
ENSEMBLE METHODS
CS5691- MACHINE LEARNING

Bagging: Bishop, 14.2
Boosting: Bishop, 14.3
Boosting Tree, Gradient Boosting: Hastie, 10.9, 10.10.2, 10.10.3

Random Forest: Hastie, 15.1, 15.2

INTRODUCTION
• Improved performance can be obtained by combining

multiple models together in some way, instead of just
using a single model in isolation

• For instance, we might train different models and then
make predictions using the average of the predictions
made by each model. Such combinations of models are
sometimes called committees.

• An important variant of the committee method, known
as boosting, involves training multiple models in
sequence in which the error function used to train a
particular model depends on the performance of the
previous models

BAGGING
• Find a way to introduce variability between the different

models within the committee
• One approach is to use bootstrap datasets where

multiple data sets are created
• Suppose our original data set consists of data points 1 𝑁 . Create a new data set 𝐵 by drawing

points at random from , with replacement, so that
some points in may be replicated in 𝐵, whereas other
points in may be absent from 𝐵.

• This process can be repeated times to generate data
sets each of size

BAGGING
• Consider a regression problem in which we are trying to

predict the value of a single continuous variable, and
suppose we generate bootstrap data sets and then
use each to train a separate copy 𝑚 of a predictive
model where . The committee prediction is
given by

• The procedure is known as bootstrap aggregation or
bagging

BAGGING
• Suppose the true regression function that we are trying

to predict is given by , so that the output of each of
the models can be written as the true value plus an error
in the form

• Average sum-of-squares error then takes the form

where, denotes a frequentist expectation with
respect to the distribution of the input vector . The
average error made by the models acting individually is
therefore

BAGGING
• Similarly, the expected error from the committee is given

by

• If we assume that the errors have zero mean and are
uncorrelated, so that

BAGGING
• We obtain

• The average error of a model can be reduced by a factor
of simply by averaging versions of the model

• Unfortunately, it depends on the key assumption that
the errors due to the individual models are uncorrelated

• In practice, the errors are typically highly correlated, and
the reduction in overall error is generally small

• However, it can be shown that the expected committee
error will not exceed the expected error of the
constituent models i.e.

BOOSTING
• The principal difference from bagging, is that the base

classifiers are here are trained in sequence
• Each base classifier is trained using a weighted form of the

data set in which the weighting coefficient associated with
each data point depends on the performance of the previous
classifiers

• Points that are misclassified by one of the base classifiers are
given greater weight when used to train the next classifier in
the sequence

• Once all the classifiers have been trained, their predictions
are then combined through a weighted majority voting
scheme

• Here we describe the most widely used form of boosting
algorithm called AdaBoost for a 2-class classification problem

BOOSTING

Schematic illustration of the boosting framework. Each base classifier 𝑦𝑚(𝐱) is
trained on a weighted form of the training set (blue arrows) in which the
weights 𝑤௡(௠) depend on the performance of the previous base
classifier 𝑦௠ିଵ(𝐱) (green arrows). Once all base classifiers have been trained,
they are combined to give the final classifier 𝑌𝑀(𝐱) (red arrows)

AdaBoost Algorithm

1. Initialize the data weighting coefficients ௡ by
setting ௡(ଵ) for

2. For
a) Fit a classifier 𝑚 to the training data by minimizing the

weighted error function

where, is the indicator function and
equals 1 when ; and 0 otherwise

The training data comprises input vectors ଵ ே
along with corresponding binary target variables ଵ ே where ௡

AdaBoost Algorithm
b) Evaluate the quantities

and then use these to evaluate

c) Update the data weighting coefficients:

3. Make predictions using the final model, which is given
by

JUST for TRIAL – not connected to ADABOOST

Relook at Eqns:

So, what is the weight of the
Weakest Classifier ?

Observe two effects:
Classifier-wise m
Sample-wise n

(- High Alpha)

BOOSTING
• In subsequent iterations the weighting coefficients ௡(௠)

are increased for data points that are misclassified and
decreased for data points that are correctly classified

• Successive classifiers are thereby forced to place greater
emphasis on points that have been misclassified by
previous classifiers, and data points that continue to be
misclassified by successive classifiers receive ever greater
weightage

• The quantities ௠ represent weighted measures of the
error rates of each of the base classifiers on the data set

• The weighting coefficients ௠ give greater weight to the
more accurate classifiers when computing the overall
output

AdaBoost Algorithm

The base learners consist of simple thresholds applied to one or other of the axes. Each
figure shows the decision boundary of the most recent base learner (dashed WHITE
line) and the combined decision boundary of the ensemble (solid purple/magenta
line). Each data point is depicted by a circle whose radius indicates the weight assigned
to that data point when training the most recently added base learner.

Minimizing exponential error
• An interpretation of boosting in terms of the sequential

minimization of an exponential error function
• Consider the exponential error function defined by

where 𝑚 is a classifier defined in terms of a linear
combination of base classifiers 𝑙 of the form

• 𝑛 are the training set target values
• Goal is to minimize w.r.t. the weighting coefficients 𝑙

and the parameters of the base classifiers 𝑙

Minimizing exponential error
• Suppose that the base classifiers 1 ௠ିଵ and

their coefficients 1 ௠ିଵ, are fixed.
• We are minimizing only with respect to 𝑚 and 𝑚
• The error function can be written as

where the coefficients can be
viewed as constants because we are optimizing only 𝑚
and 𝑚

Minimizing exponential error
• Let us denote by Tm the set of data points that are correctly

classified by 𝑚 , and the remaining misclassified points by
Mm

• The error function can be rewritten as (adding-SUB terms)

• When we minimize this with respect to 𝑚 , we see that the
second term is constant which is equivalent to minimizing the
expression given in the algorithm. Similar, is the case where we
minimize with respect to 𝑚

Minimizing exponential error
• Having found 𝑚 and 𝑚 , the weights on the data

points are updated using

• Making use of the fact that

we see that the weights ௡(௠) are updated at the next
iteration using

• Because the term 𝑚 is independent of , we
see that it weights all data points by the same factor and
can be discarded (See step C of Algo.)

BOOSTING TREES
• Regression trees partition the space of all joint predictor

variable values into disjoint regions 𝑗, j = 1, 2,... , J
• A constant ௝ is assigned to each such region and the

predictive rule is
• Thus a tree can be formally expressed as

with parameters . J is usually treated as a
meta-parameter
• The parameters are found by minimizing the empirical

risk

BOOSTING TREES
• The boosted tree model is a sum of such trees

• We look at a generic gradient tree-boosting algorithm for
regression. Specific algorithms are obtained by inserting
different loss criteria

GRADIENT TREE BOOSTING ALGORITHM

GRADIENT TREE BOOSTING

• The first line of the algorithm initializes to the optimal
constant model, which is just a single terminal node tree

• The components of the negative gradient computed at
line 2(a) are referred to as generalized or pseudo
residuals,

• Two basic tuning parameters are the number of
iterations and the sizes of each of the constituent
trees ௠, where

Other Methods of Ensemble
Goals of Combining classifiers (Decision Fusion):
 Improve performance.
 Maximize information use.
 Obtain a reliable system

Challenges:
 Intelligent combination that exploits complementary

information.

Multi-Classifier system is obtained using:
 Different classifiers
 Same classifier with different parameters
 Using different feature sets
 Non overlapping training datasets

Decision Fusion method
 - feature vector & - the set of class labels.

 With all classifiers Di in
one obtains soft class labels as:



















=

)()()(
)()()(
)()()(

)(

,,1,

,,1,

,1,11,1

XXX
XXX
XXX

X

CLjLL

Cijii

Cj

ddd

ddd

ddd

DP







nR∈X { },,, 21 Cωωω =Ω
},....,,{ 21 LDDDD =

Decision Profile

Decision Templates

For j=1, 2,…,C, calculate the mean, (DTj)L*C of the decision
profiles DP(Zk) of all members of from the dataset Z.jω


∈
∈

=

Zz
z

k
j

j

k
jk

ZDP
N

DT
ω

)(1
where Nj is the number of
elements of Z from class jω

 i. MinMax-Avg Rule (MMAV):

 ii. Mean Deviation about Decision Template (MD-
DT):

)}}({max)}({min{)(,, XdXdavg jiijiij X +=Γ


=

=
L

i
jj jiDT

L 1
),(1μ

|})({|min1 , jjiij XdMD μ−−=

j=1,2,…,C

i=1,2,…,L
j=1,2,…,C

i=1,2,…,L
j=1,2,…,C

Decision Fusion for 4 classifiers
(1000-fold study)

DS-CDT (E) /
DT (S)

Sum
Rule

85.7885.8085.79

77.5777.1577.15

72.5572.4372.43

94.0394.0394.03

68.7868.1468.14

Proposed
MD-DTMMAV

85.8085.80

78.9483.15

72.4772.47

94.03100

68.1468.14

SVMBayesF KNNGMMDataset

85.3880.8181.1783.54Iono

80.6074.8775.3454.80Lymph

72.0674.9466.8653.22spectf

86.5286.6110049.88Non-
linear

65.2457.3570.5357.45tictac

GMM- Gaussian Mixture Model

F KNN- Fuzzy K Nearest Neighbor

SVM- Support Vector Machines

DT (E) / DT (S)- Decision Template with
Euclidean Measure / Symmetric difference;
DS - Dempster –Shafer Combination.
MMAV- MinMax-Avg Rule
MD-DT- Mean Deviation about DT

C. L. Blake and C. J. Merz, “UCI repository of machine learning database”, http://archive.ics.uci.edu/ml/.

FEATURE RANKING & SELECTION

Final
Feature set

Original
Feature set

Rank the features
based on a

criterion function

Select the first
‘M’ ranked

features. (M<N)

The first feature is selected as:

Mutual Information is given by:

The second feature is selected as:

The rest of the features are evaluated as:

),(max0
1 yxI iix =

)/()(),(YXHXHYXI −=

])|,(),(),([max
11

0
1

0
11

0
2 

≠≠

+−= ≠
ii

yxIxIyxI xxx iiii

]),(),([max0  
≠

≠ −=
j ji

iijin yxIyxIx

Decision Fusion (without feature selection)

Proposed
MD-DTMMAV
88.0488.04
81.0181.01
83.4983.95

Proposed
MD-DTMMAV

87.0587.07

80.5580.55
81.6882.10

DSSum
Rule

SVM-
P

SVM-LF KNNDataset

86.9386.9586.7284.9781.30Iono

80.5780.5573.3282.7563.35Heart
81.9181.6877.7681.0577.29Lymph

SVM-
P

SVM-LF KNNDataset

90.6585.0482.61Iono

75.398363.35Heart
77.6682.3478.94Lymph

Proposed Framework (Feature Selection+ Decision
Fusion)

DSSum
Rule

87.7887.80

81.2381.01
83.5183.49

Feature Selection alone

Other ML methods:

- Random Forests

- Bayesian Networks, Bayesian Regression

- MRF, CRF, Undirected graphical models

- PGM, Factor Graphs

- Manifold learning

- ART, MDS

-

Kuncheva, L. and Whitaker, C., Measures of diversity in classifier
ensembles, Machine Learning, 51, pp. 181-207, 2003.

Ensemble Methods in Machine Learning; Thomas G. Dietterich;
https://web.engr.oregonstate.edu/~tgd/publications/mcs-ensembles.pdf

Zhou Zhihua (2012). Ensemble Methods: Foundations and Algorithms.
Chapman and Hall/CRC. ISBN 978-1-439-83003-1.

Robi Polikar (ed.). "Ensemble learning". Scholarpedia.

L. I. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms.
New York, NY: Wiley Interscience, 2005.

J. Kittler, M. Hatef, R. P. W. Duin, and J. Mates, "On combining classifiers,"
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20, no. 3,
pp. 226-239, 1998.

L. I. Kuncheva, "A theoretical study on six classifier fusion strategies,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 2, pp. 281-286, 2002.

