KERNELS, SVM

CS5691- Pattern Recognition \& MACHINE LEARNING

Murphy 14.1, 14.2.1-14.2.6, 14.3, 14.4, 14.5

+ Wiki + Online Tut notes;
Eg - http://www.luigifreda.com/wp-content/uploads/2018/01/lec9.pdf

Introduction

- How do we represent a text document or protein sequence, which can be of variable length?
- One approach is to define a generative model for the data, and use the inferred latent representation and/or the parameters of the model as features, and then to plug these features in to standard methods
- Another approach is to assume that we have a way of measuring the similarity between objects, that doesn't require preprocessing them into feature vector format
- For example, when comparing strings, we can compute the edit distance between them

Linear Classifiers

$\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w \boldsymbol{x}+b)$

- denotes +1
- denotes -1

How would you classify this data?

Linear Classifiers

- denotes +1
- denotes -1
$\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w \boldsymbol{x}+b)$

How would you classify this data?

Classifier Margin

- denotes +1
$\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w \boldsymbol{x}+b)$
- denotes -1

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Linear SVM Mathematically

What we know:

- w $\cdot \boldsymbol{x}^{+}+b=+1$
- w. $\boldsymbol{x}+b=-1$

$$
M=\frac{\left(x^{+}-x^{-}\right) \cdot w}{|w|}=\frac{2}{|w|}
$$

- w $\cdot\left(x^{+}-x^{-}\right)=2$

Linear SVM Mathematically

- Goal: 1) Correctly classify all training data

$$
\left.\begin{array}{ll}
w x_{i}+b \geq 1 & \text { if } y_{i}=+1 \\
w x_{i}+b \leq 1 & \text { if } y_{i}=-1
\end{array}\right\}
$$

$$
y_{i}\left(w x_{i}+b\right) \geq 1 \quad \text { for all } \mathrm{i}_{2}
$$

2) Maximize the Margin $\quad \begin{array}{ll}M=\frac{2}{|w|} \\ \text { same as minimize } & \frac{1}{2} w^{t} w\end{array}$

- We can formulate a Quadratic Optimization Problem and solve for w and b
- Minimize

$$
\Phi(w)=\frac{1}{2} w^{t} w
$$

subject to

$$
y_{i}\left(w x_{i}+b\right) \geq 1
$$

$$
\begin{array}{llr}
\text { subject to } & a_{i}(\mathrm{x})=\mathrm{a}_{i}^{T} \mathrm{x}-b_{i} & \text { for } 1 \leq i \leq p \\
& c_{j}(\mathrm{x}) \geq 0 & \text { for } 1 \leq j \leq q \tag{10.107c}
\end{array}
$$

where $f(\mathrm{x})$ and $-c_{j}(\mathrm{x})$ for $1 \leq j \leq q$ are convex functions. The main results, which are analogous to those in Sec. 2.8 , are described by the next two theorems.

Theorem 10.7 Globalness and convexity of minimizers in CP problems
(a) If x^{*} is a local minimizer of a CP problem, then x^{*} is also a global minimizer.
(b) The set of minimizers of a CP problem, denoted as S, is convex.
(c) If the objective function $f(\mathrm{x})$ is strictly convex on the feasible region \mathcal{R}, then the global minimizer is unique.

CP - Convex Programming

Theorem 10.9 Duality in convex programming Let x^{*} be a minimizer, and λ^{*}, μ^{*} be the associated Lagrange multipliers of the problem in Eq. (10.107). If x^{*} is a regular point of the constraints, then $\mathrm{x}^{*}, \lambda^{*}$, and μ^{*} solve the dual problem

$$
\begin{aligned}
& \underset{\mathrm{x}, \lambda, \mu}{\operatorname{maximize}} L(\mathrm{x}, \lambda, \mu) \\
& \text { subject to : } \quad \nabla_{x} L(\mathrm{x}, \lambda, \mu)=0 \\
& \mu \geq 0
\end{aligned}
$$

In addition, $f\left(\mathrm{x}^{*}\right)=L\left(\mathrm{x}^{*}, \lambda^{*}, \mu^{*}\right)$.

Example 10.16 Find the Wolfe dual of the standard-form LP problem

Solution The Lagrangian is given by

$$
L(\mathrm{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=\mathrm{c}^{T} \mathrm{x}-(\mathrm{Ax}-\mathrm{b})^{T} \boldsymbol{\lambda}-\mathrm{x}^{T} \boldsymbol{\mu}
$$

and the dual problem can be stated as

$$
\underset{\lambda, \mu}{\operatorname{maximize}} \mathrm{b}^{T} \lambda
$$

$$
\text { subject to: } \quad \begin{aligned}
\mathrm{c}-\mathrm{A}^{T} \lambda-\mu & =0 \\
\mu & \geq 0
\end{aligned}
$$

Minimize $\Phi(w)=\frac{1}{2} w^{t} w$
subject to $y_{i}\left(w x_{i}+b\right) \geq 1 \quad \forall i$

$$
\begin{aligned}
& f(w, b)=\frac{1}{2}|w|^{2} \\
& g(w, b)=y_{i}(\vec{x} \cdot \vec{w}+b)-1=0
\end{aligned}
$$

$$
L_{\min (w, b)}(w, b)=\frac{1}{2}|w|^{2}-\sum_{i} \alpha_{i}\left[y_{i}\left(\bar{x}_{t} \cdot \vec{w}+b\right)-1\right]
$$

$$
\text { By considering: } \frac{\left|w^{2}\right|^{2}}{\partial w}=\frac{\bar{w} \cdot \bar{w}}{\partial w}
$$

$$
\frac{L(w, b)}{\partial w}=\vec{w}-\sum_{i} \alpha_{i} y_{i} \vec{x}
$$

$$
\frac{L(w, b)}{\partial b}=-\sum_{i} \alpha_{i} y_{i}
$$

Solving the Optimization Problem

Find \mathbf{w} and b such that
$\boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized;
and for all $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}: y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+b\right) \geq 1$

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a dual problem where a Lagrange multiplier $\boldsymbol{\alpha}_{\boldsymbol{i}}$ is associated with every constraint in the primary problem:

Find $\alpha_{1} \ldots \alpha_{N}$ such that
$\mathbf{Q}(\boldsymbol{\alpha})=\Sigma \alpha_{i}-\mathbf{1} / \mathbf{2} \sum \Sigma \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{X}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}_{\mathbf{j}} \quad$ is maximized, and
(1) $\sum \alpha_{i} y_{i}=0$
(2) $\alpha_{i} \geq 0$ for all α_{i}

The Optimization Problem Solution

- The solution has the form:

$$
\mathbf{w}=\Sigma \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}} \quad b=y_{k}-\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{k}} \text { for any } \mathbf{x}_{\mathbf{k}} \text { such that } \alpha_{k} \neq 0
$$

- Each non-zero α_{i} indicates that corresponding $\mathbf{x}_{\mathbf{i}}$ is a support vector.
- Then the classifying function will have the form:

$$
f(\mathbf{x})=\Sigma \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}+b
$$

- Notice that it relies on an inner product between the test point \mathbf{x} and the support vectors $\mathbf{x}_{\mathbf{i}}$.
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_{\mathbf{i}}{ }^{\boldsymbol{T}} \mathbf{x}_{\mathbf{j}}$ between all pairs of training points.

Dataset with noise

- denotes +1
- denotes -1

- Hard Margin: So far we require all data points be classified correctly
- No training error
- What if the training set is noisy?
- Solution 1: use very powerful kernels

OVERFITTING!

Soft Margin Classification

Slack variables ςi can be added to allow misclassification of difficult or noisy examples.

Hard Margin v.s. Soft Margin

- The old formulation:

Find \mathbf{w} and b such that
$\boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$

$$
y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+\mathrm{b}\right) \geq 1
$$

The new formulation incorporating slack variables:
Find \mathbf{w} and b such that
$\boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}+C \Sigma \xi_{i} \quad$ is minimized and for all $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$
$y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+b\right) \geq 1-\xi_{i} \quad$ and $\quad \xi_{i} \geq 0$ for all i

- Parameter C can be viewed as a way to control overfitting.

Computing the (soft-margin) SVM classifier amounts to minimizing an expression of the form

$$
\begin{equation*}
\left[\frac{1}{n} \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-b\right)\right)\right]+\lambda\|\mathbf{w}\|^{2} . \tag{}
\end{equation*}
$$

Primal

Minimizing (2) can be rewritten as a constrained optimization problem with a differentiable objective function in the following way.

For each $i \in\{1, \ldots, n\}$ we introduce a variable $\zeta_{i}=\max \left(0,1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-b\right)\right)$. Note that ζ_{i} is the smallest nonnegative number satisfying $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-b\right) \geq 1-\zeta_{i}$.

Thus we can rewrite the optimization problem as follows
$\operatorname{minimize} \frac{1}{n} \sum_{i=1}^{n} \zeta_{i}+\lambda\|\mathbf{w}\|^{2}$
subject to $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-b\right) \geq 1-\zeta_{i}$ and $\zeta_{i} \geq 0$, for all i.
This is called the primal problem.

Dual

By solving for the Lagrangian dual of the above problem, one obtains the simplified problem
$\operatorname{maximize} f\left(c_{1} \ldots c_{n}\right)=\sum_{i=1}^{n} c_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} c_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right) y_{j} c_{j}$,
subject to $\sum_{i=1}^{n} c_{i} y_{i}=0$, and $0 \leq c_{i} \leq \frac{1}{2 n \lambda}$ for all i.
This is called the dual problem. Since the dual maximization problem is a quadratic function of the c_{i} subject to linear constraints, it is efficiently solvable by quadratic programming algorithms.

Here, the variables c_{i} are defined such that

$$
\mathbf{w}=\sum_{i=1}^{n} c_{i} y_{i} \mathbf{x}_{i} .
$$

Moreover, $c_{i}=0$ exactly when \mathbf{x}_{i} lies on the correct side of the margin, and $0<c_{i}<(2 n \lambda)^{-1}$ when \mathbf{x}_{i} lies on the margin's boundary. It follows that \mathbf{w} can be written as a linear combination of the support vectors.

The offset, b, can be recovered by finding an \mathbf{x}_{i} on the margin's boundary and solving

$$
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-b\right)=1 \Longleftrightarrow b=\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i} .
$$

(Note that $y_{i}^{-1}=y_{i}$ since $y_{i}= \pm 1$.)

Hard 1-dimensional Dataset

What would SVMs do with this data?

Doesn't look like slack variables will save us this time...

Hard 1-dimensional Dataset

New features are sometimes called basis functions.
Now drop this "augmented" data into our linear SVM.

Kernels and Linear Classifiers

Let $\vec{x}=\left[\vec{x}_{1}, \vec{x}_{2}\right] \in \mathbb{R}^{2}$ be a vectorial represenation of object $x \in \mathcal{X}$

Let $\phi: \mathcal{X} \rightarrow \mathcal{K} \subset \mathbb{R}^{3}$ feature map be given by

$$
\phi(\vec{x}) \doteq\left[\vec{x}_{1}, \vec{x}_{2}^{2}, \vec{x}_{1} \vec{x}_{2}\right]^{T} \in \mathcal{K} \subset \mathbb{R}^{3}
$$

Def. Feature space: \mathcal{K}
We will use linear classifiers in this feature space.
In the original space \mathbb{R}^{2} for a given $w \in \mathbb{R}^{3}$ the decision surface is:

$$
\tilde{X}_{0}(\mathbf{w})=\left\{\vec{x} \in \mathbb{R}^{2} \mid w_{1} \vec{x}_{1}+w_{2} \vec{x}_{2}^{2}+w_{3} \vec{x}_{1} \vec{x}_{2}=0\right\}
$$

- This is nonlinear in $\vec{x} \in \mathbb{R}^{2}$
- This is linear in the feature space $\phi(\vec{x}) \in \mathcal{K} \subset \mathbb{R}^{3}$

Kernels and Linear Classifiers

$$
\phi(\vec{x}) \doteq\left[\phi_{1}(\vec{x}), \phi_{2}(\vec{x}), \phi_{3}(\vec{x})\right] \doteq\left[\vec{x}_{1}, \vec{x}_{2}^{2}, \vec{x}_{1} \vec{x}_{2}\right]^{T}
$$

Feature functions

- We seek for a small set of basis vectors $\left\{\phi_{i}\right\}$ which allows perfect discrimination between the classes in \mathcal{X} (Feature selection)
- If we have too many features \Rightarrow overfitting can happen.

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

- General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Kernel functions

- We define a kernel function to be a real-valued function of two arguments, $\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in R$, for $\mathbf{x}, \mathbf{x}^{\prime} \in \mathrm{X}$.
- X is some abstract space
- Typically the function has the following properties:
- Symmetric
- Non-negative
- Can be interpreted as a measure of similarity
- We will discuss several examples of kernel functions

RBF kernels

- Squared exponential kernel (SE kernel) or Gaussian kernel

$$
\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right)
$$

- If $\boldsymbol{\Sigma}$ is diagonal, this can be written as

$$
\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{1}{2} \sum_{j=1}^{D} \frac{1}{\sigma_{j}^{2}}\left(x_{j}-x_{j}^{\prime}\right)^{2}\right)
$$

We can interpret the σ_{j} as defining the characteristic length scale of dimension j

- If $\boldsymbol{\Sigma}$ is spherical, we get the isotropic kernel

$$
\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

An example of RBF (Radial basis function) kernel (since it is a function of $\left.\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|\right)$ where σ^{2} is known as the bandwidth

Kernels for comparing documents

- If we use a bag of words representation, where $\mathbf{x}_{i j}$ is the number of times words j occurs in document i, we can use the cosine similarity

$$
\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{i^{\prime}}\right)=\frac{\mathbf{x}_{i}^{T} \mathbf{x}_{i^{\prime}}}{\left\|\mathbf{x}_{i}\right\|_{2}\left\|\mathbf{x}_{i^{\prime}}\right\|_{2}}
$$

- Unfortunately, this simple method does not work very well
- Stop words (such as "the" or "and") are not discriminative
- Similarity is artificially boosted when a discriminative word occurs multiple times
- Replace the word count vector with Term frequency inverse document frequency (TF-IDF)

Kernels for comparing documents

- Define the term frequency as:

$$
\mathrm{tf}\left(x_{i j}\right) \triangleq \log \left(1+x_{i j}\right)
$$

- This reduces the impact of words that occur many times with a document
- Define inverse document frequency where N is the total number of documents

$$
\operatorname{idf}(j) \triangleq \log \frac{N}{1+\sum_{i=1}^{N} \mathbb{I}\left(x_{i j}>0\right)}
$$

- Our new kernel has the form

$$
\kappa\left(\mathrm{x}_{i}, \mathrm{x}_{i^{\prime}}\right)=\frac{\phi\left(\mathrm{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{i^{\prime}}\right)}{\left\|\phi\left(\mathrm{x}_{i}\right)\right\|_{2}\left\|\phi\left(\mathrm{x}_{i^{\prime}}\right)\right\|_{2}} \quad \begin{aligned}
& \phi(\mathbf{x})=\operatorname{tf}-\mathrm{idf}(\mathbf{x}) \\
& \operatorname{tf}-\operatorname{idf}\left(\mathrm{x}_{i}\right) \triangleq\left[\operatorname{tf}\left(x_{i j}\right) \times \operatorname{idf}(j)\right]_{33}^{V}=1
\end{aligned}
$$

Mercer (positive definite) kernels

- Gram matrix is defined as

$$
\mathbf{K}=\left(\begin{array}{ccc}
\kappa\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right) & \cdots & \kappa\left(\mathrm{x}_{1}, \mathrm{x}_{N}\right) \\
& \vdots & \\
\kappa\left(\mathrm{x}_{N}, \mathrm{x}_{1}\right) & \cdots & \kappa\left(\mathrm{x}_{N}, \mathrm{x}_{N}\right)
\end{array}\right)
$$

- If the Gram matrix is positive definite for any set of inputs, the Kernel is a Mercer kernel
- Mercer's theorem: If the Gram matrix is positive definite, we can compute an eigenvector decomposition of it as follows: $\mathrm{K}=\mathbf{U}^{T} \boldsymbol{\Lambda} \mathbf{U}$
where $\boldsymbol{\Lambda}$ is a diagonal matrix of eigenvalues $\lambda_{i}>0$
- Now consider an element of \mathbf{K}

$$
\begin{array}{ll}
\quad k_{i j}=\left(\Lambda^{\frac{1}{2}} \mathrm{U}_{:, i}\right)^{T}\left(\Lambda^{\frac{1}{2}} \mathrm{U}_{: j}\right) \\
k_{i j}=\phi\left(\mathrm{x}_{i}\right)^{T} \phi\left(\mathrm{x}_{j}\right) & \phi\left(\mathrm{x}_{i}\right)=\Lambda^{\frac{1}{2}} \mathrm{U}_{: i} .
\end{array}
$$

Using kernels inside GLMs

- We define a kernel machine to be a GLM (generalized linear model) where the input feature vector has the form

$$
\phi(\mathbf{x})=\left[k\left(\mathbf{x}, \mu_{1}\right), \ldots, k\left(\mathbf{x}, \mu_{K}\right)\right]
$$

where $\mu_{k} \in X$ are a set of K centroids

- If κ is an RBFkernel, this is called an RBF network
- We will discuss ways to choose the μ_{k} parameters
- Note that in this approach, the kernel need not be a Mercer kernel.
- We can use the kernelized feature vector for logistic regression by defining (using Bernoulli Dist.)

$$
p(y \mid \mathbf{x}, \boldsymbol{\theta})=\operatorname{Ber}\left(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x})\right)
$$

Design Matrix

Consider a simple toy example of classification

(a)

(b)

דwo classes of object which correspond to labels 0 and 1 The inputs are colored shapes as shown in (a). These have been described by a set of D features or attributes, which are stored in an $N \times D$ design matrix \boldsymbol{X}, shown in (b).

Using kernels inside GLMs

- Use kernelized feature vector inside a linear regression $p(y \mid \mathbf{x}, \boldsymbol{\theta})=\mathcal{N}\left(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}), \sigma^{2}\right)$.

Figure 14.3 RBF basis in ld. Left column: fitted function. Middle column: basis functions evaluated on a grid. Right column: design matrix. Top to bottom we show different bandwidths: $\tau=0.1, \tau=0.5$, $\tau=50$. Figure generated by linregRbfDemo.

Example of non-linear binary classification using an RBF kernel with bandwidth $\sigma=0.3$. (a) L2VM with $\lambda=5$. (b) L1VM with $\lambda=1$. (c) RVM. (d) SVM with $C=1 / \lambda$ chosen by cross validation. Black circles denote the support vectors

Example of kernel based regression on the noisy sinc function using an RBF kernel with bandwidth $\sigma=0.3$. (a) L 2 VM with $\lambda=0.5$. (b) L 1 VM with $\lambda=0.5$. (c) RVM. (d) SVM regression with $C=1 / \lambda$ chosen by cross validation, and $\epsilon=0.1$. Red circles denote the retained training exemplars.

Kernelized ridge regression

- Applying the kernel trick to distance-based methods was straightforward
- It is not so obvious how to apply it to parametric models such as ridge regression
- The primal problem
- Let $\mathbf{x} \in R^{D}$ be some feature vector, and \mathbf{X} be the corresponding $N \times D$ design matrix
- Minimize

$$
J(\mathbf{w})=(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})+\lambda\|\mathbf{w}\|^{2}
$$

- The optimal solution is given by

$$
\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}_{D}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}+\lambda \mathbf{I}_{D}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

Kernelized ridge regression

- We can partially kernelize this, by replacing $\mathbf{X X}^{T}$ with the Gram matrix K
- But what about the leading \mathbf{X}^{T} term?
- Let us define the following dual variables:

$$
\alpha \triangleq\left(\mathrm{K}+\lambda \mathrm{I}_{N}\right)^{-1} \mathrm{y}
$$

- Then we can rewrite the primal variables as follows

$$
\mathrm{w}=\mathrm{X}^{T} \boldsymbol{\alpha}=\sum_{i=1}^{N} \alpha_{i} \mathrm{x}_{i}
$$

- This tells us that the solution vector is just a linear sum of the N training vectors. When we plug this in at test time to compute the predictive mean, we get

$$
\hat{f}(\mathrm{x})=\mathrm{w}^{T} \mathrm{x}=\sum_{i=1}^{N} \alpha_{i} \mathrm{x}_{i}^{T} \mathrm{x}=\sum_{i=1}^{N} \alpha_{i} \kappa\left(\mathrm{x}, \mathrm{x}_{i}\right)
$$

Kernelized ridge regression

- So we have successfully kernelized ridge regression by changing from primal to dual variables
- This technique can be applied to many other linear models, such as logistic regression
- The cost of computing the dual variables $\boldsymbol{\alpha}$ is $O\left(N^{3}\right)$, whereas the cost of computing the primal variables \boldsymbol{w} is $O\left(D^{3}\right)$
- However, prediction using the dual variables takes $O(N D)$ time, while prediction using the primal variables only takes $O(D)$ time

Support vector machines (SVMs)

- Consider the ℓ_{2} regularized empirical risk function

$$
J(\mathbf{w}, \lambda)=\sum_{i=1}^{N} L\left(y_{i}, \hat{y}_{i}\right)+\lambda\|\mathbf{w}\|^{2} \quad \hat{y}_{i}=\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}
$$

- If L is quadratic loss, this is equivalent to ridge regression
- We can rewrite these equations in a way that only involves inner products of the form $\mathbf{x}^{T} \mathbf{x}$, which we can replace by calls to a kernel function, $\kappa(\mathbf{x}, \mathbf{x})$
- This is kernelized, but not sparse
- If we replace the quadratic loss with some other loss function, we can ensure that the solution is sparse, so that predictions only depend on a subset of the training data, known as support vectors
- This combination of the kernel trick plus a modified loss function is known as a support vector machine or SVM

SVMs for regression

- This is a standard quadratic program in $2 N+D+1$ variables.
- The optimal solution has the form

$$
\hat{\mathbf{w}}=\sum_{i} \alpha_{i} \mathbf{x}_{i}
$$

where $\alpha_{i} \geq 0$

- Furthermore, it turns out that the $\boldsymbol{\alpha}$ vector is sparse, because we don't care about errors which are smaller than ϵ. The \mathbf{x}_{i} for which $\alpha_{i}>0$ are called the support vectors. These are points for which the errors lie on or outside the ϵ-tube

The large margin principle

Illustration of the geometry of a linear decision boundary in 2d. A point \mathbf{x} is classified as belonging in decision region R_{1} if $f(\mathbf{x})>0$, otherwise it belongs in decision region R_{0}; here $f(\mathbf{x})$ is known as a discriminant function. The decision boundary is the set of points such that $f(\mathbf{x})=0 . \boldsymbol{w}$ is a vector which is perpendicular to the decision boundary. The term w_{0} controls the distance of the decision boundary from the origin. The signed distance of \mathbf{x} from its orthogonal projection onto the decision boundary, \boldsymbol{x}_{\perp}, is given by $f(\mathbf{x}) /\|\boldsymbol{w}\|$.

The large margin principle

- Here, we derive the Equation form a completely different perspective.

$$
\mathbf{x}=\mathbf{x}_{\perp}+r \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

- where r is the distance of \mathbf{x} from the decision boundary whose normal vector is \mathbf{W}, and \boldsymbol{x}_{\perp} is the orthogonal projection of \mathbf{x} onto this boundary

$$
f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+w_{0}=\left(\mathbf{w}^{T} \mathbf{x}_{\perp}+w_{0}\right)+r \frac{\mathbf{w}^{T} \mathbf{w}}{\|\mathbf{w}\|}
$$

- Now $f\left(\mathbf{x}_{\perp}\right)=0$ so $0=\mathbf{w}^{T} \mathbf{x}_{\perp}+w_{0}$
- Hence

$$
f(\mathbf{x})=r \frac{\mathbf{w}^{T} \mathbf{w}}{\sqrt{\mathbf{w}^{T} \mathbf{w}}} \quad r=\frac{f(\mathbf{x})}{\|\mathbf{w}\|}
$$

The large margin principle

- We would like to make this distance $r=f(\mathbf{x}) /\|\boldsymbol{w}\|$ as large as possible
- Intuitively, the best one to pick is the one that maximizes the margin, i.e., the perpendicular distance to the closest point
- In addition, we want to ensure each point is on the correct side of the boundary, hence we want $f\left(\mathbf{x}_{i}\right) y_{i}>0$.
- So our objective becomes

$$
\max _{\mathbf{w}, w_{0}} \min _{i=1}^{N} \frac{y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)}{\|\mathbf{w}\|}
$$

The large margin principle

- Our objective:

$$
\max _{\mathbf{w}, w_{0}} \min _{i=1}^{N} \frac{y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)}{\|\mathbf{w}\|}
$$

- Note that by rescaling the parameters using $\boldsymbol{w} \rightarrow k \boldsymbol{w}$ and $w_{0} \rightarrow k w_{0}$, we do not change the distance of any point to the boundary, since the k factor cancels out when we divide by $\|\boldsymbol{w}\|$.
- Therefore let us define the scale factor such that $y_{i} f_{i}=1$ for the point that is closest to the decision boundary
- We therefore want to optimize

$$
\min _{\mathbf{w}, w_{0}} \frac{1}{2}\|\mathbf{w}\|^{2} \quad \text { s.t. } \quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \geq 1, i=1: N
$$

- The constraint says that we want all points to be on the correct side of the decision boundary with a margin of at least 1

Soft margin constraints

- If the data is not linearly separable (even after using the kernel trick), there will be no feasible solution in which $y_{i} f_{i} \geq 1$ for all i.
- We replace the hard constraints with the soft margin constraints that $y_{i} f_{i} \geq 1-\xi_{i}$.
- Our objective was:

$$
\min _{\mathbf{w}, w_{0}} \frac{1}{2}\|\mathbf{w}\|^{2} \quad \text { s.t. } \quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \geq 1, i=1: N
$$

- The new objective becomes

$$
\min _{\mathbf{w}, w_{0}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \quad \text { s.t. } \quad \xi_{i} \geq 0, \quad y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{w}+w_{0}\right) \geq 1-\xi_{i}
$$

Soft margin constraints

- We therefore have introduced slack variables $\xi_{i} \geq 0$ such that $\xi_{i}=0$ if the point is on or inside the correct margin boundary, and $\xi_{i}=\left|y_{i}-f_{i}\right|$ otherwise
- $0<\xi_{i} \leq 1$ the point lies inside the margin, but on the correct side of the decision boundary
- If $\xi_{i}>1$, the point lies on the wrong side of the decision boundary
- Points with circles around them are support vectors.

Choosing C

- Typically C is chosen by cross-validation.
- C interacts quite strongly with the kernel parameters.
- To choose C efficiently, one can develop a path following algorithm
- The basic idea is to start with λ large, so that the margin $1 /\|\boldsymbol{w}(\lambda)\|$ is wide, and hence all points are inside of it and have $\alpha_{i}=1$
- By slowly decreasing λ, a small set of points will move from inside the margin to outside, and their α_{i} values will change from 1 to 0 , as they cease to be support vectors

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Kernels

Definition: (Gram matrix, kernel matrix)

Gram matrix $G \in \mathbb{R}^{m \times m}$ of kernel k at $\left\{x_{1}, \ldots, x_{m}\right\}$:
$\left.\begin{array}{l}\text { Given a kernel } k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \\ \text { and a training set }\left\{x_{1}, \ldots, x_{m}\right\}\end{array}\right\} \Rightarrow G_{i j} \doteq k\left(x_{i}, x_{j}\right)=\left\langle\mathbf{x}_{i}, \mathrm{x}_{j}\right\rangle$

Definition: (Feature space, kernel space)

$$
\mathcal{K} \doteq \operatorname{span}\{\phi(x) \mid x \in \mathcal{X}\} \subset \mathbb{R}^{n}
$$

Kernel technique

Definition:

Matrix $G \in \mathbb{R}^{m \times m}$ is positive semidefinite (PSD) $\Leftrightarrow G$ is symmetric, and $0 \leq \boldsymbol{\beta}^{T} G \boldsymbol{\beta} \forall \boldsymbol{\beta} \in \mathbb{R}^{m \times m}$
$\left.\begin{array}{l}\text { Given a kernel } k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \\ \text { and a training set }\left\{x_{1}, \ldots, x_{m}\right\}\end{array}\right\} \Rightarrow G_{i j} \doteq k\left(x_{i}, x_{j}\right)=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle_{\mathcal{K}}$

Lemma:

The Gram matrix is symmetric, PSD matrix.
Proof:

$$
\begin{aligned}
\mathbf{X} & =\left[\mathrm{x}_{1}, \ldots, \mathbf{x}_{m}\right] \in \mathbb{R}^{n \times m} \Rightarrow G=\mathbf{X}^{T} \mathbf{X} \in \mathbb{R}^{m \times m} \\
& 0 \leq\langle\mathbf{X} \boldsymbol{\beta}, \mathbf{X} \boldsymbol{\beta}\rangle_{\mathcal{K}}=\boldsymbol{\beta}^{T} G \boldsymbol{\beta}
\end{aligned}
$$

The "Kernel Trick"

- To produce linear separability in Higher Dimension, the linear classifier relies on dot product between vectors $K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\mathbf{x}_{\mathrm{i}}{ }^{T} \mathbf{x}_{\mathrm{j}}$
- If every data point is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$, the dot product becomes:

$$
K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\varphi\left(\mathbf{x}_{\mathrm{i}}\right)^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{j}}\right)
$$

- A kernel function is some function that corresponds to an inner product in some expanded feature space.
- Example:

2-dimensional vectors $\mathrm{x}=\left[x_{1} x_{2}\right]$; let $K\left(\mathbf{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\left(1+\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{T}} \mathbf{x}_{\mathrm{j}}\right)^{2}$,
Need to show that $K\left(\mathbf{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\varphi\left(\mathrm{x}_{\mathrm{i}}\right)^{\mathrm{T}} \varphi\left(\mathrm{x}_{\mathrm{j}}\right)$:

$$
\begin{aligned}
& K\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\left(1+\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \mathrm{x}_{\mathrm{j}}\right)^{2} \text {, } \\
& =1+x_{i 1}{ }^{2} x_{j 1}{ }^{2}+2 x_{i 1} x_{j 1} x_{i 2} x_{j 2}+x_{i 2}{ }^{2} x_{j 2}{ }^{2}+2 x_{i 1} x_{j 1}+2 x_{i 2} x_{j 2} \\
& =\left[\begin{array}{lllllll}
1 & x_{i 1}{ }^{2} \sqrt{ } 2 & x_{i 1} x_{i 2} & x_{i 2}{ }^{2} \sqrt{ } 2 x_{i 1} \sqrt{ } 2 x_{i 2}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{llll}
1 & x_{j 1}{ }^{2} \sqrt{ } 2 & x_{j 1} x_{j 2} & x_{j 2}{ }^{2} \sqrt{ } 2 x_{j 1} \sqrt{ } 2 x_{j 2}
\end{array}\right] \\
& =\varphi\left(x_{\mathrm{i}}\right)^{\mathrm{T}} \varphi\left(\mathrm{x}_{\mathrm{j}}\right), \quad \text { where } \varphi(\mathrm{x})=\left[\begin{array}{lllll}
1 & x_{1}^{2} & \sqrt{ } 2 & x_{1} x_{2} & x_{2}^{2} \\
& \sqrt{ } 2 x_{1} \sqrt{ } 2 x_{2}
\end{array}\right]
\end{aligned}
$$

Examples of Kernel Functions

- Linear: $K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\mathbf{x}_{\mathbf{i}}{ }^{\top} \mathbf{x}_{\mathbf{j}}$
- Polynomial of power $p: K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\left(1+\mathbf{x}_{\mathbf{i}}{ }^{\top} \mathbf{x}_{\mathbf{j}}\right)^{p}$
- Gaussian (radial-basis function network):

$$
K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid: $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\tanh \left(\beta_{0} \mathbf{x}_{\mathbf{i}}{ }^{\top} \mathbf{x}_{\mathbf{j}}+\beta_{1}\right)$

Non-linear SVMs Mathematically

- Dual problem formulation:

Find $\alpha_{1} \ldots \alpha_{N}$ such that
$Q(\alpha)=\Sigma \alpha_{i}-1 / 2 \Sigma \Sigma \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ is maximized and
(1) $\Sigma \alpha_{i} y_{i}=0$
(2) $\alpha_{i} \geq 0$ for all α_{i}

- The solution is:

$$
f(\mathrm{x})=\Sigma \alpha_{i} y_{i} K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)+b
$$

- Optimization techniques for finding α_{i} 's remain the same!

Nonlinear SVM - Overview

- SVM locates a separating hyperplane in the feature space and classify points in that space
- It does not need to represent the space explicitly, simply by defining a kernel function
- The kernel function plays the role of the dot product in the feature space.

Properties of SVM

- Flexibility in choosing a similarity function
- Sparseness of solution when dealing with large data sets
- only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
- complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
- Feature Selection

SVM Applications

- SVM has been used successfully in many real-world problems
- text (and hypertext) categorization
- image/object classification
- bioinformatics (Protein classification, Cancer classification)
- hand-written character recognition

Summary:

SVM classifiers involve three key ingredients:
The kernel trick : prevent underfitting
Sparsity, large margin principle : prevent overfitting

