Spectral Clustering

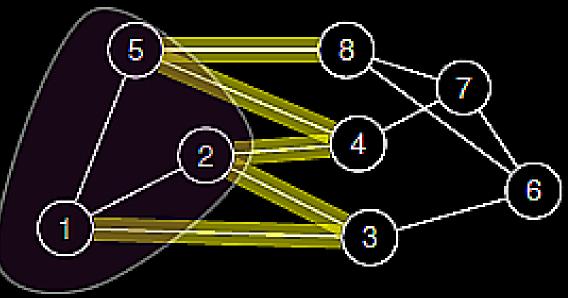
PR & Machine Learning – CS5691

Content Credits:

- 1. Von Luxburg, U., "A tutorial on spectral clustering."; Statistics and Computing, 17(4), 395-416. Springer (2007); Technical Report No. TR-149, A Tutorial on Spectral Clustering – Aug. 2006.
- 2. Davide Eynard, "Notes on Spectral Clustering."; (2012).

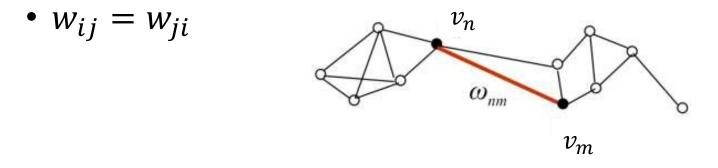
Similarity graph

- The objective of a clustering algorithm is partitioning data into groups such that:
 - Points in the **same** group are **similar**
 - Points in different groups are dissimilar
- Similarity graph G = (V, E) [undirected graph]:
 - Vertices v_i and v_j are connected by a **weighted** edge if their similarity is above a given threshold
 - GOAL: find a partition of the graph such that:
 - edges within a group have high weights
 - edges across different groups have low weights

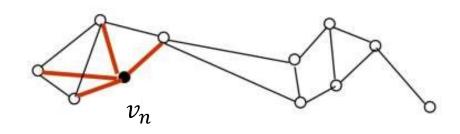


Weighted adjacency matrix

- Let G(V, E) be an undirected graph with vertex set $V = \{v_1, \dots, v_n\}$
- Weighted adjacency matrix $W = (w_{ij})_{i,j=1,...,n}$
 - $w_{ij} \ge 0$ is the weight of the edge between v_i and v_j .
 - $w_{ij} = 0$ means that v_i and v_j are not connected by an edge



- Degree of a vertex $v_i \in V$: $d_i = \sum_{j=1,...,n} w_{ij}$
- Degree matrix $D = diag(d_1, ..., d_n)$

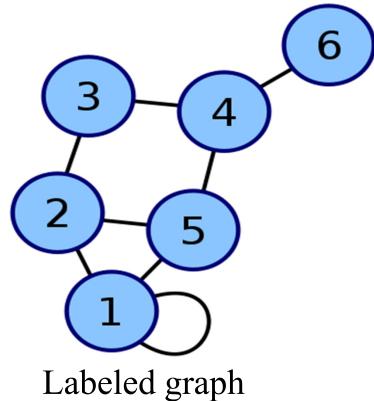


Similarity graphs - variants

• *ɛ*-neighborhood:

- Connect all points whose pairwise distance is less than ε
- K-nearest neighbor graph
 - Connect vertex v_i with vertex v_j , if v_j is among the k-nearest neighbours of v_i .
- Fully connected
 - *all* points with similarity $w_{ij} > 0$ are connected.
 - use a similarity function like the **Gaussian**: $w_{ij} = w(v_i, v_j) = \exp(-\|v_i - v_j\|^2/(2\sigma^2))$

The adjacency matrix of a finite graph G on n vertices is the $n \times n$ matrix where the non-diagonal entry a_{ij} is the number of edges from vertex i to vertex j, and the diagonal entry a_{ii} , depending on the convention, is either once (directed) or twice (undirected) the number of edges (loops) from vertex i to itself. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency matrix is symmetric.



Adjacency matrix

Graph Laplacians

- Graph Laplacian:
 - L = D W (symmetric and positive semi-definite)
- Properties:
 - Smallest eigenvalue $\lambda_1=0$ with eigenvector $\mathbb 1$
 - n non-negative, real-valued eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$
 - the multiplicity k of the eigenvalue 0 of L equals the number of connected components A₁, ..., A_k in the graph.

For every vector $f \in \mathbb{R}^n$ we have $f'Lf = \frac{1}{2}\sum_{i,j=1}^n w_{ij}(f_i - f_j)^2$

Normalized Laplacian:

$$L_{sym} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2};$$

$$L_{rw} = D^{-1}L = I - D^{-1}W \text{ (random walk)}$$

RANDOM WALKS on GRAPHS

- G = (V, E): a simple connected graph on n vertices
- A(G): the adjacency matrix
- $D(G) = \operatorname{diag}(d_1, d_2, \dots, d_n)$: the diagonal degree matrix
- L = D A: the combinatorial Laplacian
- L is semi-definite and 1 is always an eigenvector for the eigenvalue 0.

Normalized Laplacian: $\mathcal{L} = I - D^{-1/2}AD^{-1/2}$.

- *L* is always semi-definite.
- 0 is always an eigenvalue of \mathcal{L} with eigenvector $(\sqrt{d_1}, \ldots, \sqrt{d_n})'$.

■ Laplacian eigenvalues: $\lambda_0, \ldots, \lambda_{n-1}$

 $0 = \lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{n-1} \leq 2.$

- $\lambda_{n-1} = 2$ if and only if G is bipartite.
- $\lambda_1 > 1$ if and only if G is the complete graph.

Spectral Clustering algorithm (1)

- Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.
 - 1. Construct a similarity graph as previously described. Let W be its weighted adjacency matrix.
 - 2. Compute the unnormalized Laplacian *L*
 - 3. Compute the first k eigenvectors u_1, \ldots, u_k of L
 - 4. Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \dots, u_k as columns
 - 5. For i = 1, ..., n let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U
 - 6. Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1, \ldots, C_k .
- Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Normalized Graph Laplacians

• Symmetric: $L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$

•
$$L_{rw} = D^{-1}L = I - D^{-1}W$$

- λ is an eigenvalue of L_{sym} with eigenvector u iff λ and u solve the **generalized eigenproblem** $Lu = \lambda Du$
- 0 is an eigenvalue of L_{sym} with eigenvector $D^{\bar{2}}$
- L_{sym} and L_{rw} are positive semi-definite and have n nonnegative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

Then the multiplicity k of the eigenvalue 0 of both L_{rw} and L_{sym} equals the number of connected components A_1, \ldots, A_k in the graph. For L_{rw} , the eigenspace of 0 is spanned by the indicator vectors $\mathbb{1}_{A_i}$ of those components. For L_{sym} the eigenspace of 0 is spanned by the vectors $D^{1/2}\mathbb{1}_{A_i}$.

1. For every $f \in \mathbb{R}^n$ we have

$$f' L_{sym} f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2.$$

- 2. λ is an eigenvalue of L_{rw} with eigenvector v if and only if λ is an eigenvalue of L_{sym} with eigenvector $w = D^{1/2}v$.
- 3. λ is an eigenvalue of L_{rv} with eigenvector v if and only if λ and v solve the generalized eigenproblem $Lv = \lambda Dv$.
- 4. 0 is an eigenvalue of L_{rw} with the constant one vector 1 as eigenvector. 0 is an eigenvalue of L_{sym} with eigenvector $D^{1/2}$ 1.
- 5. L_{sym} and L_{rw} are positive semi-definite and have n non-negative real-valued eigenvalues $0 = \lambda_1 \leq \ldots \leq \lambda_n$.

Spectral Clustering algorithm (2)

- Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.
 - 1. Construct a similarity graph as previously described. Let W be its weighted adjacency matrix.
 - 2. Compute the normalized Laplacian L_{sym}
 - 3. Compute the first k eigenvectors u_1, \ldots, u_k of L_{sym} .
 - 4. normalize the eigenvectors
- Output: Clusters A_1, \dots, A_k with $A_i = \{j | y_j \in C_i\}$.

Unnormalized spectral clustering

Input: Similarity matrix $S \in \mathbb{R}^{n imes n}$, number k of clusters to construct

- Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors v_1, \ldots, v_k of L.
- Let $V \in \mathbb{R}^{n imes k}$ be the matrix containing the vectors v_1, \ldots, v_k as columns.
- For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of V.
- Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1,\ldots,A_k with $A_i=\{j|\; y_j\in C_i\}$.

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix $S \in \mathbb{R}^{n imes n}$, number k of clusters to construct

- \bullet Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors v_1, \ldots, v_k of the generalized eigenproblem $Lv = \lambda Dv$.
- Let $V \in \mathbb{R}^{n imes k}$ be the matrix containing the vectors v_1, \ldots, v_k as columns.
- For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of V.
- Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j \mid y_j \in C_i\}$.

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

Input: Similarity matrix $S \in \mathbb{R}^{n imes n}$, number k of clusters to construct

- \bullet Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- ullet Compute the normalized Laplacian $L_{ ext{sym}}$.
- Compute the first k eigenvectors v_1, \ldots, v_k of L_{sym} .
- Let $V \in \mathbb{R}^{n imes k}$ be the matrix containing the vectors v_1, \ldots, v_k as columns.
- Form the matrix $U \in \mathbb{R}^{n \times k}$ from V by normalizing the row sums to have norm 1, that is $u_{ij} = v_{ij}/(\sum_k v_{ik}^2)^{1/2}$.
- \bullet For $i=1,\ldots,n$, let $y_i\in \mathbb{R}^k$ be the vector corresponding to the i-th row of U .
- Cluster the points $(y_i)_{i=1,\dots,n}$ with the k-means algorithm into clusters C_1,\dots,C_k .

Output: Clusters A_1,\ldots,A_k with $A_i=\{j|\; y_j\in C_i\}$.

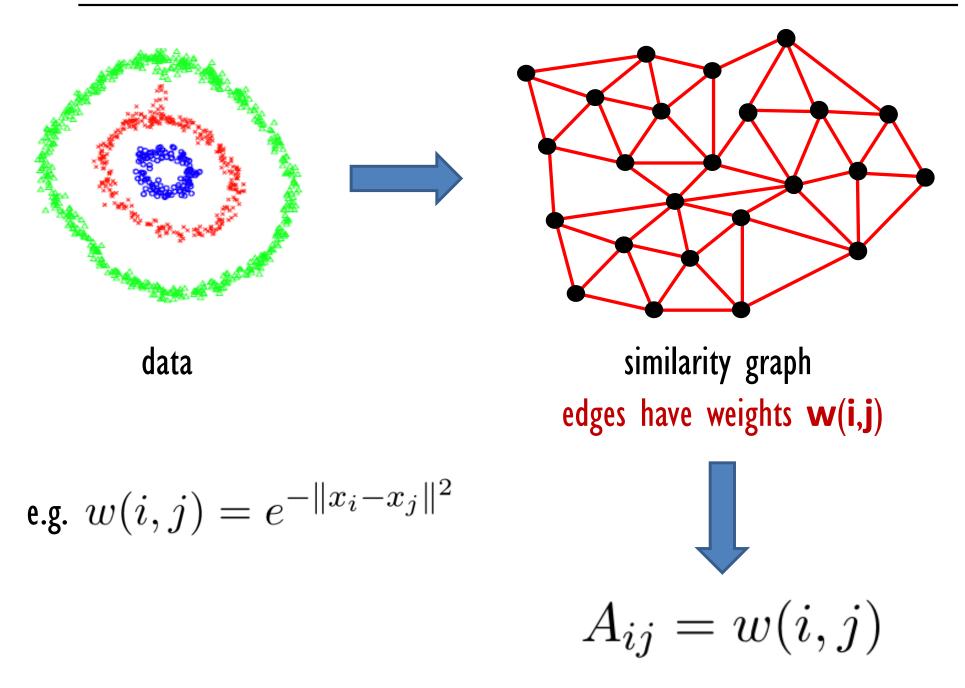
Unnormalized spectral clustering

Input: Similarity matrix $S \in \mathbb{R}^{n imes n}$, number k of clusters to construct

- \bullet Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- \bullet Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors v_1, \ldots, v_k of L.
- Let $V \in \mathbb{R}^{n imes k}$ be the matrix containing the vectors v_1, \ldots, v_k as columns.
- \bullet For $i=1,\ldots,n$, let $y_i\in \mathbb{R}^k$ be the vector corresponding to the i-th row of V .
- Cluster the points $(y_i)_{i=1,\dots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\dots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

spectral clustering (a la Ng-Jordan-Weiss)

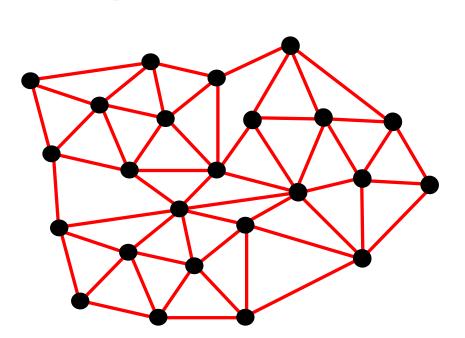


the Laplacian

 $A_{ij} = w(i,j)$

n $D_{ii} = \sum w(i,j)$ i=1

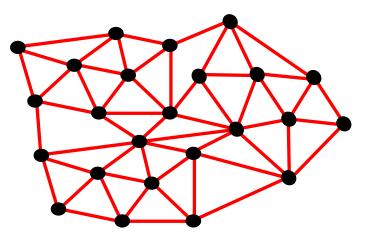
diagonal matrix **D**



Normalized Laplacian: $L = I - D^{-1/2}AD^{-1/2}$

energy

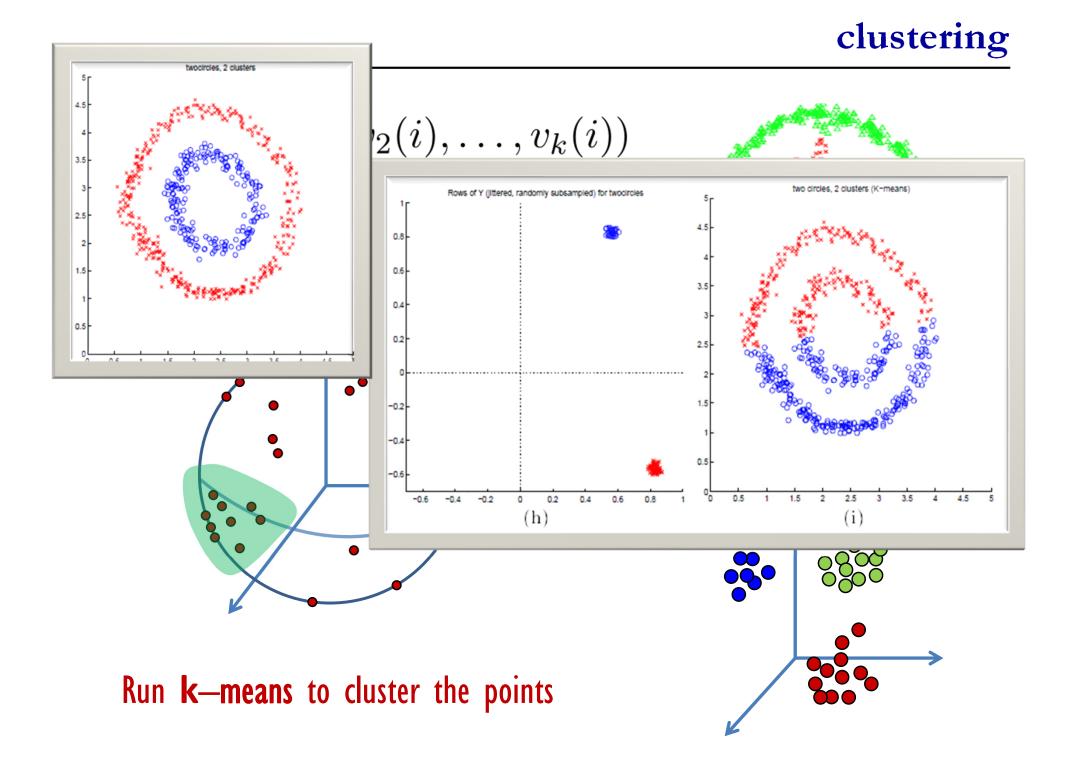
 $v^T L v = \sum w(i,j)(v_i - v_j)^2$ $\{i,j\} \in E$

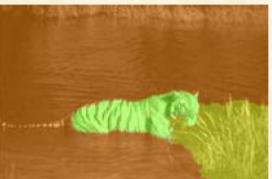


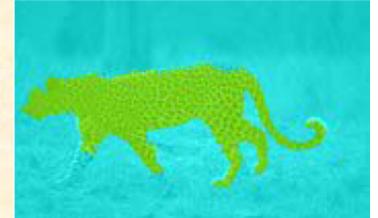
Normalized Laplacian: $L = I - D^{-1/2}AD^{-1/2}$

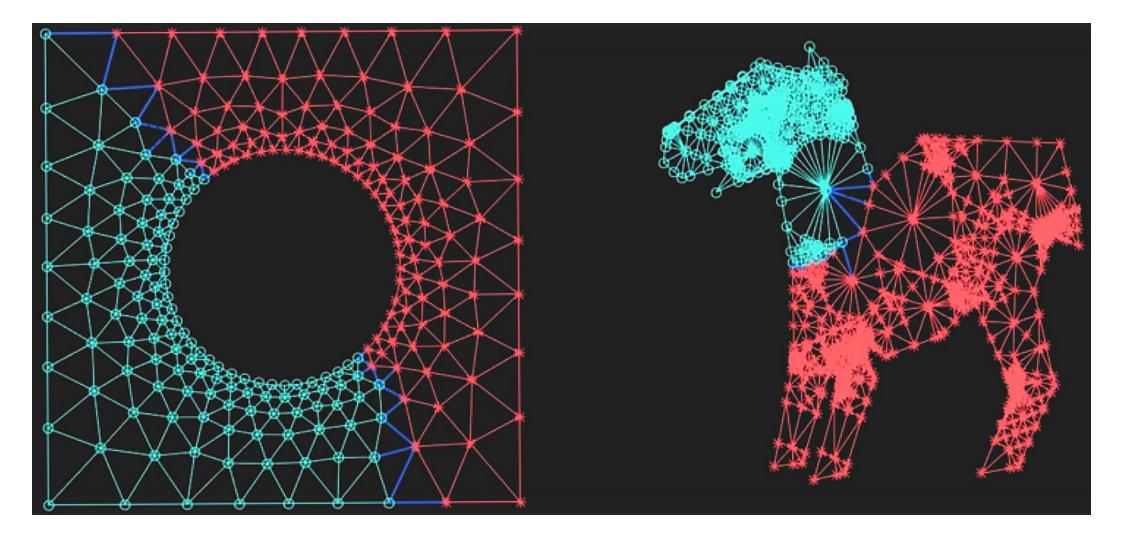
Normalized Laplacian:
$$L = I - D^{-1/2} A D^{-1/2}$$

Compute first k eigenvectors: $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$
 $L v_j = \lambda_j v_j \quad \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_k$
 $F(i) = \frac{(v_1(i), v_2(i), \dots, v_k(i))}{\sqrt{\sum_{j=1}^k v_j(i)^2}}$
 $F: V \to \mathbb{R}^k$









https://www.youtube.com/watch?v=FtgU4xDJzEk