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Similarity graph
• The objective of a clustering algorithm is partitioning  

data into groups such that:
• Points in the same group are similar
• Points in different groups are dissimilar

• Similarity graph [undirected graph]:
• Vertices and are connected by a weighted edge iftheir 

similarity is above a given threshold
• GOAL: find a partition of the graph such that:

• edges within a group have high weights
• edges across different groups have low weights





Weighted adjacency matrix
• Let be an undirected graph with vertex set 

• Weighted adjacency matrix , , … ,
• is the weight of the edge between and .

• means that and are not connected by an edge

•

• Degree of a vertex : 𝒊 ,…,
• Degree matrix 

𝑣
𝑣

𝑣



Similarity graphs - variants
• -neighborhood:
• Connect all points whose pairwise distance is less than
• K-nearest neighbor graph
• Connect vertex with vertex ,  if is among the k-nearest 

neighbours of .

• Fully connected
• all points with similarity are connected.
• use a similarity function like the Gaussian: 
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Labeled graph Adjacency matrix

The adjacency matrix of a finite graph G on n vertices is the 
n × n matrix where the non-diagonal entry aij is the number of edges 
from vertex i to vertex j, and the diagonal entry aii, depending on the 
convention, is either once (directed)  or twice (undirected) the 
number of edges (loops) from vertex i to itself. In the special case of a 
finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros 
on its diagonal. If the graph is undirected, the adjacency matrix is 
symmetric.



Graph Laplacians
• Graph Laplacian:
• (symmetric and positive semi-definite)
• Properties:
• Smallest eigenvalue with eigenvector 
• n non-negative, real-valued eigenvalues 
• the multiplicity of the eigenvalue 0 of equals the number  of 

connected components in the graph.
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Spectral Clustering algorithm (1)
• Input: Similarity matrix × , number of clusters 
to construct.

1. Construct a similarity graph as previously described. Let be 
its  weighted adjacency matrix.

2. Compute the unnormalized Laplacian 
3. Compute the first eigenvectors of 
4. Let × be the matrix containing the vectors as

columns
5. For let be the vector corresponding to the 

-th row of 
6. Cluster the points ,…, in with the k-means algorithm 

into clusters .
• Output: Clusters with .



Normalized Graph Laplacians
• Symmetric:

•

• is an eigenvalue of with eigenvector iff and solve 
the generalized eigenproblem

• is an eigenvalue of with eigenvector 

• and are positive semi-definite and have n non-
negative, real-valued eigenvalues 

• the multiplicity of the eigenvalue 0 of equals the 
number  of connected components in the graph.





Spectral Clustering algorithm (2)
• Input: Similarity matrix S × , number k of clusters to 
construct. 

1. Construct a similarity graph as previously described. Let be 
its  weighted adjacency matrix.

2. Compute the normalized Laplacian 
3. Compute the first k eigenvectors of .
4. normalize the eigenvectors
• Output: Clusters with .







spectral clustering (a la Ng-Jordan-Weiss)

data similarity graph
edges have weights w(i,j)

e.g.



the Laplacian

diagonal matrix D

Normalized Laplacian:



energy

Normalized Laplacian:



spectral embedding

Normalized Laplacian:

Compute first k eigenvectors:  v1,  v2 ,  …,  vk



clustering

Run k–means to cluster the points





https://www.youtube.com/watch?v=FtgU4xDJzEk




