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Introduction
• How do we represent a text document or protein 

sequence, which can be of variable length?
• One approach is to define a generative model for the 

data, and use the inferred latent representation and/or 
the parameters of the model as features, and then to 
plug these features in to standard methods

• Another approach is to assume that we have a way of 
measuring the similarity between objects, that doesn’t  
require preprocessing them into feature vector format

• For example, when comparing strings, we can compute 
the edit distance between them
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Linear Classifiers
f x

α
yest
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denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?



Linear Classifiers
f x

α
yest

denotes +1
denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?



Linear Classifiers
f x

α
yest

denotes +1
denotes -1

f(x,w,b) = sign(w x + b)

Any of these 
would be fine..

..but which is 
best?



Linear Classifiers
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How would you 
classify this data?

Misclassified
to +1 class



Classifier Margin
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before hitting a 
datapoint.
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Maximum Margin
f x

α
yest

denotes +1
denotes -1

f(x,w,b) = sign(w x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.
This is the 
simplest kind of 
SVM (Called an 
LSVM)

Linear SVM

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against

1. Maximizing the margin is good 
according to intuition

2. Implies that only support vectors are 
important; other training examples 
are ignorable.

3. Empirically it works very well.



Linear SVM Mathematically

What we know:
■ w . x+ + b = +1 
■ w . x- + b = -1 
■ w . (x+-x-) = 2 

X-

x+ M=Margin Width



Linear SVM Mathematically
■ Goal: 1) Correctly classify all training data

if yi = +1
if yi = -1
for all i

2) Maximize the Margin
same as minimize

■ We can formulate a Quadratic Optimization Problem and solve for w and b

■ Minimize 

subject to   



CP – Convex Programming







■ Minimize 

subject to   



Solving the Optimization Problem

■ Need to optimize a quadratic function subject to linear constraints.
■ Quadratic optimization problems are a well-known class of 

mathematical programming problems, and many (rather intricate) 
algorithms exist for solving them.

■ The solution involves constructing a dual problem where a 
Lagrange multiplier αi is associated with every constraint in the 
primary problem:

Find w and b such that
Φ(w) =½ wTw is minimized; 
and for all {(xi ,yi)}:  yi (wTxi + b) ≥ 1

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized,   and 
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi
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The Optimization Problem Solution
■ The solution has the form:

■ Each non-zero αi indicates that corresponding xi is a 
support vector.

■ Then the classifying function will have the form:

■ Notice that it relies on an inner product between the test 
point x and the support vectors xi.

■ Also keep in mind that solving the optimization problem 
involved computing the inner products xi

Txj between all 
pairs of training points.

w =Σαiyixi b= yk - wTxk for any xk such that  αk≠ 0

f(x) = Σαiyixi
Tx + b



Dataset with noise  

■ Hard Margin: So far we require 
all data points be classified correctly 
- No training error

■ What if the training set is 
noisy?

- Solution 1: use very powerful 
kernels

denotes +1
denotes -1

OVERFITTING!



Slack variables ξi can be added to allow 
misclassification of difficult or noisy examples.

ε7

ε11
ε2

Soft Margin Classification

What should our quadratic 
optimization criterion be?

Minimize



Hard Margin v.s. Soft Margin
■ The old formulation:

■ The new formulation incorporating slack variables:

■ Parameter C can be viewed as a way to control 
overfitting.

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}

yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi≥ 0 for all i
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Hard 1-dimensional Dataset

What would SVMs do with this data?

Not a big surprise

x=0

Positive “plane” Negative “plane”

x=0

Doesn’t look like slack variables will save us this time…

taken from Andrew W. Moore
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Hard 1-dimensional Dataset
Make up a new feature!
Sort of… 

… computed from 
original feature(s)

x=0

New features are sometimes called basis functions.

Separable! MAGIC!

Now drop this “augmented” data into our linear SVM.
taken from Andrew W. Moore
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Kernels and Linear Classifiers

We will use linear classifiers in this feature space.
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Kernels and Linear Classifiers

Feature functions
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Non-linear SVMs
■ Datasets that are linearly separable with some noise 

work out great:

■ But what are we going to do if the dataset is just too 
hard? 

■ How about… mapping data to a higher-dimensional 
space:

0 x

0 x

0 x

x2



28

Non-linear SVMs:  Feature spaces
■ General idea:   the original input space can always be 

mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x→ φ(x)
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Kernel functions
•
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RBF kernels
• Squared exponential kernel (SE kernel) or Gaussian 

kernel

• If Σ is spherical, we get the isotropic kernel
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Kernels for comparing documents

• Unfortunately, this simple method does not work very 
well

• Stop words (such as “the” or “and”) are not 
discriminative

• Similarity is artificially boosted when a discriminative 
word occurs multiple times

• Replace the word count vector with Term frequency 
inverse document frequency (TF-IDF)
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Kernels for comparing documents
• Define the term frequency as:

• Our new kernel has the form
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Mercer (positive definite) kernels
• Gram matrix is defined as
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Using kernels inside GLMs
•

35



•
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Design Matrix
Consider a simple toy example of classification



Using kernels inside GLMs
• Use kernelized feature vector inside a linear regression
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Example of non-linear binary classification using an RBF 
kernel with bandwidth σ = 0.3. (a) L2VM with λ = 5. (b) L1VM 
with λ = 1. (c) RVM. (d) SVM with C = 1/λ chosen by cross 
validation. Black circles denote the support vectors
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Kernelized ridge regression
•

40



Kernelized ridge regression
•

41



Kernelized ridge regression
•

42
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Support vector machines (SVMs)
•
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SVMs for regression
•
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The large margin principle
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The large margin principle
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The large margin principle
•
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The large margin principle
•
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Soft margin constraints
•
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Soft margin constraints
•

51



Choosing C
•

52
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Non-linear SVMs
■ Datasets that are linearly separable with some noise 

work out great:

■ But what are we going to do if the dataset is just too 
hard? 

■ How about… mapping data to a higher-dimensional 
space:

0 x

0 x

0 x

x2
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Kernels

Definition: (Gram matrix, kernel matrix)

Definition: (Feature space, kernel space)
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Kernel technique

Lemma:

The Gram matrix is symmetric, PSD matrix.

Proof:

Definition: 
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The “Kernel Trick”
■ To produce linear separability in Higher Dimension, the linear classifier 

relies on dot product between vectors K(xi,xj)=xi
Txj

■ If every data point is mapped into high-dimensional space via some 
transformation Φ:  x→ φ(x), the dot product becomes:

K(xi,xj)= φ(xi) Tφ(xj)
■ A kernel function is some function that corresponds to an inner product in 

some expanded feature space.
■ Example: 

2-dimensional vectors x = [x1   x2];  let K(xi,xj) = (1 + xi
Txj)2

,

Need to show that K(xi,xj) = φ(xi) Tφ(xj):
K(xi,xj) = (1 + xi

Txj)2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

=  φ(xi) Tφ(xj),    where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]
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Examples of Kernel Functions
■ Linear: K(xi,xj)= xi 

Txj

■ Polynomial of power p: K(xi,xj)= (1+ xi 
Txj)p

■ Gaussian (radial-basis function network):

■ Sigmoid: K(xi,xj)= tanh(β0xi 
Txj + β1)
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Non-linear SVMs Mathematically
■ Dual problem formulation:

■ The solution is:

■ Optimization techniques for finding αi’s remain the same!

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and 
(1)  Σαiyi = 0
(2) αi ≥ 0 for all αi

f(x) = ΣαiyiK(xi, xj)+ b
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■ SVM locates a separating hyperplane in the 
feature space and classify points in that 
space 

■ It does not need to represent the space 
explicitly, simply by defining a kernel 
function

■ The kernel function plays the role of the dot 
product in the feature space.

Nonlinear SVM - Overview
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Properties of SVM
• Flexibility in choosing a similarity function
• Sparseness of solution when dealing with large 

data sets
- only support vectors are used to specify the separating 
hyperplane 

• Ability to handle large feature spaces
- complexity does not depend on the dimensionality of the 
feature space

• Overfitting can be controlled by soft margin 
approach

• Nice math property: a simple convex optimization 
problem which is guaranteed to converge to a single global 
solution

• Feature Selection
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SVM Applications
• SVM has been used successfully in many 

real-world problems
- text (and hypertext) categorization
- image/object classification
- bioinformatics (Protein classification,   

Cancer classification)
- hand-written character recognition

Summary:

SVM classifiers involve three key ingredients:
The kernel trick : prevent underfitting
Sparsity, large margin principle : prevent overfitting
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