CLUSTERING Methods

Prof. Sukhendu Das Deptt. of CS&E, IIT Madras, Chennai, INDIA.

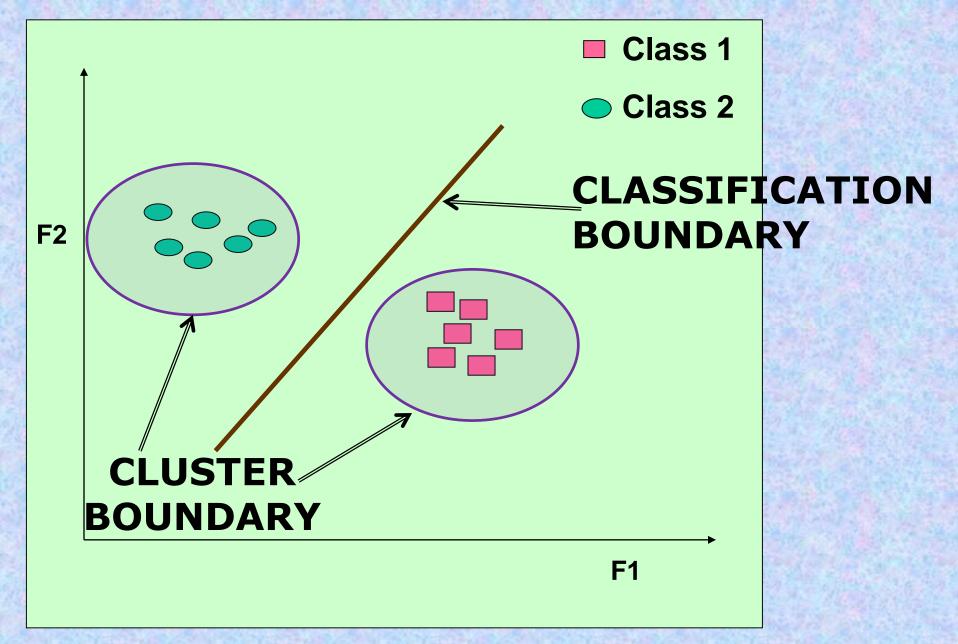
Email: sdas@cse.iitm.ac.in

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

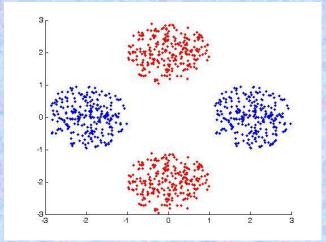
Clustering: Application Examples

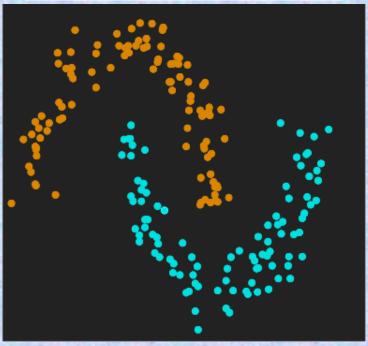
- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market research

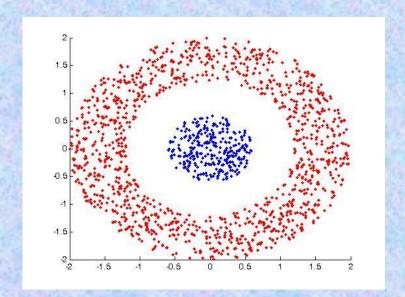


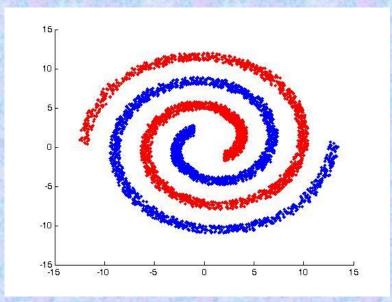
Sample points in a two-dimensional feature space

Complex cases of classification and clustering









CLUSTERING	CLASSIFICATION
Data Points have	Most data points
no labels	have labels

CLUSTERING

METHODS OF AND CLASSIFICATION

- REPRESENTATIVE POINTS
- Split & MERGE
- LINKAGE
- · SOM
- MODEL-BASED
- VECTOR
 QUANTIZATION

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low <u>inter-class</u> similarity: <u>distinctive</u> between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

Considerations for Cluster Analysis

Partitioning criteria

- Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region)
 vs. non-exclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs. connectivity-based (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSCAN, OPTICS, DenClue
- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE

Major Clustering Approaches (II)

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: p-Cluster
- <u>User-guided or constraint-based</u>:
 - Clustering by considering user-specified or applicationspecific constraints
 - Typical methods: COD (obstacles), constrained clustering
- Link-based clustering:
 - Objects are often linked together in various ways
 - Massive links can be used to cluster objects: SimRank, LinkClus

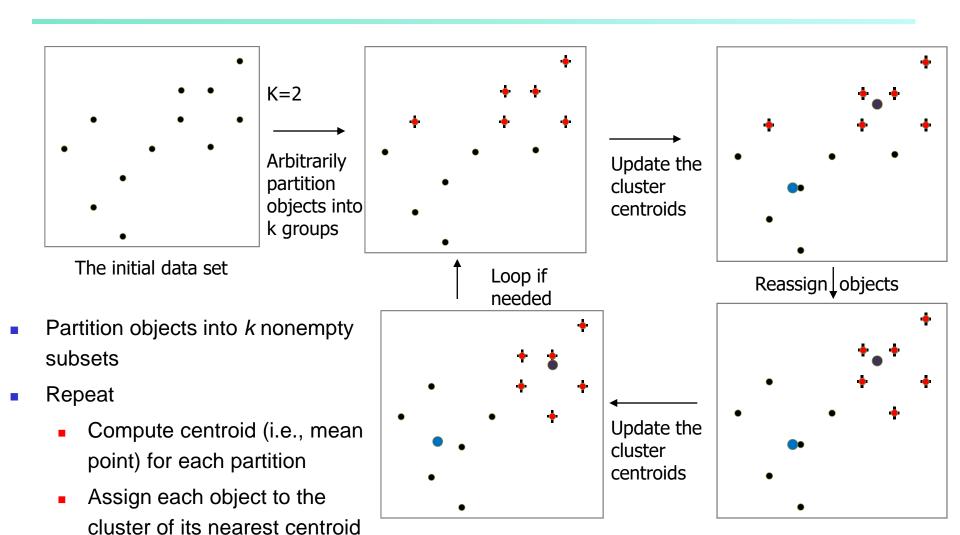
GENERAL CATEGORIES of **CLUSTERING DATA Partitional Hierarchical** (linkage based) **Exclusive Probabilistic Agglomerative** MST **GMM** · K-mean **FCM Divisive** K-medoid

Alternative view of Algorithms for CLUSTERING

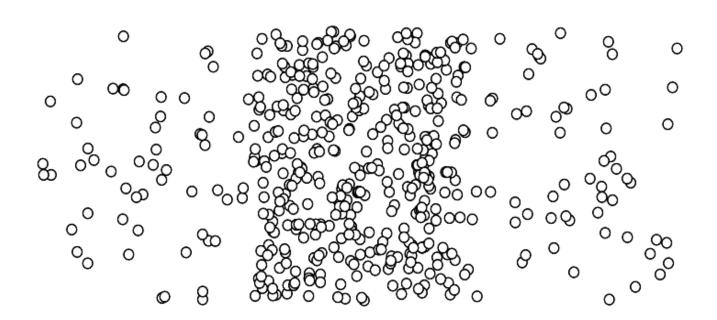
- Unupervised Learning/Classification:
 - K-means; K-medoid
- Density Estimation:
 - (i) Parametric
 - Gaussian
 - MOG (Mixture of Gaussians)
 - Dirichlet, Beta etc.
 - Branch and Bound Procedure
 - Piecewise Quadratic Boundary
 - Nearest Mean Classifier
 - MLE (maximum Likelihood Estimate)

- Density Estimation :
 (ii) Non-Parametric
 - Histogram
 - Neighborhood
 - Kernel Methods
 - Graph Theoretic
 - Iterative Valley Seeking

An Example of K-Means Clustering



Until no change



FCM - Fuzzy C-Means Clustering

FCM

• A method of clustering which allows one piece of data to belong to two or more clusters.

• Objective function to be minimized:

$$J_m = \sum_{i=1}^{N} \sum_{j=1}^{c} u_{ij}^m ||x_i - \mu_j||^2, \qquad 1 \le m < \infty$$

Where

- u_{ij} is the degree of membership of x_i in the cluster j.
- x_i is d-dimensional observation
- μ_j is d-dimensional center of cluster j

Updation

- FCM is an iterative optimization approach.
- At each step, the membership u_{ij} and the cluster centers μ_i are updated as follows:

$$u_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{\|x_i - \mu_j\|}{\|x_i - \mu_k\|} \right)^{\frac{2}{m-1}}},$$

$$\mu_{j} = \frac{\sum_{i=1}^{N} u_{ij}^{m}.x_{i}}{\sum_{i=1}^{N} u_{ij}^{m}}$$

Termination Criterion

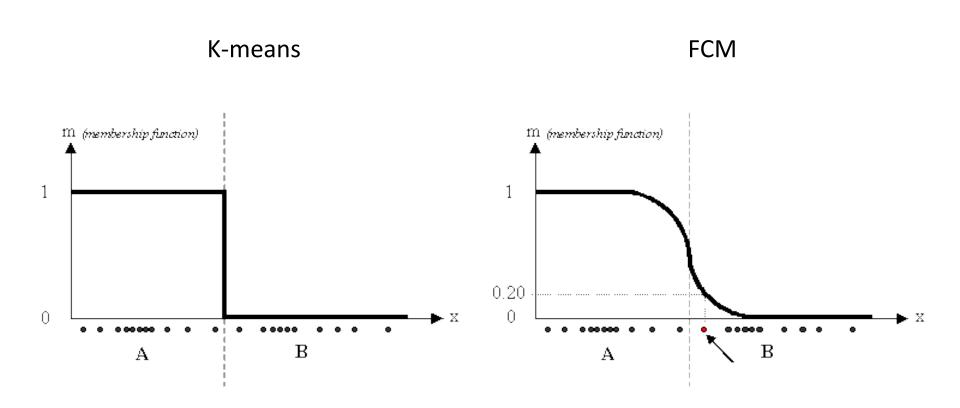
• Iteration stops, when

$$\max_{ij} \left\{ \left| u_{ij}^{(k+1)} - u_{ij}^{(k)} \right| \right\} < \epsilon$$

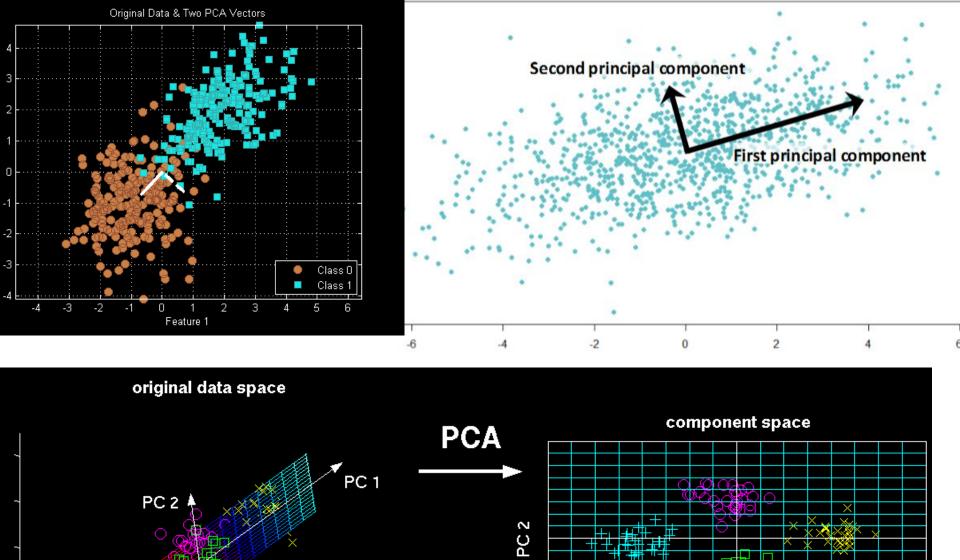
Where *k* is the iteration number.

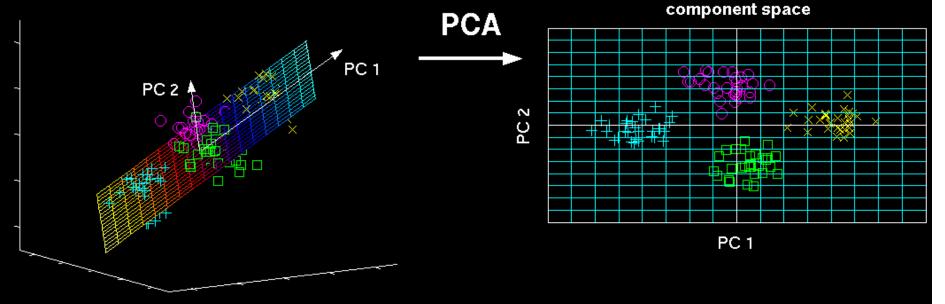
 ϵ is between 0 and 1

K-means Vs FCM



Read about K-medoids





Hierarchical Clustering

Hierarchical Clustering

Builds hierarchy of clusters

- Types:
 - Bottom Up Agglomerative
 - Starts by considering each observation as a cluster of it's own
 - Clusters are merged as we move up the hierarchy
 - Top Down Divisive
 - Starts by considering all observations in one cluster
 - Clusters are divided as we move down the hierarchy

Distance Functions

Certain mathematical properties are expected of any distance measure, or *metric*:

- 1. $d(x,y) \geq 0$ for all x, y.
- 2. d(x, y) = 0 iff x = y.
- 3. d(x,y) = d(y,x) (symmetry)
- 4. $d(x,y) \le d(x,z) + d(z,y)$ for all x, y, and z. (triangle inequality)

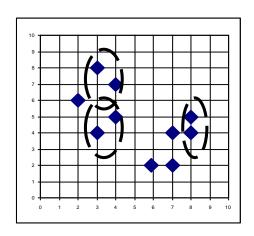
Euclidean distance $d(x,y) = \sqrt{\sum_{i=1}^{d} |x_i - y_i|^2}$ is probably the most commonly used metric. Note that it weights all features/dimensions "equally".

Some commonly used Metrics

- Euclidean distance
- Squared Euclidean distance
- Manhattan distance
- Maximum distance
- Mahalanobis distance

Agglomerative clustering

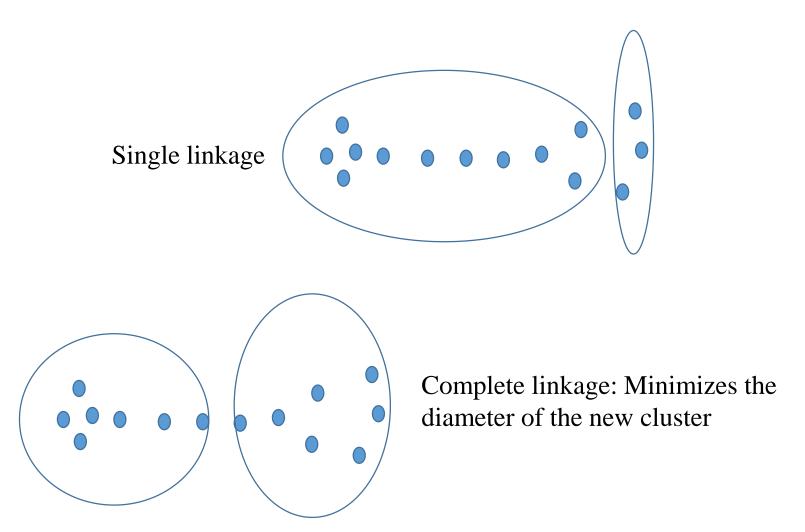
- Each node/object is a cluster initially
- Merge clusters that have the **least** dissimilarity
 - Ex: single-linkage, complete-linkage, etc.
- Go on in a non-descending fashion
- Eventually, all nodes belong to the same cluster



Linkage Criteria

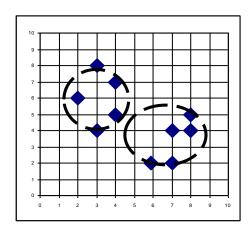
- Determines the distance between sets of observations as a function of the pairwise distances between observations.
- Some commonly used criterias:
 - Single Linkage: Distance between two clusters is the **smallest** pairwise distance between two observations/nodes, each belonging to different clusters.
 - Complete Linkage: Distance between two clusters is the **largest** pairwise distance between two observations/nodes, each belonging to different clusters.
 - *Mean or average linkage clustering:* Distance between two clusters is the **average** of all the pairwise distances, each node/observation belonging to different clusters.
 - Centroid linkage clustering: Distance between two clusters is the distance between their centroids.

Single Linkage vs. Complete Linkage



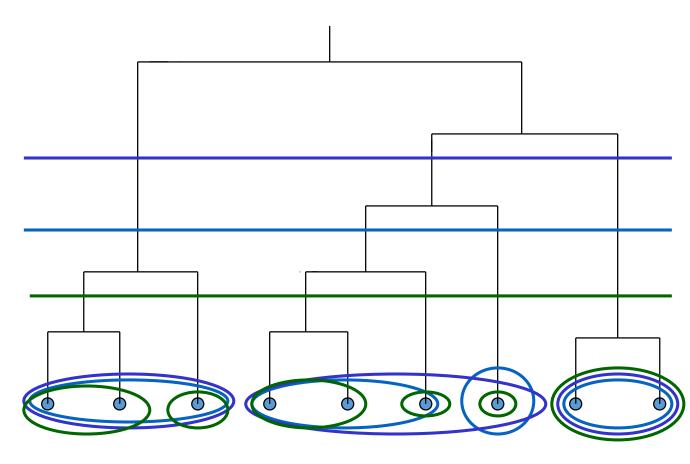
Divisive Clustering

- Initially, all data is in the same cluster
- The largest cluster is split until every object is separate.



What are the true number of clusters?

- Decompose data objects into a several levels of nested partitioning (tree of clusters), called a dendrogram.
- A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected</u> <u>component</u> forms a cluster.



DBSCAN: Density Based Spatial Clustering of Applications with Noise

Density-Based Clustering Methods

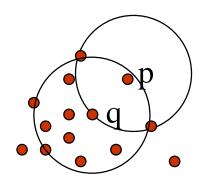
 Clustering based on density (local cluster criterion), such as density-connected points

- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - <u>DENCLUE</u>: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98) (more grid-based)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - *Eps*: Maximum radius of the neighborhood
 - *MinPts*: Minimum number of points in an *Eps*-neighborhood of that point
- $N_{Eps}(p)$: { $q \ belongs \ to \ D \mid dist(p,q) \le Eps$ }
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* w.r.t. *Eps*, *MinPts* if
 - p belongs to $N_{Eps}(q)$
 - core point condition:

$$|N_{Eps}(q)| >= MinPts$$



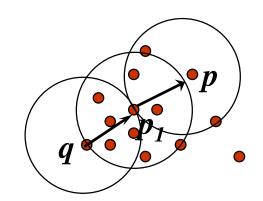
MinPts = 5

Eps = 1 cm

Density-reachable & Density-connected

• Density-reachable:

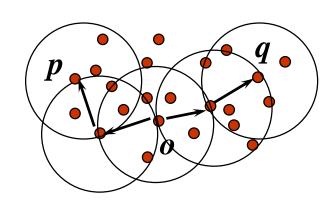
• A point p is density-reachable from a point q if there is a chain of points $p_1, ..., p_n, p_1 = q, p_n =$ p such that p_{i+1} is directly density-reachable from p_i



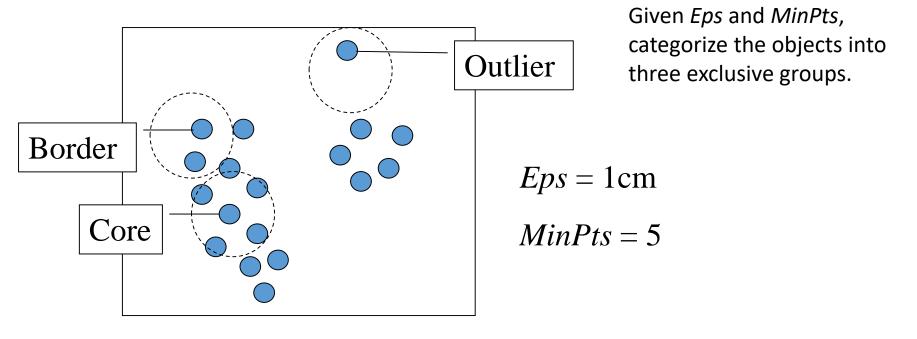
• This is not symmetric

• Density-connected

• A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts

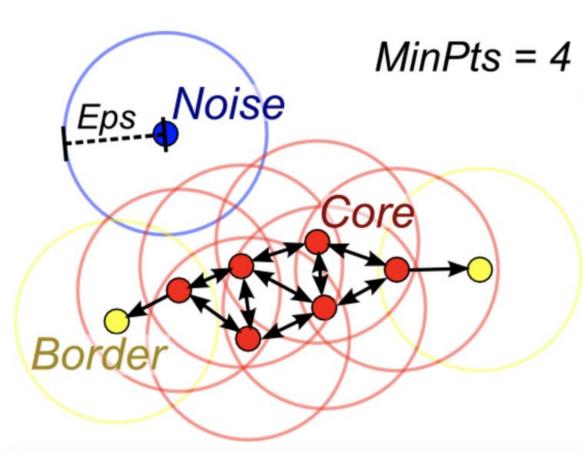


DBSCAN



- A point is a core point if it has more than a specified number of points (MinPts) within Eps—These are points that are at the interior of a cluster.
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.
- A noise point is any point that is not a core point nor a border point.

DBSCAN – Core, border and noise points – Illustration - I

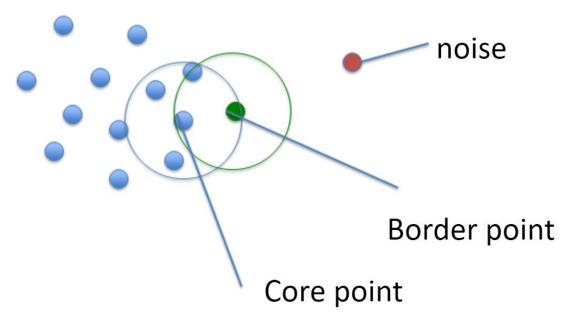


Red: Core Points

Yellow: Border points. Still part of the cluster because it's within epsilon of a core point, but not does not meet the min_points criteria

Blue: Noise point. Not assigned to a cluster

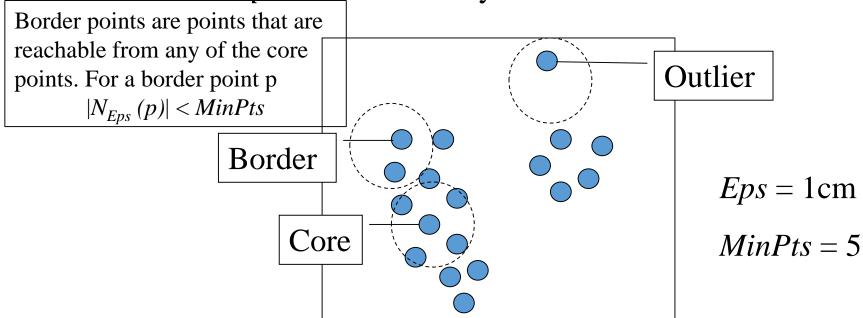
DBSCAN – Core, border and noise points – Illustration - II



MinPts = 4

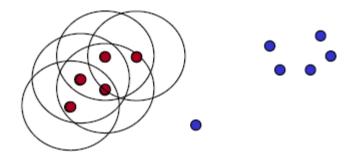
DBSCAN

- A set of points C is a cluster, if
 - For any two points $p, q \in C$, p and q are density-connected
 - There does not exist any pair of points, $p \in C$ and $s \notin C$ such that p and s are density-connected.



DBSCAN Algorithm with example

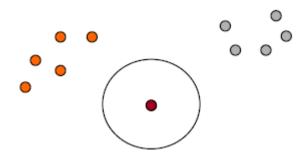
• Parameter: $\varepsilon = 2$, MinPts = 3



```
for each o ∈ D do
  if o is not yet classified then
    if o is a core-object then
       collect all objects density-reachable from o
       and assign them to a new cluster.
  else
    assign o to NOISE
```

DBSCAN Algorithm with example

• Parameter: $\varepsilon = 2$, MinPts = 3



```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

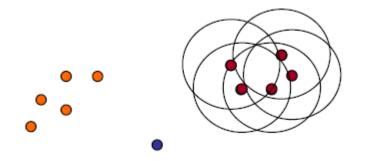
and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm with example

• Parameter: $\varepsilon = 2$, MinPts = 3



```
for each o ∈ D do
  if o is not yet classified then
    if o is a core-object then
       collect all objects density-reachable from o
       and assign them to a new cluster.
  else
    assign o to NOISE
```

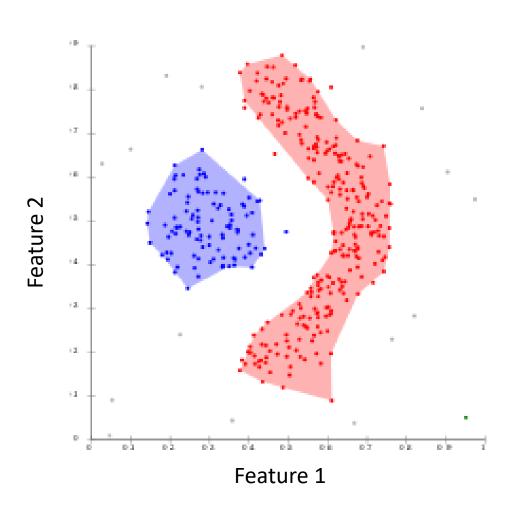
Algorithm

- Select a point *p*
- Retrieve all points directly density-reachable from p wrt. Eps and MinPts.
- If p is a not a core point, p is marked as noise
- Else a cluster is initiated.
 - p is marked as classified with a cluster ID
 - seedSet = all directly reachable points from p.
 - For each point p_i in seedSet till it is empty
 - If p_i is a noise point, assign p_i to the current cluster ID
 - If p_i is unclassified, identify if it is a core point. If yes, then add all directly reachable point to seed set and add p_i to cluster ID
 - Delete p_i from seedSet

DBSCAN: Properties

- Can discover clusters of arbitrary shapes
- Complexity
 - Time
 - $O(n^2)$
 - O(nlog^{d-1}n) with range tree. But requires more storage
 - d dimensions
- Weakness:
 - Parameter sensitive

DBSCAN - non-linearly separable clusters



How to pick the initial centroids?

I'll Choose

Randomly

Farthest Point

What kind of data would you like

Density Bars

Packed Circles

Gaussian Mixture

Smiley Face

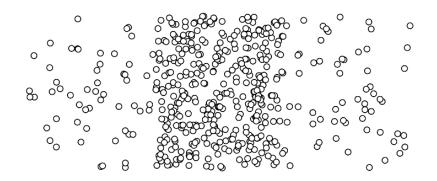
Pimpled Smile

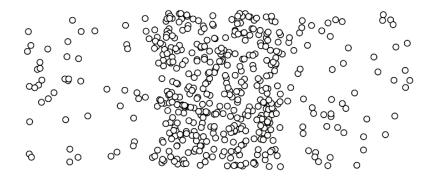
7

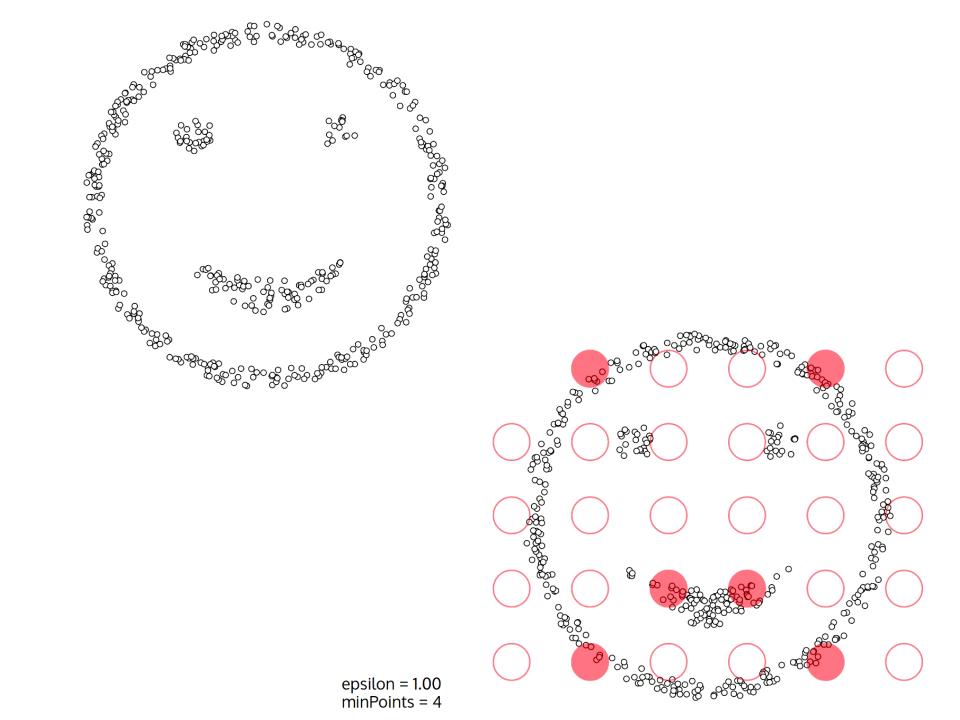
Example A

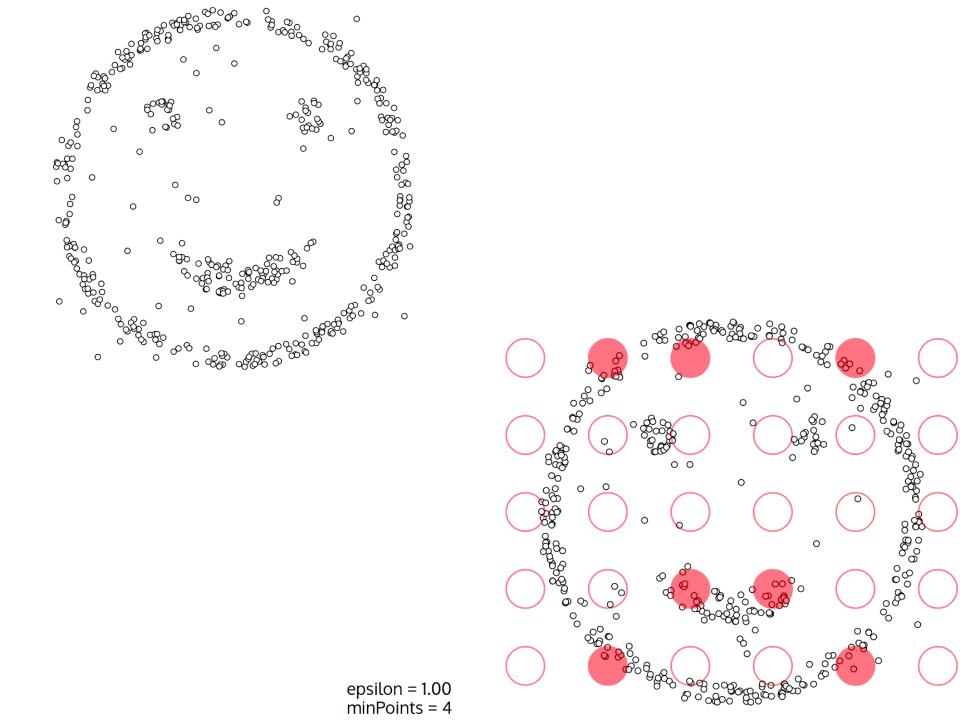
DBSCAN Rings

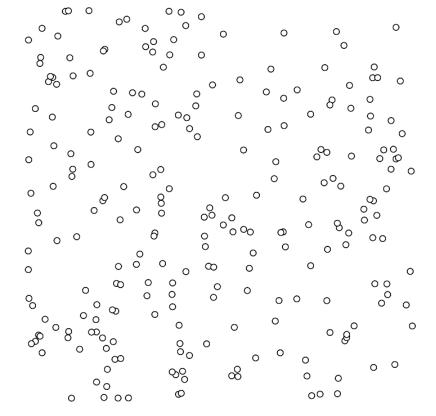
Uniform Points











at kind of data would you like?

Uniform Points

Gaussian Mixture

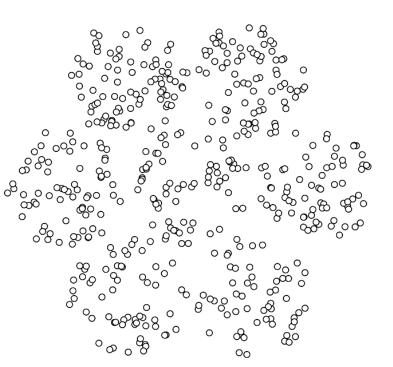
Smiley Face

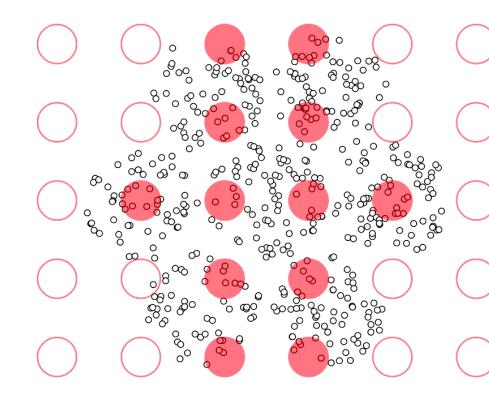
Packed Circles

Pimpled Smiley

DBSCAN Rings

Example A





epsilon = 1.00 minPoints = 4

REFERENCES

- K. Fukunaga; Introduction to Statistical Pattern Recognition, Second Edition, Academic Press, Morgan Kaufmann, 1990.
- Richard O. Duda, Peter E. Hart, and David G. Stork. "Pattern Classification." Wiley, 1973.
- Christopher M. Bishop, "Pattern Recognition and Machine Learning." Springer, 2006.
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.

Demo

Visualizing DBSCAN Clustering

Link: https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD'99.
- Beil F., Ester M., Xu X.: "Frequent Term-Based Text Clustering", KDD'02
- M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying Density-Based Local Outliers. SIGMOD 2000.
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering.
 Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB'98.
- V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using Summaries. KDD'99.

References (2)

- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB'98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98.
- S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical attributes. In *ICDE'99*, pp. 512-521, Sydney, Australia, March 1999.
- A. Hinneburg, D.I A. Keim: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. KDD'98.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.
- G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling. COMPUTER, 32(8): 68-75, 1999.
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98.

References (3)

- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining.
 VLDB'94.
- L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition,.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases, ICDT'01.
- A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles, ICDE'01
- H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets, SIGMOD' 02.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. SIGMOD'96.
- Xiaoxin Yin, Jiawei Han, and Philip Yu, "LinkClus: Efficient Clustering via Heterogeneous Semantic Links", in Proc. 2006 Int. Conf. on Very Large Data Bases (VLDB'06), Seoul, Korea, Sept. 2006.