimal prediction for region R is then given by




WHEN TO STOP ADDING NODES

* and the corresponding contribution to the residual sum-
of-squares is then
(27 Z {fn — l/'r

XnER -

* The pruning criterion is then given by
= Q-(T)+AIT|
=il

* The regularization parameter A determines the trade-off
between the overall residual sum-of-squares error and
the complexity of the model as measured by the number
|T| of leaf nodes, and its value is chosen by cross-
validation.



WHEN TO S

* For classification problems, t

OP AD

DING NODES

he process of growing and

pruning the tree is similar, except that the sum-of-squares
error is replaced by a more appropriate measure of

performance.

* If we define p,, to be the proportion of data points in region
R, assigned to class k, where k = 1,..., K, then two
commonly used choices are the cross-entropy

 and, the Gini index

e These both vanish for

Y

maximum at p,;, = 0.5.

Qr (1) =

K

E | E—} Tk 1].1 _'E_} T

=1

K
Qr(T) =) pri (1= pri)
k=1

P = 0and p;, = 1 and have a



Advantages

* The cross entropy and the Gini index are better measures
than the misclassification rate for growing the tree
because they are more sensitive to the node probabilities.

 Also, unlike misclassification rate, they are differentiable

and hence better suited to gradient based optimization
methods.

* The human interpretability of a tree model such as CART
is often seen as its major strength.

Disadvantages

* In practice it is found that the particular tree structure
that is learned is very sensitive to the details of the data
set, so that a small change to the training data can result
in a very different set of splits.



Decision Tree Pruning

Analytics
And

An Example



C dp to be any tree that can
pruning 1p, that is, collapsing any number of its internal (non-terminal)
nodes. We index terminal nodes by m, with node m representing region
R... Let |I'| denote the number of terminal nodes in 7". Letting

we define the cost complexity criterion

[T
Col(T) = D NpQm(T) + alT. (9.16)

m=1
The idea is to find, for each ¢, the subtree T, C 7y to minimize C,(7").
T'he tuning parameter a > 0 governs the tradeoit between tree size and its

goodness of fit to the data. Large values of o result in smaller trees 7, and
conversely for smaller values of a.




Either the Gini index or cross-entropy should be used when
growing the tree.

To guide cost-complexity pruning, any of the three measures can be
used, but typically it is the misclassification rate.

The Gini index can be interpreted in two inferesting ways. Rather than
classify observations to the majority class in the node, we could classify

them to class k with probability p,,. Then the training error rate of this
rule in the node is )’ et Dk Dmir—the Gini index. Similarly, if we code
each ohservation as 1 for class k and zero otherwise, the variance over the
node of this 0-1 response 15 Pmp(l — Ponk). Summing over classes k again

eives the Gini index.
Gini index




X y 2z class
0 0 1 A
= 0 1 1 B
@ 1 O B
0 0 B
=) \ =l 1 1 B
10: A I1:B An example pruning set

4: A 5B =B 8: A

A decision tree with two classes A and B
(with node numbers and class labels)



* The idea is to hold out some of the available
instances—the “pruning set”—when the tree is builg,
and prune the tree until the classification error on
these independent instances starts to increase.

* Because the instances in the pruning set are not
used for building the decision tree, they provide a
less biased estimate of its error rate on future
instances than the training data.



11: B (0)

4: A (0)

x y =z class

0 0 1 A
z=]

0 1 1 B
8: A(l) 110 B

I 0 O B

1 1 1 B



In each tree, the number of instances in
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ANN

or

MLP



Feed-forward Network Functions

* The linear models for regression and classification are
based on linear combinations of fixed nonlinear basis

functions ¢;(x) and take the form

M
yx.w)=f (Z u*jr:j.(x})

j=1
* where f( * ) is a nonlinear activation function in the case
of classification and is the identity in the case of
regression.

* Our goal is to extend this model by making the basis
functions ¢;(x) depend on parameters and then to allow
these parameters to be adjusted, along with the
coefficients {w;}, during training.



i Soma(Cell Bady)
"\I Infromation. Processing

-
!

= I ‘;.r '-.\.1I
Dendrites ‘( . I
(Receivers) }x L
e o "'.‘_“-"'\-.‘___ i

—

— T

dendrites

Svnapses

nucleus {connection with

nther nenrons)

axon
. terminals

in, : S f |.out




Threshold
Summer unit

i
g

Artificial Neuron

w, w, w_w - Weights of Connection

X, X % X -Inputs | b-Bias

1, 2 3 N




inputs

X ]
-Jrz I'_ll'
-'t:; .—I"

-I'” I—h-

weights

activation
functon

net input
ner;

T

—

¢

transfer
function
0,
threshold

—"Gf

activation




[nput layer Hidden layer Output layer




Information Flowr

%

/

v

&

o

;

/

7

A

i

7D

\»_

1= ._dﬁ._#
A

“_.._v‘_
}ﬂ;

L)

’4..

/

g

L

.ﬁf
N

&
v

)y

\

{

\

oirtpat Lasyrer

%
i

S AN
R
bR

N

(active nodes)

[active nodes’)

hidden layer

anpirt lasrer

(passive nodes)




hidden units

Network diagram for the two layer neural network. The input,
hidden, and output variables are represented by nodes, and the weight
parameters are represented by links between the nodes, in which the
bias parameters are denoted by links coming from additional input and
hidden variables x, and z,.

Arrows denote the direction of information flow through the
network during forward propagation.



Feed-forward Network Functions

* The basic neural network model can be described a
series of functional transformations. First we construct M
linear combinations of the input variables x4,...,xp in

the form
HJZZH f,-_,—I—HJUJ

*wherej=1,..., M, and the superscript (1) indicates that
the corresponding parameters are in the first ‘layer’ of
the network.

D

i as weights and the

* We shall refer to the parameters w

parameters W( ) as biases.

jo
* The quantities a; are known as activations.



Let’'s go thru only the sequence of equations
(just the maths, in compact form)

For the derivation of weight update rule,
without much of text-based explanations.

Trailing slides will have the explanations
- “"Directly from the Book” ©

Pl. help yourself, if needed,
as per input from class earlier.
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aj = u"j-f, Tq T E'{"jﬂ <5 = h([f}) k _ ki ~J + kO
i=1 j=1
1
ola) =

i=1

yr = o(ay) o 1 4+ exp(—a) | Mo D
ye(X, W) =0 Z -u:}? h Z -uﬁé?;ﬁé — -u_ + wy, (2}
1

i i M ) | o )
i—0 Uk(X, W) = o Z '3-‘1’,5;}) h Z 'E-E('{}J-’-f-i ~ MLE == Min 9fSSD EF
. . /

N
Z Xn _ tn ‘2-

[\..JII—'

0<y(x,w)< 1 Wecan Interpret : y(x, w) as the conditional pxuhah]l]
plCyfx), w 1t]1 p(Cs[x) given by 1 - y(x, w). The conditional distribution of targets
given inputs is then a Bernoulli distribution of the form — — — — —

w) {1 —y(x.w)}'

P'\'T }'{'
)= AZ {tn Inyn + (1 —tn) (1 —yn)} p(tlx, w) = H uk (6, W) [1 = yr(x, W)]l_tk
I N N k=1
—:_ E:l kzzl tnk In ynk + (1 v tnk) hl( .@fﬂ.ﬁc)} A 4
n= ~ 7 _ _
| ey / Yi(x,w) = p(t = 1]x),
I For K binary Classifiers
I N Using one-hot vector
NLL & Cross-entropy function;| _ Representation;
Better Convergence than the E(w) = — E E ten Ny (X5, W).
SSD-EF n—1 k1 General cross-entropy
T expression




tkn In Yk (Xn-_ W)

wT+D) —

Softmax: =2

w(™ — nVE( (‘r))

yE(X, W) =

expl(ar(x, w))

D> exp(a;(x, W)

J

n — E Ynk —
P 2

/7
/

DE,  OE, da;

(?-wj.l- E'}a.j E'}wji
= Z;

dw j;

O = Yk — ti



_ Okn Z O%n Oai (5.55)
~ Oa; N Day. Da; o
* From equatlon 5.51 which is 5. = Ok,
J — ¢
Uﬂ-j
OEy, Oy
¢ can be written as 6k' . e.,
day, aak
aak
* According to chain rule, a_ —
a;

* From equations 5.48 and 5.49, we have:

2 = }E((.'l.j)* (5.49) = Z Wiz

6ak . aZ]
aZj = ij and h (Cl])

 Substituting (1) and (2) in Egn 5.55 we get

0; = h'(a;) Z WOk

k

= Oy
dar  9zj
aZj aaj



Evaluation of error-function derivatives

Error Backpropagation procedure :

1.{_ Apply an mput vector X, to the network and forward propagate through the network by using

| g= ) wigmdy=ha) |

S
2. Evaluate the 0, for all the output unifs usimg 0, = y, — #, |
r—— 0\ — —
3. Backpropagate the 0’s usmg|d; = h'(a;) Z W0 ffo obtain o for each hidden unit m the network.

e )
C -

| oL, . - .
4. Usg - = 07; lto evaluate the required dertvatives which can be used to update vector w.
w.. ’

|




A simple example

o Consider a two-layer network, together with a sum-of-squares error.

* The outpuf units have linear activation functions, so that y, = a; .

&

A

* The hidden units have logistic sigmoid activation functions given by h(a) = tanh(a) , where tanh(a) = g

Use SIIIll-Gf-S(lllﬂl'ES error function gIVES 1S éﬁc =Vi— fk

K
5}. =(1- Zf) Z ’U»‘kjfsk By using h’(a)
k=1 '

We can obtain the derivative




1/(1+exp(-x)) " (exp(x)-exp(-x))/(exp(x)+exp(-x))

il 10

Gudermannian function

Skip the next
few slides, flz) =gd(x) = f dt =2 arf:tzm(tﬂnh(E
i

cosh f

with material

directly from —ert (o) —
book, piece- —tanh(z)  — Zarctan(Ia)
wise 2gd(34)
explanations o
the Bank of
Eqns. given in
previous few
slides.




Feed-forward Network Functions

e Each of them is then transformed using a differentiable,
nonlinear activation function h( * ) to give

z; = h(a;).

* These quantities, in the context of neural networks, are called
hidden units.

* The nonlinear functions A( = ) are generally chosen to be
sigmoidal functions such as the logistic sigmoid or the ‘tanh’.

* These values are again linearly combined to give output unit
activations M
. — Z -z_z*fj} Zj T a_f_.*i%;'
j=1
where k = 1,...,K,and K is the total number of outputs.

* This transformation corresponds to the second layer of the

network, and again the W,Eg)are bias parameters.



Feed-forward Network Functions

* Finally, the output unit activations are transformed using
an appropriate activation function to give a set of
network outputs .

* The choice of activation function is determined by the
nature of the data and the assumed distribution of target
variables and follows the same considerations as for
linear models.

* Thus for standard regression problems, the activation
function is the identity so that y;,, = a,.

e Similarly, for multiple binary classification problems, each
output unit activation is transformed using a logistic
sigmoid function so that |

ur = o(ax) where o(a) =7 T exp(—a)




Feed-forward Network Functions

* Finally, for multiclass problems, a softmax activation
function is used.

* We can combine these various stages to give the overall
network function that, for sigmoidal output unit
activation functions, takes the form

M D
yr(X, W) =0 (Z -a.z*}i_.}i'e (Z uﬁ}h ;1 ;{] ) + u M}})

j=1 i=1
where the set of all weight and bias parameters have been
grouped together into a vector w.

* Thus the neural network model is simply a nonlinear
function from a set of input variables {x;} to a set of
output variables {y; } controlled by a vector w of
adjustable parameters.




hidden units

Network diagram for the two layer neural network. The input, hidden, and output
variables are represented by nodes, and the weight parameters are represented by
links between the nodes, in which the bias parameters are denoted by links coming
from additional input and hidden variables x,and z,.

Arrows denote the direction of information flow through the network during forward

propagation.



Feed-forward Network Functions

* The process of evaluating

M D
: 2 1 1 2
Yp (X, W) =0 (Z -uri, j} h (Z 'H."E,-i;_};i."?'_ + u"g{]}) - u*iﬂ})

j=1 i=1
can be interpreted as a forward propagation of
information through the network.

* The bias parameters can be absorbed into the set of
weight parameters by defining an additional input
variable x, whose value is clamped at x, = 1, so that :

D
_E : (1)
1=0



Feed-forward Network Functions

* We can similarly absorb the second-layer biases into the
second-layer weights, so that the overall network

function becomes M D
yL(X, W) =0 (Z ﬁ.fﬁj h (Z u*é?m;)) .

j=0 i=0

* If the activation functions of all the hidden units in a
network are taken to be linear, then for any such network
we can always find an equivalent network without
hidden units.

* Neural networks are said to be universal approximators.
For example, a two-layer network with linear outputs can
uniformly approximate any continuous function on a
compact input domain to arbitrary accuracy provided the
network has a sufficiently large number of hidden units.
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lllustration of the capability of a multilayer perceptron to approximate four different
functions comprising (a) f(x) = x2, (b) f(x) = sin(x), (c), f(x) = |x|, and

(d) f(x) = H(x) where H(x) is the Heaviside step function. In each case, N = 50 data
points, shown as blue dots, have been sampled uniformly in x over the interval (-1, 1)
and the corresponding values of f(x) evaluated. These data points are then used to
train a two layer network having 3 hidden units with ‘tanh’ activation functions and linear
output units. The resulting network functions are shown by the red curves, and the
outputs of the three hidden units are shown by the three dashed curves.



Network training

e Given a training set comprising a set of input vectors
{x,}, wheren =1,..., N, together with a corresponding
set of target vectors {tn} for regression, we minimize the
error function

) =95 Z HY (Xn, W) — ‘ :

n=1
* Now consider the case of binary classification in which
we have a single target variable t suchthatt =1
denotes class C; and t = 0 denotes class C,.

* Consider a network having a single output whose
activation function is a logistic sigmoid
1
I 4+ exp(—a)

y=o(a) =

sothat 0 < y(x,w) < 1.



Network training

* We can interpret y(X, w) as the conditional probability
p(C1]x), with p(C3[x) given by 1 — y(x, w).

* The conditional distribution of targets given inputs is
then a Bernoulli distribution of the form
p(tlx, w) = y(x,w)" {1 —y(x,w)} "
* If we consider a training set of independent
observations, then the error function, which is given by
the negative log likelihood, is then a cross-entropy error

function of the form

N
E(w)=—=> {talnyn+ (1—tn)In(1 — yn)}

n=1

where y,, denotes y(X,,, W).



Network training

* Using the cross-entropy error function instead of the
sum-of-squares for a classification problem leads to
faster training as well as improved generalization.

* If we have K separate binary classifications to perform,
then we can use a network having K outputs each of
which has a logistic sigmoid activation function.

* Associated with each output is a binary class label
t, €{0,1}, wherek =1,...,K.

* If we assume that the class labels are independent, given
the input vector, then the conditional distribution of the
targets is K

p(t|x, w) = H i (%, W) [1 = yp(x, w)] ™
k=1



Network training

* Taking the negative logarithm of the corresponding
likelihood function then gives the following error

function
N K

E(W) — Z Z {?L-ﬂﬁc In YUnk T {-]- — f-nﬁc) 11‘1(1 — H-?'z.ﬁc}}

n=1 k=1

where y,,; denotes y; (X,,, W).

* Finally, we consider the standard multiclass classification
problem in which each input is assigned to one of K
mutually exclusive classes.

* The binary target variables t;, € {0, 1} have a 1-of-K
coding scheme indicating the class, and the network
outputs are interpreted as y, (X, W) = p(t;, = 1|x),
leading to the following error function



Network training
Ew)=— Z Zf;m n vy (x,,. w).

n=1 k=1

Geometrical view of the error function E (w)
as a surface sitting over weight space.
Point wy is a local minimum and wgis the
global minimum. At any point w,, the local
gradient of the error surface is given by the
vector VE.



Network training

* The output unit activation function is given by the
softmax function

exp(ag(x,w))

Z exp(a;(x,w))

J

Yk(X, W) =

* which satisfies 0 < y,, < 1and ), vy, = 1.

Outputs
Real Values Probabilities
Output Activation Linear Softmax

Loss Function Squared Error | Cross Entropy




Gradient descent optimization

* The simplest approach to using gradient information is to
choose the weight update to comprise a small step in the
direction of the negative gradient, so that

w(™D = w™ — ) VE(w)
where the parameter n > 0 is known as the learning rate.

» After each such update, the gradient is re-evaluated for
the new weight vector and the process repeated.

* Note that the error function is defined with respect to a
training set, and so each step requires that the entire
training set be processed in order to evaluate IV'E.

* At each step the weight vector is moved in the direction
of the greatest rate of decrease of the error function, and

so this approach is known as gradient descent or steepest
descent.



Gradient descent optimization

* On-line gradient descent, also known as sequential
gradient descent or stochastic gradient descent, makes
an update to the weight vector based on one data point
at a time, so that

w(™ D — w(m) _ I}FE-;--E_{W{T}).



Error Backpropagation

* Our goal in this section is to find an efficient technique for
evaluating the gradient of an error function E (w) for a feed-
forward neural network.

* We shall see that this can be achieved using a local message
passing scheme in which information is sent alternately
forwards and backwards through the network and is known
as error backpropagation, or sometimes simply as backprop.

* We now derive the backpropagation algorithm for a general
network having arbitrary feed-forward topology, arbitrary
differentiable nonlinear activation functions, and a broad
class of error function.

* The resulting formulae will then be illustrated using a simple
layered network structure having a single layer of sigmoidal
hidden units together with a sum-of-squares error.



Error Backpropagation

* Many error functions of practical interest, for instance

t
C
t

nose defined by maximum likelihood for a set of i.i.d.
ata, comprise a sum of terms, one for each data pointin

ne training set, so that

N
E(w) =Y En(w).

n=1

* Here we shall consider the problem of evaluating
VE, (w) for one such term in the error function.

* This may be used directly for sequential optimization, or
the results can be accumulated over the training set in
the case of batch methods.



Error Backpropagation

* Consider first a simple linear model in which the outputs
Vi are linear combinations of the input variables x; so

that
Yk — Z Wi g

together with an error function that, for a particular input
pattern n, takes the form

T'.t — 2 E Ynk — nk

where, Vo, = Vi (X4, w).
The gradient of this error function with respect to a
weight wj; is givenby  oF,

— ('.Uﬂ - — in ')i‘-'-"n-i
Ow i / /



Error Backpropagation

* In a general feed-forward network, each unit computes a
weighted sum of its inputs of the form

aj — E Wii<q
i

* where z; is the activation of a unit, or input, that sends a
connection to unit j, and wj; is the weight associated
with that connection.

* This sum is transformed by a nonlinear activation
function h( * ) to give the activation z; of unit j in the

form
z; = h(a;).

* Now consider the evaluation of the derivative of E,, with
respect to a weight w;;.



Error Backpropagation

* First we note that £, depends on the weight wj; only via
the summed input a; to unit j. We can therefore apply
the chain rule for partial derivatives to give

OE, OE, 0Oa;

Ju ' -';'Jf_’ij -';'J-u.‘j?;

* We now introduce a useful notation |
. oFE,,

fbj —

-‘L’Jﬂj

where the &’s are often referred to as errors.

e Using @ =>» wjiz  we can write ,;j”j = %.
. aJw ji



Error Backpropagation

e We thus obtain
oFE,,

rﬂ-u-‘jf_

— E?j Zq

* For the output units, we

O = yr — Uk

L]

have

lllustration of the calculation of §; for hidden
unit j by backpropagation of the §’s from
those units k to which unit j sends
connections. The blue arrow denotes the
direction of information flow during forward
propagation, and the red arrows indicate
the backward propagation of error
information.



Error Backpropagation

* To evaluate the ¢’s for hidden units, we again make use
of the chain rule for partial derivatives,

Z -‘LJER n"JHL
rjﬂj - day, Oa;

where the sum runs over all unlts k to which unit j sends
connections.

 |f we now substitute the definition of 6 we obtain the
following backpropagation formula

0; = h'(a;) Z WO,

k



5 OF OE,, Jap,
f?j = — no_ Z _ n _ Lk (5.55)
da; dayj, da;
k
From equation 5.51 which is _
. OE, - -
0j = — (5.51)
C){’i-j
OEy, . 9E,
—n i . lLe,—=0, = - 1
9a, & be writtenas 0j. i.e., 9a, O (1)

dap _ Odag aZj

* According to chain rule,
ccording to chain rule da; _ 9z; 9

From equations 5.48 and 5.49 we have:

aj =Y wjiz (5.48)
i

dag aZ] !
a_zj = Wkg;j anda = h (a]) ----- (2)
Substituting (1) and (2) in egn 5.55 we get
0; = h'(a;) Z WO (5.56)

k:
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Error Backpropagation: Summary

The backpropagation procedure can therefore be
summarized as follows:

* Apply an input vector x,, to the network and forward
propagate through the network to find the activations of
all the hidden and output units.

* Evaluate the 0y, for all the output units.

. Backpropagate the 0’s to obtain o; for each hidden unit
in the network.

* Evaluate the required derivatives.

For batch methods, the derivative of the total
error E can then be obtained by repeating the above steps
for each pattern in the training set and then summing over
all patterns: OF

Z LJEH
dw j; N -‘L)HJE




Backpropagation Algorithm: Definitions

* Each training example is a pair of the form (X, f)), where x

is the vector of network input values, and f is the vector
of target network output values.

* 1 is the learning rate (e.g., 0.05)., D is the number of
network inputs, M the number of units in the hidden
layer, and K the number of output units. The input from
unit p into unit q is denoted x,,, and the weight from

unit p to unit q is denoted w,,.



Backpropagation Algorithm

* Create a feed-forward network with D inputs, M hidden
units, and K output units.

* Initialize all network weights to small random numbers.

e Until the termination condition is met, Do
* For each (¥, 1_,3) in training examples, Do
* Propagate the input forward through the network:

1. Input the instance X to the network and compute
the output yy, of every unit k in the network.

* Propagate the errors backward through the
network:



Backpropagation Algorithm

1. Propagate the errors backward through the
network:

2. For each network output unit k, calculate its

error term Oy,
O < Yr(1 = ¥Yi)(r — Vi)
3. For each hidden unit z;, calculate its error term 0,

SZ — Z](l — ]) z ij6k

keoutputs

4. Update each network weight w,
Wap < Wap + VWqp

where, VW, = 16X,

. OE, OF,, day, ' f Z i
L’?j = * — Z " ‘ ﬂj — h. ({]-j) 'L{.-‘kj{s?k
k

da; dayj, da;
k




- Input (vector of features)

y- target output
For classification, output will be a vector of class probabilities (e.q., (U 1,0.7,0. 2) and target output s a specific class, encoded by
the one-hot/dummy variable (e.q., (0, 1, 0)).

(" loss function or "cost function"ld

For classification, this 15 usually cross entropy (XG, log loss), while for regression it is usually squared error loss (SEL).

L: the number of layers

[w;h): the weights between layer [ — 1 and {, where w;h s the weight between the £-th node in layer { — 1 and the 7-th node i

layer /12
f activation functions at layer |

For classification the last layer 1s usually the logistic function for binary classiiication. and sofimax (softargmax) for multi-class
classification, while for the hidden layers this was traditionally a sigmoid function (logistic function or others) on each node

(coordinate), but today is more varied, with rectifier (ramp, ReLU) being common.
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activation
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transfer
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threshold
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Considering E as a function with the inputs being all neurons L = {u, (R w} receiving input from neuron J,

0E(0;) _ OE(vet,, net,, ..., net,)
af}j - @aj n
do; Onet; do; _
OF _ 0F Oo; Onety 0F Do _zajwﬂ
Owi;  Ooj Onet; Ow;;  Oo; Onet;

;’E — o;6; OF Z( oF ﬂnetf):z(aE Oog 3net;):2(3E o
Wij 6‘{}:, i \dnety do; / 4=\ oy Onety do; | 7=\ Doy Onet,

T.[Jj,_r )
{

with

dL{ost) dip(net;) .

EE' — aE ﬁﬂu" i ﬂﬂj .LfncLJ 1fj 15 all ﬂlltput Neuron,
T - t

aﬂj &JEtj {EEFL thﬂf) - DE_J)

if 7 is an inner neuron.
OF

ﬂ'wi i

Awyj = =1 = —1j0;0;

If (o Is the logistic function, and the error is the square error;

- SE 3% [ (o —jggﬁﬂ_“ﬂl} if 4 is an output neuron,
: 3&1 8net 41 ﬂJ »if 7 is an inner neuron.

\\‘




The gradient descent method involves calculating the dernvative of the loss function with respect to the weights of the network. This 1s
normally done using backpropagation. Assuming one output neuron,! the squared error function is

E = Lty
where

L is the loss for the output ¢ and target value £,
T is the target output for a training sample, and

1 1s the actual output of the output neuron.

For each neuron j, its output ¢; is defined as

05 = -:p net (Z w;hj:nk)

where the activation function ¢ is non-linear and differentiable over the acfivation region (the RelU is not differentiable at one point). A
historically used activation function is the logistic function:

|
p(z) = m

which has a convenient denvaiive of:

W) — ()1 - o)

The input net; to a neuron is the weighted sum of outputs oy, of previous neurons. If the neuron is in the first layer after the input layer,

the oy, of the input layer are simply the inputs &, to the network. The number of input units to the neuron is 7:. The variable wy; denotes

the weight between neuron % of the previous layer and neuron 7 of the current layer.
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The Jacobian matrix

We have seen how the derivatives of an error function and actually we can use technique of
backpropagation to calculate other dertvatives such as Jacobian matrix.

IV

Jacobian matrices play a useful role m systems
built from a number of distinet modules.

oF Syk 3zj
Oy 0z; Ow

e n C 0F
The dertvative of the error function 1s given by 30 kz
.

Jacobian Appears here




- The Jacobian matrix

The Jacobian matrix can be evaluated using a backpropagation procedure.

o a’y;; . Syk S{Ij
Thi = dx; ; Oa; Ox;
. Oy

Similar with our calculation 1n last section. we obtain

Oy Oyr, Oa
b0, = 2=




The Jacobian matrix can be evaluated usmg a backpropagation procedure.

_ Oy Oyy, Da;
Jii = o, E _

Here we have
sigmoidal activation functions :

h ye ;
softmax outputs : 5.~ = stk = Uikl
J
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Various types of ANN Architectures:

- Boltzmann Machine,

- Hopfield Network

- CAM (Content Addressable memories);
- BAM (Bidirectional associative memory)
- SOM (self-organizing maps)

- Deep Belief Networks

- RBM, RBF

- CNN, Relu; RESNET, YOLO, SOLO, VGG, INCEPTION, Segnet, AlexNet,
Unet, ConvNet, RCNN, ..

- GAN

- Auto-encoders (AE), VAE

- LSTM






