KERNELS, SVM

CS5691- Pattern Recognition & MACHINE LEARNING

Murphy 14.1, 14.2.1-14.2.6, 14.3, 14.4, 14.5
+ Wiki + Online Tut notes;

Eg - http://www.luigifreda.com/wp-content/uploads/2018/01/lec9.pdf



Introduction

* How do we represent a text document or protein
sequence, which can be of variable length?

* One approach is to define a generative model for the
data, and use the inferred latent representation and/or
the parameters of the model as features, and then to
plug these features in to standard methods

* Another approach is to assume that we have a way of
measuring the similarity between objects, that doesn’t
require preprocessing them into feature vector format

* For example, when comparing strings, we can compute
the edit distance between them
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Linear Classifiers (T

° denotes +1
> denotes -1

SR

X- > f > yeSt

fix,w,b) = sign(w x + D)

Any of these
would be fine..
' O o . ..but which is
o o best?
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Classitier Margin
X

° denotes +1
o denotes -1

f > yest

f(xw,b) = sign(w x + D)

Define the margin
of a linear

- classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.




Maximum Margin (T
X-

> f > yest
1. Maximizing the margin is good
according to intuition
° denotes +1 2. Implies that only support vectors are
- denotes -1 ° important; other training examples
° . are ignorable.
° e “13. Empirically it works very well.
L. ° 4/ - linear classifier
Support Vectors 7 |. with the. um
are those ° ° ° o ! o
datapoints that > o o Mmaximum margin.
the margin . This is the
g;:?nesst P o simplest kind of
SVM (Called an
___——LSVM)

Linear SVM




‘ Linear SVM Mathematically
A
2" /\ M=Margin Width

X+

What we know:
= W.X"+b=+1 M =
= W.Xx +b=-1 ‘W‘ ‘W‘
« W, (Xt-x) =2




Linear SVM Mathematically

Goal: 1) Correctly classify all training data
wx, +b=1 ify=+1

wx, +b<1 ify=- }2
y.(wx, +b)>1 foralli )
2) Maximize the Margin M = W
same as minimize /'y

2

We can formulate a Quadratic Optimization Problem and solve for w and b

Minimize O(w) :%wtw

subject to y.(wx, +b) =1 Vi




minimize f(x) (10.107a)
subjectto  a;(X) = a?}: —b; for 1<i<p (10.107b)
ci(x) = 0 for 1<j<qg (10.107c)

where f(x) and —¢;(x) for 1 < j < g are convex functions. The main results,
which are analogous to those in Sec. 2.8, are described by the next two theorems.

Theorem 10.7 Globalness and convexity of minimizers in CP problems

(a) If X* is a local minimizer of a CP problem, then X" is also a global
minimizer.

(b) The set of minimizers of a CP problem, denoted as S, is convex.

(c) If the objective function f(X) is strictly convex on the feasible region R,
then the global minimizer is unique.

CP - Convex Programming



Theorem 10.9 Duality in convex programming Let X* be a minimizer, and

A", u* be the associated Lagrange multipliers of the problem in Eq. (10.107).
If X* is a regular point of the constraints, then X*, A*, and p* solve the dual

problem

maximize L(X, A, ) (10.109a)

X, A, [t
subject to: VL(X, A, ) =0 (10.109b)
(=0 (10.109¢)

In addition, f(x*) = L(x*, A", u*).



Example 10.16 Find the Wolfe dual of the standard-form LP problem

Tx (10.110a)

subjectto: Ax=b A e RP" (10.110b)
X =0 (10.110c¢)

Solution The Lagrangian is given by
Lx, A\, p)=c'x— (Ax—b) A —x'u

and the dual problem can be stated as

maximize bT \

A, L
subjectto: ¢ — ATA - (=10

=0



Minimize ®(w) = %sz

subject to yi(wxi + b) > 1

fw,b) = ~|wl3
gw,b) = y, (- W+b)—1 =0

Lmin[w,b}(wr b) = WIE — i G [};E[EI: W+ b) — 1]

By considering: o fitr

B | =t

B

W

2

L{w,.B) — -
s =W Ny X

L{w.b)
:b = — 2 &Y




Solving the Optimization Problem

Find w and b such that
®(w) =2 wlw is minimized;
and for all {(X; ,),)}: v, (WIx; +b)>1

Need to optimize a quadratic function subject to linear constraints.

Quadratic optimization problems are a well-known class of
mathematical programming problems, and many (rather intricate)

algorithms exist for solving them.
The solution involves constructing a dual problem where a

Lagrange multiplier (; is associated with every constraint in the
primary problem:

Find a;...a, such that
_ 1 T : .
Qo) —ZOCZ- - /zZZaia]yiiji Xj 1s maximized, and
(1) Zay,=0
(2) a, = 0 for all a;
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The Optimization Problem Solution

The solution has the form:

W =Xy X; b=y, - wix,_for any x, such that o,# 0

Each non-zero a; indicates that corresponding Xx; is a
support vector.

Then the classifying function will have the form:

f(x)=Zoyx.'x+ b

Notice that it relies on an inner product between the test
point X and the support vectors x.

Also keep in mind that solving the optimization problem
involved computing the inner products x;"x; between all
pairs of training points.



Dataset with noise

° denotes +1

(e]

denotes -1

Hard Margin: So far we require
all data points be classified correctly

- No training error
What if the training set is
noisy?

- Solution 1: use very powerful
kernels

OVERFITTING!



Soft Margin Classification

Slack variables i can be added to allow
misclassification of difficult or noisy examples.

What should our quadratic
optimization criterion be?

Minimize

1 R
) —ww+C Z &,
2 =




Hard Margin v.s. Soft Margin

The old formulation:

Find w and b such that

®(w) =% w!w is minimized and for all {(x; ,y;)}
y;(Wix; +b)>1

The new formulation incorporating slack variables:

Find w and b such that
®(w) =% wiw + CZ&  is minimized and for all {(x; ,y,)}
y. (WIx, +b)>1-¢&  and &> 0 for all i

Parameter C can be viewed as a way to control
overfitting.



Computing the (soft-margin) SVM classifier amounts to minimizing an expression of the

form

1 n
. Zmax (0,1 —yi(w'xi — b)) | + Allw|?. ()
i=1

Primal

Minimizing (2) can be rewritten as a constrained optimization problem with a
differentiable objective function in the following way.

Foreach? € {1, ..., n} we introduce a variable {; = max (IJ,, 1 —y(w' x; — b}} .

Note that {; is the smallest nonnegative number satisfying yﬂ[wai — b} =1—(;.

Thus we can rewrite the optimization problem as follows

1 n
minimize — E G+ Allw|?
1 “
=1

subject to y; (wT}:?-_ - E:u) > 1—(; and (; = 0, for all 4.

This is called the primal problem.



DITE]

By solving for the Lagrangian dual of the above problem, one obtains the simplified problem

. . It 1 L Tl
maximize f(cy...cp) = Zfé —3 ZZin:(xfoj)ﬂjﬂja
1 1

= i=1 j=
Tl

1
subject to Zﬂi?ﬁ =0,and 0 < ¢; < X for all 1.

o 2n

This is called the dual problem. Since the dual maximization problem is a quadratic function of the ¢; subject to linear
constraints, it is efficiently solvable by quadratic programming algorithms.

Here, the variables ¢; are defined such that

T
w=Ycyixi
i=1
Moreover, ¢; = () exactly when x; lies on the correct side of the margin, and 0 < ¢; < {2?‘1;’\:]_1 when x; lies on the margin's

boundary. It follows that w can be written as a linear combination of the support vectors.

The offset, b, can be recovered by finding an x; on the margin's boundary and saolving

yi{wT:-:?; —b)=1 <= b= wlx; — Yi.

(Note tha[y;l =y; sincey; = 1.




Hard 1-dimensional Dataset

What would SVMs do with this data?

Not a big surprise

[ [ o O D
X=Q
Positive “plane”

Doesn’t look like slack variables will save us this time...

o O o 0 L

egative “plane”

taken from Andrew W. Moore 23



Hard 1-dimensional Dataset

Make up a new feature!

Sort of...
... computed from
original feature(s)

>
z, =(x;,x;)

Separable! MAGIC!

New features are sometimes called basis functions.
Now drop this “augmented” data into our linear SVM.

taken from Andrew W. Moore 24



Kernels and Linear Classifiers

Let ¥ = [#1,Z>] € R? be a vectorial represenation
of object r € X

Let ¢ : X — K C R3 feature map be given by
(%) = [#1, 75, T175]T € K C R3
Def. Feature space: K
We will use linear classifiers in this feature space.

In the original space R2 for a given w € R3 the decision surface is:

Xo(w) = {Z € R? | w1Z1 + woT5 + waF17> = 0}

e This is nonlinear in ¥ € R?

e This is linear in the feature space ¢(¥) € K C R3
25



Kernels and Linear Classifiers

o(Z) = [¢1(T), p2(F), $3(2)] = [T1, 73, F172])"

\/

Feature functions

e We seek for a small set of basis vectors {¢;}
which allows perfect discrimination between
the classes in X (Feature selection)

e If we have too many features = overfitting can happen.

26



Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:

—o o-@ I @—o -
But what are we going to do if the dataset is just too
hard? —o oo O oo o o—»x

How about... mapping data to a higher-dimensional
space: s x2 °

27



Non-linear SVMs: Feature spaces

General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable:

28
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Kernel functions

¢ We define a kernel function to be areal-valued function of
two arguments, k(X,X) € R, forx,x € X.

e X is some abstract space

* Typically the function has the following properties:
* Symmetric
* Non-negative

* Can be interpreted as a measure of similarity

* We will discuss several examples of kernel functions

30



RBF kernels

 Squared exponential kernel (SE kernel) or Gaussian

1 -
kernel k(x,x") = exp (—;(x xS x'))

* |f Xis diagonal, this can be written as

e g
H(x.x') = exp -5 Z ?(-1";‘ - -"_’,')-
j=1 J

We can interpret the g; as defining the characteristic length
scale of dimension j
* If 2 is spherical, we get the isotropic kernel

/112
H(X.X’)=(‘.\']) (_Hx X“ )

An example of RBF (Radial basis function) kernel (since it is a
function of ||x - X’||) where @ is known as the bandwidth




Kernels for comparing documents

* If we use a bag of words representation, where X;; is the

number of times words j occurs in document i, we can use

the cosine similarity e
K(Xi, Xir) = |
[1¢i] 2 i |2

e Unfortunately, this simple method does not work very
well
e Stop words (such as “the” or “and”) are not
discriminative
e Similarity is artificially boosted when a discriminative
word occurs multiple times
e Replace the word count vector with Term frequency
inverse document frequency (TF-IDF)



Kernels for comparing documents

e Define the term frequency as:
th(x;;) = log(1 + x45)
e This reduces the impact of words that occur many times
with a document

e Define inverse document frequency where N is the total
number of documents

: N
idf(j) £ log ~
1+ Z;’.:l H(.‘I’ij > 0)

e Our new kernel has the form

 o(xi)Tp(xir) o (x) = tf-idf(x)
—lo(xa) ]2l (xir)]]2

f‘l'(Xj . X-j_’ )

thidf(x;) 2 [t(2;) x idf()]Y



Mercer (positive definite) kernels

e Gram matrix is defined as

(H(xl.xl) - H(xl.xi\*))

K = E

K(XN,X1) -0 K(XN,XN)

e |f the Gram matrix is positive definite for any set of inputs,
the Kernel is a Mercer kernel

e Mercer’s theorem: If the Gram matrix is positive definite,
we can compute an eigenvector decomposition of it as
follows: K = UTAU

where A is a diagonal matrix of eigenvalues A4; > 0
e Now consider an element of K

ki = (ATU, ;)T (ATU,)
kij = o(x:) T (%)) blxi) =ATU;



Using kernels inside GLMs

* We define a kernel machine to be a GLM (generalized
linear model) where the input feature vector has the form

where u;, € X are a set of K centroids
* |f kis an RBFkernel, this is called an RBFnetwork
* We will discuss ways to choose the u;, parameters

* Note that in this approach, the kernel need not be a
Mercer kernel.

* We can use the kernelized feature vector for logistic
regression by defining (using Bernoulli Dist.)

p(ylx,0) = Ber(w’¢(x)).

35



Design Matrix

Consider a simple toy example of classification

D features (attributes)

L o *‘ D Color Shape Size (cm) Label
e @ Ao 1 [Blue Square |10 1
] g i

o O = > | |Red Ellipse 2.4 1
( 2 ©72 =2 Red Elipse  |20.7 0
(a) (b)

fwo classes of object which correspond to labels 0 and 1
The inputs are colored shapes as shown in (a). These have
been described by a set of D features or attributes, which
are stored inan N X D design matrix X, shown in (b).

36



Using kernels inside GLMs
* Use kernelized feature vector inside a linear regression
p(ylx,0) = N(w' ¢(x),a°).

20 08
0.6
10
0.4
o L
0.2
i 5 10 15 20 % 5 10 15 20
0.04
0.03
0.02
0.01
% 5 10 15 20
=3
20 1 il
7.8
10 ®
s 0o0® 7.6
0 *
e oo 7.4
00,0% o
s 5 10 15 20 Lo 5 10 15 20

Figure 14.3 RBF basis in 1d. Left column: fitted function. Middle column: basis functions evaluated on
a grid. Right column: design matrix. Top to bottom we show different bandwidths: = = 0.1, T =,0.5,
7 = 50. Figure generated by 1inregRbfDemo.



logregL2, nerr=174 logregL1, nerr=169

(G

(©

Example of non-linear binary classification using an RBF
kernel with bandwidth o = 0.3. (a) L2VM with A = 5. (b) LIVM
with A = 1. (c) RVM. (d) SVM with C = 1/A chosen by cross
validation. Black circles denote the support vectors

38



linregL1

(c)

Example of kernel based regression on the noisy sinc function using an RBF
kernel with bandwidth o =0.3. (a) L2ZVM with A =0.5. (b) L1VM with A =0.5. (c)
RVM. (d) SVM regression with C = 1/A chosen by cross validation, and € =0.1.
Red circles denote the retained training exemplars. 39



Kernelized ridge regression
¢ Applying the kernel trick to distance-based methods was
straightforward

* It is not so obvious how to apply it to parametric models
such as ridge regression

* The primal problem

* Let X € RPbe some feature vector, and X be the
corresponding N X D design matrix

* Minimize - ,
J(w)=(y — Xw)" (y — Xw) + Al|w]|

* The optimal solution is given by

w = (X'X +\p) ' X"y Zxx + Alp) ' XTy

40



Kernelized ridge regression
* We can partially kernelize this, by replacing XX’ with the
Gram matrix K
* But what about the leading X’ term?
* Let us define the following dualvariables:
a = (K+My)'y
* Then we can rewrite the primQI variables as follows
w = Xla=) ax

=1
* This tells us that the solution vector is just a linear sum
of the N training vectors. When we plug this in at test

time to compute the predictive mean, we get
N N

f(x)=wlx = Z ;X X = Z L, )

g=] =1 41



Kernelized ridge regression

* So we have successfully kernelized ridge regression by
changing from primal to dual variables

* This technique can be applied to many other linear
models, such as logistic regression

* The cost of computing the dual variables a is O(N?),
whereas the cost of computing the primal variables w is
0(D?)

* However, prediction using the dual variables takes

O(ND) time, while prediction using the primal variables
only takes O(D) time

42
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Support vector machines (SVMs)

* Consider the €2 regularized empirical risk function
J(w,A) ZL (i, 9i) + Al|wl[? ; = WIX; + wg

e If Lis quadratlc loss, this is equivalent to ridge regression

* We can rewrite these equations in a way that only
involves inner products of the form x’ X, which we can
replace by calls to a kernel function, k(X, x)

* This is kernelized, but not sparse

* |f we replace the quadratic loss with some other loss
function, we can ensure that the solution is sparse, so
that predictions only depend on a subset of the training
data, known as support vectors

* This combination of the kernel trick plus a modified loss
function is known as a support vector machine or SVM ,,



SVMs for regression

* This is a standard quadratic program in 2N + D + 1

variables.
* The optimal solution has the form

VAV2 E ;X
1

where a; = 0

* Furthermore, it turns out that the a vector is sparse,
because we don’t care about errors which are smaller
than €. The X; for which a; > 0 are called the support
vectors. These are points for which the errors lie on or

outside the e-tube

45



The large margin principle

lllustration of the geometry of a y >0

linear decision boundary in 2d. A
point X is classified as belongingin ~ ¥="
decisionregion Ry if f(X) > 0,
otherwise it belongs in decision
region R,; here f(X) is known as a
discriminant function. The
decision boundary is the set of
points such that f(X) = 0.wisa
vector which is perpendicular to
the decision boundary. The term
w, controls the distance of the
decision boundary from the origin.
The signed distance of X from its
orthogonal projection onto the
decision boundary, x, is given by

fx)/1wll.

y=0




The large margin principle

* Here, we derive the Equation forma completely different
perspective.

* where 1 is the distance of X from the decision boundary
whose normal vector is w, and x, is the orthogonal

projection of X onto this boundary

WTW

f(x) = wix+wo=W'xL+wy)+r T

T

* Now f(XJ_):O so 0=w"x| + wy

* Hence
fx)=rome =

wTw [[wl]

47



The large margin principle

* We would like to make this distancer = f(x)/||w]|] as
large as possible

* Intuitively, the best one to pick is the one that maximizes

the margin, i.e., the perpendicular distance to the closest
point

* In addition, we want to ensure each point is on the correct
side of the boundary, hence we want f(x;) y; > 0.

 So our objective becomes
N yi(w” x; + wp)
mMax il (
W. o =] ‘W’H

48



The large margin principle

e Our objective: , p
J N yf(WrXe + wo)
Imax 1min

w.wo i=1 |V\7|

* Note that by rescaling the parameters using w — kw and
Wy — kwgp, we do not change the distance of any point to the
boundary, since the k factor cancels out when we divide by
[{wl].

* Therefore let us define the scale factor such that y,f; = 1 for
the point that is closest to the decision boundary

* We therefore want to optimize
1

min —
W, ur :.,

Iw\z st. yi(wixi+w)>1,i=1:N
* The constraint says that we want all points to be on the correct
side of the decision boundary with a margin of at least 1

49



Soft margin constraints

¢ |f the data is not linearly separable (even after using the
kernel trick), there will be no feasible solution in which
y;f; = 1foralli.

* We replace the hard constraints with the soft margin
constraints that y,f, = 1 — ¢,.

* Our objective was:
1

- 12 T . ,-
min —||w|| s.t. yvi(w x;+wg)>1,i=1:N
W.wo 4

* The new objective becomes

min —||W||2 + C Zgl st. & >0, yi(xiw4wy)>1-&

wu()ﬁ_



Soft margin constraints

* We therefore have introduced
slack variables ¢; = 0 such that
¢; = 0ifthe pointisonor
inside the correct margin
boundary, and¢; = |y; — fil
otherwise

* 0 < ¢; < 1thepoint lies
inside the margin, but on the
correct side of the decision
boundary

* If ¢ > 1, the point lies on the
wrong side of the decision
boundary

* Points with circles around
them are support vectors.




Choosing C

* Typically Cis chosen by cross-validation.

* Cinteracts quite strongly with the kernel parameters.

* Tochoose C efficiently, one can develop a path following
algorithm

* The basic idea is to start with A large, so that the margin
1/]|lw(A)|| is wide, and hence all points are inside of it
and havea; = 1

By slowly decreasing A, a small set of points will move
from inside the margin to outside, and their a; values
will change from 1 to 0, as they cease to be support
vectors

52
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Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:

—o o-@ I @—o -
But what are we going to do if the dataset is just too
hard? —o oo O oo o o—»x

How about... mapping data to a higher-dimensional
space: s x2 °

54



Kernels

Definition: (Gram matrix, kernel matrix)

Gram matrix G € R™*™ of kernel k at {z1,...,zm}

Given a kernel k: X x X — R

and a training set {z1,...,zm} } = Gij = k(zg, 25) = (X, %;)

Definition: (Feature space, kernel space)

IC = span{p(x) | r € X} C R"

55



Kernel technique

Definition:

Matrix G € R™*™ is positive semidefinite (PSD)
& G is symmetric, and 0 < 3/ GB VB € RM*X™m

Given a kernel k: A X X — R

and a training set {z1,...,zm} } = Gij = ki, 25) = (%, X)) 1c

Lemma:

The Gram matrix is symmetric, PSD matrix.

Proof:
X = [X1,...,Xm] € R = G = XIX € Rmxm

0 < (XB,XB)x = BTGP .



The “Kernel Trick”

To produce linear separability in Higher Dimension, the linear classifier

relies on dot product between vectors K(x;,x;)=x;'x;

If every data point is mapped into high-dimensional space via some
transformation ®: x — @(x), the dot product becomes:

K(x;,x;)= 0(X;) T(P(Xj)
A kernel function is some function that corresponds to an inner product in
some expanded feature space.

Example:

2-dimensional vectors x = [x; x,]; let K(x;,x;) = (1 + x;"x;)?
Need to show that K(x;,x;) = o(x)) 'o(x;):

K(x;,x;) = (1 + x;"x;)*,

=14 ;%7 + 2 X0, XX, X;5°X57 + 200, + 2,50,
=1 x;/? \2 X;X;y Xi’ \/inl \/inZ]T [1 xﬂz \2 XX szz \/Zxﬂ \/ijz]
= o(xp) "o(x;), where ¢(x) = [1 x;° V2 x,x, x,2 \2x, V2x,]

57



Examples ot Kernel Functions
Linear: K(x;X;)= X; 'x;
Polynomial of power p: K(x;,X;)= (1+ x; Tx;)?

Gaussian (radial-basis function network):

2
X~ x| )
20°

K(Xiaxj) — exp(—

Sigmoid: K(x;,X;)= tanh(ByX; Tx; + B4)

58



Non-linear SVMs Mathematically

Dual problem formulation:

Find a,...a,such that

Q(o) =Xa; - 2XXa,0yy;K(X;, X;) is maximized and
(1) Xay;=0

(2) a; =0 tor all ¢;

The solution is:

X)) = ZayK(x;, X))+ b

Optimization techniques for finding a;’s remain the same!

59



Nonlinear SVM - Overview

SVM locates a separating hyperplane in the
feature space and classify points in that
space

It does not need to represent the space
explicitly, simply by defining a kernel
function

The kernel function plays the role of the dot
product in the feature space.
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Properties of SVM

Flexibility in choosing a similarity function

Sparseness of solution when dealing with large
data sets

- only support vectors are used to specify the separating
hyperplane

Ability to handle large feature spaces

- complexity does not depend on the dimensionality of the
feature space

Overfitting can be controlled by soft margin
approach

Nice math property: a simple convex optimization

problem which is guaranteed to converge to a single global
solution

Feature Selection

61



SVM Applications

e SVM has been used successfully in many
real-world problems
- text (and hypertext) categorization
- image/object classification
- bioinformatics (Protein classification,

Cancer classification)
- hand-written character recognition

Summary:

SVM classifiers involve three key ingredients:
The kernel trick : prevent underfitting
Sparsity, large margin principle : prevent overfitting

62



63



