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What is Cluster Analysis?

Cluster: A collection of data objects
= similar (or related) to one another within the same group
= dissimilar (or unrelated) to the objects in other groups
Cluster analysis (or clustering, data segmentation, ...)

= Finding similarities between data according to the
characteristics found in the data and grouping similar
data objects into clusters

Unsupervised learning: no predefined classes (i.e., /earning
by observations vs. learning by examples: supervised)

Typical applications
= As a stand-alone tool to get insight into data distribution
= As a preprocessing step for other algorithms



Clustering: Application Examples

Biology: taxonomy of living things: kingdom, phylum, class, order,
family, genus and species
Information retrieval: document clustering

Land use: Identification of areas of similar land use in an earth
observation database

Marketing: Help marketers discover distinct groups in their
customer bases, and then use this knowledge to develop targeted
marketing programs

City-planning: Identifying groups of houses according to their
house type, value, and geographical location

Earth-quake studies: Observed earth quake epicenters should be
clustered along continent faults

Climate: understanding earth climate, find patterns of atmospheric
and ocean

Economic Science: market research
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Compl I
plex cases of classification and clustering
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CLUSTERING CLASSIFICATION

Data Points have Most data points
no labels have labels
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Quality: What Is Good Clustering?

= A good clustering method will produce high quality
clusters

= high intra-class similarity: cohesive within clusters

= low inter-class similarity: distinctive between clusters

= The guality of a clustering method depends on
= the similarity measure used by the method

= its implementation, and

= Its ability to discover some or all of the hidden
patterns



Considerations for Cluster Analysis

Partitioning criteria

= Single level vs. hierarchical partitioning (often, multi-level
hierarchical partitioning is desirable)

Separation of clusters

=« Exclusive (e.g., one customer belongs to only one region)
vs. hon-exclusive (e.g., one document may belong to more
than one class)

Similarity measure

= Distance-based (e.g., Euclidian, road network, vector) vs.
connectivity-based (e.g., density or contiguity)

Clustering space

= Full space (often when low dimensional) vs. subspaces
(often in high-dimensional clustering)



Major Clustering Approaches (I)

Partitioning approach:

= Construct various partitions and then evaluate them by
some criterion, e.g., minimizing the sum of square errors

= Typical methods: k-means, k-medoids, CLARANS
Hierarchical approach:

= Create a hierarchical decomposition of the set of data (or
objects) using some criterion

=« Typical methods: Diana, Agnes, BIRCH, CAMELEON
Density-based approach:

= Based on connectivity and density functions

= Typical methods: DBSCAN, OPTICS, DenClue
Grid-based approach:

= based on a multiple-level granularity structure

= Typical methods: STING, WaveCluster, CLIQUE
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Major Clustering Approaches (II)

Model-based:

= A model is hypothesized for each of the clusters and tries to
find the best fit of that model to each other

= Typical methods: EM, SOM, COBWEB
Frequent pattern-based:
= Based on the analysis of frequent patterns
= Typical methods: p-Cluster
User-quided or constraint-based:

= Clustering by considering user-specified or application-
specific constraints

= Typical methods: COD (obstacles), constrained clustering
Link-based clustering:
= Objects are often linked together in various ways

= Massive links can be used to cluster objects: SimRank,
LinkClus
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GENERAL CATEGORIES
of CLUSTERING DATA
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(linkage based) ‘

Exclusive Probabilistic
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Alternative view of
Algorithms for CLUSTERING

- Unupervised Learning/Classification:
- K-means; K-medoid

- Density Estimation :
(1) Parametric

- Gaussian

- MOG (Mixture of Gaussians)

- Dirichlet, Beta etc.

- Branch and Bound Procedure

- Piecewise Quadratic Boundary

- Nearest Mean Classifier

- MLE (maximum Likelihood Estimate)



- Density Estimation :
(i1) Non-Parametric

- Histogram

- Neighborhood
- Kernel Methods
- Graph Theoretic

- Iterative Valley Seeking



An Example of K-Means Clustering

The initial data set

K=2
—_—

Arbitrarily
partition
objects into
k groups

Partition objects into k nonempty

subsets

Repeat

= Compute centroid (i.e., mean
point) for each partition

= Assign each object to the
cluster of its nearest centroid

Until no change

Loop if
needed

—_—

Update the
cluster
centroids

—

Update the
cluster
centroids
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FCM - Fuzzy C-Means
Clustering



FCM

* A method of clustering which allows one piece of
data to belong to two or more clusters.

. Objectlve functlon to be minimized:

ZZ Ml -l 1sm<o

=1 j=
Where
* u;; Is the degree of membership of x; in the cluster j.

* x; 1S d-dimensional observation
* u; Is d-dimensional center of cluster j



Updation

« FCM Is an Iterative optimization approach.

* At each step, the membership u;; and the cluster centers
u; are updated as follows:

uu — 2

si (sl

llc; — pell

N m
_ Xi=1 U5 X
Hj = N o m
i=1 Ujj




Termination Criterion

* [teration stops, when

maX {|u(k+1) (k)

uP} < e

Where k Is the 1teration number.
€ 1S between 0 and 1



K-means Vs FCM

K-means FCM
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Original Data & Two PCA Yectors

&
c
]
g
€
8
©
[
'S
c
;
a
A
£
=

Second principal component

B Class 1

Feature 1

r'

-

i

=B

i

component space

PCA

AR
T, x
N

%}

4

S

original data space

PC




Hierarchical Clustering



Hierarchical Clustering

* Builds hierarchy of clusters

* Types:
« Bottom Up - Agglomerative

* Starts by considering each observation as a cluster of it’s own
* Clusters are merged as we move up the hierarchy

* Top Down - Divisive
« Starts by considering all observations in one cluster
* Clusters are divided as we move down the hierarchy



Distance Functions

Certain mathematical properties are expected of any distance
measure, or metric:

.d(x,y) > 0forall z, y.
cd(x,y) =01fz = y.
cd(x,y) = d(y, x) (symmetry)

cd(x,y) < d(x,z) + d(z,y) for all x, y, and 2. (triangle
inequality)

S B R I

Euclidean distance d(z,y) = s, |z; —y;|? is probably
the most commonly used metric. Note that 1t weights all
features/dimensions “equally”.



Some commonly used Metrics

 Euclidean distance
 Squared Euclidean distance
* Manhattan distance

* Maximum distance

» Mahalanobis distance



Agglomerative clustering

« Each node/object is a cluster initially

« Merge clusters that have the least dissimilarity
» EX: single-linkage, complete-linkage, etc.

« GO on In a non-descending fashion
 Eventually, all nodes belong to the same cluster

111111111111




Linkage Criteria

e Determines the distance between sets of observations as a
function of the pairwise distances between observations.

« Some commonly used criterias:

 Single Linkage: Distance between two clusters is the smallest
pairwise distance between two observations/nodes, each belonging
to different clusters.

« Complete Linkage: Distance between two clusters is the largest
pairwise distance between two observations/nodes, each belonging
to different clusters.

« Mean or average linkage clustering: Distance between two
clusters is the average of all the pairwise distances, each
node/observation belonging to different clusters.

 Centroid linkage clustering: Distance between two clusters is the
distance between their centroids.



Single Linkage vs. Complete Linkage

Single linkage

Complete linkage: Minimizes the
diameter of the new cluster



Divisive Clustering

* Initially, all data is in the same cluster

 The largest cluster is split until every object is
separate.

000000000000




What are the true number of
clusters?

« Decompose data |

objects into a
several levels of

nested partitioning

(tree of clusters),
called a

dendrogram.

A clustering of the

data objects is
obtained by

cutting the

dendrogram at the =
desired level, then

each connected
component forms
a cluster.




DBSCAN : Density Based
Spatial Clustering of
Applications with Noise



Density-Based Clustering Methods

» Clustering based on density (local cluster criterion), such as
density-connected points

« Major features:
 Discover clusters of arbitrary shape
« Handle noise
* Need density parameters as termination condition

* Several interesting studies:
« DBSCAN: Ester, et al. (KDD’96)
« OPTICS: Ankerst, et al (SIGMOD’99).
« DENCLUE: Hinneburg & D. Keim (KDD’98)
* CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)




Density-Based Clustering: Basic
Concepts

* Two parameters:
* Eps: Maximum radius of the neighborhood

« MinPts: Minimum number of points in an Eps-neighborhood
of that point

* Ngs(P):  {q belongs to D | dist(p,q) <= Eps}

* Directly density-reachable: A point p is directly density-
reachable from a point g w.r.t. Eps, MiInPts if

* p belongs to Ng,(a)

« core point condition: MinPts =5

INgps (9)] >= MinPts Eps=1cm




Density-reachable & Density-connected

 Density-reachable:

A point p is density-reachable
from a point q if there is a chain
of points py, ..., Py, P1 =0, P, =
p such that p,,, is directly
density-reachable from p;

 This Is not symmetric

 Density-connected

A point p Is density-connected
to a point g w.r.t. Eps, MinPts if
there Is a point o such that both,
p and g are density-reachable
from o w.r.t. Eps and MinPts




DBSCAN

\ Given Eps and MinPts,
@ — categorize the objects into
'\ ,': Outlier three exclusive groups.

Border ® @ QO ©
‘\_6@‘6‘ OO Eps — 1Cm
——@ _ :
Core @ Q MinPts =5
__OO
@

« A point is a core point if it has more than a specified nhumber of points

(MinPts) within Eps—These are points that are at the interior of a
cluster.

« A border point has fewer than MinPts within Eps, but is in the
neighborhood of a core point.

« A noise point is any point that is not a core point nor a border point.



DBSCAN — Core, border and
noise points — lllustration - |

| MinPts = 4
E pS N Oi S e Red: Core Points

Yellow: Border points. Still part

of the cluster because it’s within
C ore epsilon of a core point, but not

does not meet the min_points
criteria

Blue: Noise point. Not assigned
to a cluster

Border



DBSCAN — Core, border and
noise points — lllustration - I

o noise

Border point

Core point
MinPts = 4



DBSCAN

A set of points C is a cluster, If

 For any two points p,q € C, p and g are density-
connected

* There does not exist any pair of points, p € C and s & C
such that p and s are density-connected.

Border points are points that are

reachable from any of the core : | _
points. For a border point p ; Outlier
INggs (P)| < MinPts .
—0 O @
Border | @ & o ©
e ©® e® Eps = 1cm
Core| ‘g @ MinPts = 5
___CD O
O




DBSCAN Algorithm with example

e Parameter: ¢ =2, MinPts = 3

for each o € D do
If o is not yet classified then
If ois a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign o to NOISE




DBSCAN Algorithm with example

e Parameter: ¢ =2, MinPts = 3

for each o € D do
iIf o is not yet classified then
If ois a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign oto NOISE




DBSCAN Algorithm with example

e Parameter: ¢ =2, MinPts = 3

for each o € D do
If o is not yet classified then
If ois a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign o to NOISE




Algorithm

« Select a point p

 Retrieve all points directly density-reachable from p wrt. Eps and
MinPts.

« If pisanota core point, pis marked as noise

« Else a cluster is initiated.
» pis marked as classified with a cluster ID
 seedSet = all directly reachable points from p.
« For each point p; in seedSet till it is empty
 If p; is a noise point, assign p; to the current cluster ID

 If p; is unclassified, identify if it is a core point. If yes, then add all
directly reachable point to seed set and add p; to cluster ID

* Delete p; from seedSet



DBSCAN: Properties

 Can discover clusters of arbitrary shapes

» Complexity
* Time
« O(n?)
« O(nlog®!n) with range tree. But requires more

storage
e d dimensions

* \Weakness:
e Parameter sensitive



DBSCAN - non-linearly separable
clusters
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How to pick the initial centroids?

[ I'll Choose ] [ Randomly ] [ Farthest Point ]

What kind of data would you lik

\ ( \ ¢
Uniform Points Gaussian Mixture Smiley Face
J \
\ r
Density Bars Packed Circles Pimpled Smile
J \
1 r
DBSCAN Rings Example A
J \




epsilon =1.00
minPoints = 4
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at kind of data would you like?

= )

Uniform Points

Gaussian Mixture

Density Bars

Packed Circles

Smiley Face

Pimpled Smiley

DBSCAN Rings

Example A
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Demo

Visualizing DBSCAN Clustering

Link: https://www.naftaliharris.com/blog/visualizing-
dbscan-clustering/



https://www.naftaliharris.com/blog/visualizing-dbscan-clustering
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
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